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ABSTRACT
Purpose: Basal-like breast cancer (BLBC) is a molecular subtype of breast cancer 

associated with poor clinical outcome, although some patients with BLBC experience 
long-term survival. Apart from nodal status, current clinical/histopathological 
variables show little capacity to identify BLBC patients at either high- or low-risk 
of disease recurrence. Accordingly, we sought to develop a network based genomic 
predictor for predicting the outcome of patients with BLBC. 

Experimental Design: We performed network analysis on global gene expression 
profiling data of BLBCs, and identified BLBC network modules associated with AP-1 
transcription, G-protein coupled receptors, and T-, B-, and NK-cells that are significant 
predictors of BLBC patient survival. 

Results: In gene expression and tissue microarray (TMA) validation cohorts 
of 210 and 102 BLBC patients, respectively, the identified network modules were 
robustly associated with patient outcome. In the gene expression validation cohort, 
the Kaplan-Meier estimate for 10-year survival in the low-risk group was 90%, 
whereas in the high-risk group it was a 56%. In the TMA cohort, the Kaplan-Meier 
estimate for 10-year survival in the low-risk group was 98%, whereas in the high-
risk group it was 71%.

Conclusions: The capacity to distinguish between patients with BLBC at high- or 
low-risk of recurrence at the time of diagnosis could permit timely intervention with 
more aggressive therapeutic regimens in those patients predicted to be high-risk, 
and to avoid such therapy in low-risk patients.

INTRODUCTION

Prognostic stratification of breast cancer patients 
is traditionally based on a variety of factors such as 
tumor size, grade, hormone receptor status, HER2 
status, lympho-vascular space invasion and lymph node 
involvement [1, 2]. However, the recent development of 
various whole genome analysis technologies has provided 
new tools for the molecular classification of breast cancer 
and directly contributed to the development of several 
genomic based predictors including a 21-gene, 70-gene, 
76-gene, 77-gene genomic grade profile, 50-gene subtype, 
wound response signature and a ‘stemness’ signature, 

among others [3-10]. 
Basal-like breast cancer (BLBC) was first identified 

as a subtype of breast cancer in 2000, based on gene 
expression profiling experiments conducted by Perou and 
colleagues [11]. Several clinical reports demonstrate that 
BLBCs are associated with an increased risk of developing 
distant metastasis, shorter survival and increased mortality 
[12-14]. Detailed reports on the prognosis of BLBC 
suggest that patients with BLBCs experience high relapse 
rates within the first 3-5 years following diagnosis. After 
this period the recurrence risk rapidly declines such that 
over the long term BLBC patients have outcomes similar 
to those of patients with luminal A disease [15-18]. Hence, 
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these findings demonstrate that patients with BLBCs can 
be stratified into two clinically distinct groups; those at 
high-risk of early recurrence and death, and those at low-
risk of such an outcome and hence likely to experience 
long term survival.

Whereas several genomic based predictors exist to 
predict breast cancer patient outcome, their prognostic 
value appears to be mostly derived from their capacity to 
measure expression of genes associated with proliferation 
and ER status [19, 20]. Because BLBCs represent 
ER negative and highly proliferative tumors, existing 
predictors uniformly identify such patients as being at 
high-risk of recurrence. To overcome these challenges, 
we and others have focused on identifying genomic 
based predictors of outcome in ER negative (ER-), triple 
negative (ER-, PR-, HER2-) or BLBCs specifically [20-
24]. However, robust methods of distinguishing between 
BLBC patients likely to experience either good or poor 
outcome has proved particularly challenging. Here, we 
report the identification and validation of network modules 
for predicting BLBC patient outcome. 

RESULTS

Identifying BLBC outcome-associated network 
modules

We sought to identify gene networks that might 
be useful to predict outcome in patients with BLBC. 
Briefly, we compiled gene expression profiles from 5 
independent datasets, which represent non-redundant 
tumor samples, and for which clinical follow-up data 
was available (Supplementary Table 1). Together, these 

datasets represented 995 tumors, of which 134 were of 
the BLBC molecular subtype, henceforth referred to 
as the ‘training’ set. To identify probe sets associated 
with outcome, we completed univariate Cox-regression 
analyses for the top 2,500 most variably expressed probe 
sets present on the microarrays, which identified 372 
probe sets significantly associated with outcome (Figure 
1A, P < 0.05). Whenever possible, we used disease free 
survival (DFS) as the clinical endpoint for this analysis, 
although in some cases distant metastasis free survival 
was used. The genes represented by the 372 probe sets 
were then mapped as nodes onto a previously described 
highly reliable human functional interaction network [25]. 
Pearson correlation coefficients (for gene expression) were 
calculated for all interacting gene pairs, and assigned as 
‘edges’ to this network [26] (Figure 1B). Finally, the 
network was clustered using MCL (Markov clustering), 
to identify candidate interaction modules associated with 
outcome (Figure 1C). Hence, each module comprises sets 
of genes that are topologically close in the un-weighted 
human functional interaction network, and also display 
highly co-ordinated expression in BLBC. 

We identified 7 modules that each comprised 8 or 
more nodes (genes) that displayed an average Pearson 
correlation of at least 0.25 based on expression. Each 
module was numbered from 0 – 6 in decreasing module 
size (Figure 2A-2H). Based on the expression of the 
genes comprising each module, we calculated a module 
index that represented the difference in mean (geometric) 
expression between poor and good prognosis genes. 
Univariate Cox regression analysis of the individual 
module indices revealed that each module was robustly 
associated with patient outcome (Table 1, Hazard Ratios 
[HR] per unit increase in module index ranged from 

Figure 1: Strategy implemented to identify BLBC modules. A. Univariate Cox-regression identifies 372 outcome-associated 
probe sets. B. Probe sets are mapped onto the Reactome network and edges are weighted based on expression correlation between nodes 
(genes). C. The weighted network is clustered and network modules are identified (n = 7 Pearson correlation > 0.25). 
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1.6 - 2.3; P-values ranged from 0.0068 to 0.000014). 
A combination index (BLBC modules), representing 
the mean of the 7 individual module indices was a 
stronger predictor of patient outcome than any of the 
individual modules suggesting that in sum, the modules 
comprehensively measure the biological programs that 
drive patient outcome (Table 1, HR, 3.0; P = 0.000041). 
We also observed that modules generally did not comprise 
mixtures of good and poor prognosis genes, but rather 
were highly enriched for either good or poor prognosis 
genes. Modules 1, 2, 3 and 6 were enriched in genes 
whose expression was associated with good outcome, 
whereas modules 0, 4 and 5, were enriched in genes whose 
expression was associated with poor outcome. 

To assess the robustness of the modules, we 
compiled a validation cohort that comprised breast tumor 
sample profiles from additional independent datasets, 
henceforth referred to as the validation set (Supplementary 
Table 2). Together these datasets represent an additional 
894 non-redundant tumor samples, of which 211 belonged 
to the BLBC molecular subtype, and for which clinical 
follow-up data was also available. Using univariate 
Cox regression to measure the relationship between 
the individual module indices and patient survival, we 
found that modules 0, 1, 2, 3, 5 and 6 were all significant 
predictors of patient outcome (Table 1; HR 1.9-2.7; 
P-values ranged from 0.0001 to 0.000009). The module 
4 index trended as a predictor of patient outcome, but did 
not reach statistical significance (Table 1; HR 1.3; P = 
0.10). As we observed with the training data, the BLBC 
modules score representing the mean of the 7 individual 
module indices was a superior predictor of patient 
outcome than any of the individual modules (Table 1, HR 
3.1; P = 0.0000021). 

We also stratified patients comprising the validation 
set into high- and low-risk groups based on the median 
module index value and completed survival analysis 
(Figure 3A-3G). In each case, with the exception of 
module 4, the individual module indices identified high- 
and low-risk patient populations with either poor or good 

survival characteristics respectively. The combination 
index robustly stratified the validation set patients into 
high- and low-risk group (Figure 3H, HR, 4.4; P < 0.0001). 
Indeed, the Kaplan-Meier estimate for 10-year survival in 
the low-risk groups was an excellent 90%, whereas in the 
high-risk group it was a dismal 56%. Hence, we concluded 
that the network modules were significantly associated 
with the outcome of patients with BLBC.

Importantly, the approach presented here varies 
substantially from other feature selection techniques in 
that protein interaction network data was used to identify 
the prognostic BLBC modules signature. To test whether 
identifying network modules from outcome-associated 
genes was a reasonable approach to select outcome-
predictive genes, we calculated the difference in P-value 
scores (representing the negative logarithm of the P-value 
obtained from univariate Cox regression) of outcome-
associated probe sets within the training and validation 
cohorts. On average, outcome-associated probe sets 
identified in the training cohort were less accurate in the 
validation cohort, resulting in a net decrease in average 
P-value score across all outcome-associated probe sets. 
However, we did not observe reduced P-value scores 
between the training and validation cohorts among 
outcome-associated probe sets that were included within 
the network modules (Supplementary Figure 1). Indeed, 
these data suggest that the identification of network 
modules from outcome-associated genes provides a 
reasonable step to reduce over-fit during training, thus 
providing a more robust means of predicting patient 
outcome. 

Individual BLBC modules are associated with 
specific biological pathways

We completed independent pathway analyses on 
each of the modules (Table 2). Modules 0, 4 and 5, which 
comprise a majority of poor outcome genes, were enriched 
in pathways related to cell stress, integrin signaling, 

Table 1:  Summary of BLBC modules based survival analysis in training and 
validation patient cohorts

Training Validation
Hazard Ratio P-value Hazard Ratio P-value

Module 0 2.3 1.40E-06 1 1.00E-04
Module 1 1.6 0.0046 2.7 2.90E-07
Module 2 1.6 0.0068 2.2 2.50E-06
Module 3 1.7 0.0016 2.5 9.00E-07
Module 4 1.7 0.0019 1.3 0.10
Module 5 2.1 1.40E-06 1.9 3.40E-05
Module 6 2.0 0.0002 2.2 8.00E-06

Combination 3.0 4.10E-06 3.1 2.10E-07
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Figure 2: Overview of BLBC network modules. A. Global view of the 7 network modules (circles represent nodes (Genes) and gray 
lines represent edges). B-H. Each of the individual modules is presented.

Figure 3: Survival analysis of each BLBC network module in the validation cohort (n = 211). A. Network module 0 (HR, 
2.8; P = 0.0007, log-rank). B. Network module 1 (HR, 3.1; P = 0.002, log-rank). C. Network module 2 (HR, 3.7; P < 0.0001, log-rank). D. 
Network module 3 (HR, 2.7; P = 0.001). E. Network module 4 (HR, 1.4; P = 0.24, log-rank). F. Network module 5 (HR, 3.3; P < 0.0001, 
log-rank). G. Network module 6 (HR, 3.5; P < 0.0001, log-rank). H. Network module combination, average module index of all modules 
(HR, 4.4; P < 0.0001, log-rank).
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and G-protein coupled receptor (GPCR) signaling, 
respectively. A dominant pathway predicted to be active 
in Module 0 was AP-1-meditated transcription, which 
included the module 0 genes FOS, JUN, FOSB, ATF3, 
DUSP1, and EGR1. Intriguingly, a role for the AP-1 
transcription factor in BLBC has not previously been 
described, and might provide a therapeutic opportunity 
[27, 28]. Modules 1 and 2, which both comprise a majority 
of good outcome genes, were enriched in pathways 
relating to the function of T-cells and B-cells, respectively. 
It is likely that these modules measure the abundance and 
functionality of these various immune cell types within the 
tumor. Importantly, this finding is consistent with previous 
reports that T-cell infiltration in BLBCs is associated with 
good patient outcome [29]. These various modules might 
also be useful predictive markers to identify patients 
likely to respond to ‘immune-boosting’ therapies, such 
as CTLA4 and PD-1 blocking antibodies [30]. Module 
6, which exclusively comprised genes related to good 
outcome, was enriched in apoptotic and NK cell pathways, 
once again highlighting the relationship between good 
outcome and immune infiltrate in BLBC. Notably, the 

presence of both NK cell and apoptotic pathway genes 
within module 6 might indicate that NK cells induce 
apoptosis within a subset of BLBCs. 

Comparison of BLBC modules with other 
prognostic gene signatures

We compared the performance of the BLBC 
modules to multiple other prognostic gene signatures 
within the BLBC validation set. To this end we calculated 
and compared P-value scores for the Genomic Grade 
Index [5], NKI-70 signature [31], Oncotype DX® score 
[3], CSR/Wound response signature [6], MS-14 signature 
[32], Glinsky stemness signature [33], Network module 
2 [26] and the meta-PCNA signature described in Venet 
et al. [34] (Supplementary Figure 2A). Apart from the 
BLBC modules, only the Oncotype DX® score was 
significantly associated with patient survival, albeit only 
marginally so. These findings corroborate the results 
of others, demonstrating that published prognostic 
molecular assays are not applicable to BLBC and 

Table 2: Pathway analysis of genes comprising each of the BLBC modules
Module 0 – Stress pathways FDR
 AP-1 transcription factor network(N) <1.00e-03
 HTLV-I infection(K) <1.00E-03
 ATF-2 transcription factor network(N) <1.00e-03
 ErbB1 downstream signaling(N) <1.00e-03
 Osteoclast differentiation(K) <1.00e-03
Module 1 - T cell 
 TCR signaling(R) <1.00e-03
 Primary immunodeficiency(K) <1.00e-03
 TCR signaling in naive CD4+ T cells(N) <1.00e-03
 T cell receptor signaling pathway(K) 1.50E-03
 Cell adhesion molecules (CAMs)(K) 3.20E-03
 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell(R) 9.36E-03
Module 2 - B cell
 Fcgamma receptor (FCGR) dependent phagocytosis(R) <1.00e-03
 Complement cascade(R) <1.00e-03
 Signaling by the B Cell Receptor (BCR)(R) <1.00e-03
 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell(R) <1.00e-03
Module 4 - Integrin signalling
 Integrin signalling pathway(P) <1.00e-03
Module 5 - GPCR signaling
 GPCR ligand binding(R) 3.00E-03
 GPCR downstream signaling(R) 3.48E-02
Module 6 – Apoptosis
 Apoptosis(K) <1.00e-03
 Natural killer cell mediated cytotoxicity(K) 1.00E-03
 Apoptosis(R) 5.71E-04
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highlight the challenges of this unique subtype [20]. We 
also compared P-value scores between the BLBC modules 
and additional signatures that were optimized to predict 
patient outcome specifically in ER-, TN, or BLBC [21, 
22, 35, 36]. We observed that the BLBC modules yielded 
the highest P-value score, although the Hallett et al. and 
Teschendorff et al. signatures similarly displayed excellent 
performance (Supplementary Figure 2B). Overall, these 
data demonstrate that the BLBC modules offer an effective 
means to stratify BLBC patients into high- and low-
risk groups. Notably, the BLBC modules were the most 
robust predictor of patient outcome among all surveyed 
predictors (n = 13).

Network module TMA study

We next sought to capture the predictive information 
provided by the BLBC modules with a simple and 
clinically translatable IHC based assay. We first compiled 
a TMA from 102 FFPE BLBCs from Hamilton Health 

Sciences (HHS-cohort; characteristics summarized 
Supplementary Table 3). To reduce the number of features 
comprising the BLBC modules, we first measured the 
correlation between the indices obtained from each of 
the individual BLBC modules. The correlation between 
the module indices suggested that index scores calculated 
from modules 0, 4 and 5, and from 1, 3 and 6 were highly 
related, whereas the index scores from module 2 did 
not relate with index scores calculated from any other 
module (Figure 4A). Based on this data, we reasoned 
that each of the groups (modules 0, 4 and 5; modules 1, 
3 and 6; and module 2) could each be represented with 
a single IHC measurement that could capture sufficient 
predictive information to be clinically useful. Taking into 
consideration the availability of high quality antibodies 
and our previous pathway analyses we selected JUN, CD8 
and CD20 as representative markers of the 3 groups of 
modules. Each of the individual markers was evaluated 
using a modified Allred method; we subsequently 
calculated risk scores (BLBC modules IHC score) as the 
difference between JUN staining (high risk) and CD8 and 

Figure 4: Validation of the BLBC network modules using and IHC TMA based approach. A. Correlation of the module 
indices reveal relationship between modules 0, 4 & 5, modules 1, 3 & 6, respectively, as well as no relationship between module 2 and any 
other module. B. Survival analysis of the patients comprising the BLBC TMA stratified based on staining for JUN, CD8 and CD20. C) 
Representative photographs of high and low expression tumors for JUN, CD8 and CD20.
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CD20 (both low risk). We observed a robust relationship 
between the BLBC modules evaluated by IHC and patient 
survival (Figure 4B; HR 6.3; P = 0.0039, BLBC modules 
IHC score range [7 to -11]). The Kaplan-Meier estimate 
for 10 year survival in the low risk < 0 Allred score 
group was an excellent 98%, whereas in the > 0 Allred 
high risk group it was a much worse, 71% (Figure 4B). 
Representative staining for each antibody in high- and 
low-expressing tumor sections are shown (Figure 4C). 
In a univariate analysis that included grade, size, age, 
node and the BLBC modules IHC score, only node and 
BLBC modules IHC score were found to be statistically 
significantly related to patient outcome (Supplementary 
Table 4), whereas age, size and grade were not. In a 
multivariate model including node and BLBC module 
IHC score, both node (P = 0.004) and the BLBC modules 
IHC score (P = 0.0001) were significantly associated 
with patient outcome (Supplementary Table 5). Hence, 
we conclude that IHC staining for JUN, CD8 and CD20 
captured similar outcome-associated information as to 
that measured by the BLBC modules, which is above and 
beyond that captured by standard clinical measurements. 

DISCUSSION

Few, if any, clinical variables can be used to 
successfully predict patient outcome in the context 
of BLBC. Therefore, we sought to identify a network 
based genomic predictor for patients with BLBC. We 
identified 7 BLBC network modules, which we tested 
and validated in an independent cohort of BLBC patients. 
Notably, the differences in outcome observed between 
patients predicted to have high- or low-risk BLBC was 
both large and statistically significant. In addition the 
network modules described were a more robust predictor 
of BLBC patient outcome than other published prognostic 
signatures evaluated which highlights the importance 
of incorporating molecular subtype into breast cancer 
biomarker development strategies [19]. 

Interestingly, pathway analysis of the individual 
BLBC modules suggested that each module was generally 
representative of a biological program that, depending on 
expression characteristics, was associated with either good 
or poor outcome. Modules 1, 2, 3, and 6, which together 
comprise the good outcome modules, were generally 
enriched in immune system processes. For example, 
module 1 genes were enriched in many T-cell pathways 
suggesting that the module 1 index identifies BLBCs rich 
in T-cell infiltrates. Indeed, the 3 biomarkers predictive of 
outcome in patients with BLBC included CD8, a marker 
of cytotoxic effector T-cells. Similarly, module 2 genes 
were enriched in many B-cell pathways, suggesting that 
this module serves as a biomarker of BLBCs with B-cell 
infiltrates. Interestingly, we did not observe significant 
correlation between Module 1 and Module 2 indices, 
suggesting that T-cell and B-cell infiltrates may be 

independently present within the stroma of individual 
BLBCs. Importantly, the presence of T-cell infiltrates 
and their relationship with outcome in BLBCs has been 
previously noted [22, 29, 37]. Similarly, observations 
linking a B-cell infiltrate with improved survival among 
TN breast cancer patients have also been reported [38-41]. 
Module 6 genes were also enriched in immune pathways 
related to NK mediated cytotoxicity and apoptosis, 
suggesting that module 6 may identify an NK cell infiltrate 
with tumoricidal activity. Taken together, these data 
suggest that immune infiltrates in BLBC are important 
determinants of patient outcome. Whereas CD8 T-cells 
and NK cells have previously been found to possess 
potent anti-tumor activity, other classes of lymphocytes or 
myeloid lineage cells including macrophages are thought 
to promote tumor progression and poor patient outcome 
(46). Indeed, Th1 and Th2 immune response pathways are 
reported to oppose and stimulate tumor development and 
progression in mouse models of breast cancer, respectively. 
For example, CD4 T cells can promote progression 
through interaction with tumor-specific macrophages, 
which subsequently stimulate the EGFR pathway leading 
to tumor metastasis [42]. Based on these reports, we 
suspect that our good outcome modules identify immune 
infiltrates and immune response pathways that function to 
produce an anti-tumorigenic microenvironment thereby 
leading to improved patient outcome.

Among the poor outcome modules (0, 4 and 5), we 
also observed enrichment for multiple signaling pathways 
and biological processes. Given that these modules 
are associated with poor patient outcome we think it 
is likely that these biological programs are associated 
with adverse tumor biology including progression and 
therapy resistance. Hence, their inhibition might provide 
therapeutic opportunities in BLBC. Targetable pathways 
enriched in Module 0 included the AP-1 and ATF-2 
transcription factors, and ERBB1 (EGFR) downstream 
signaling. Whereas EGFR has been investigated as a 
possible therapeutic target in BLBCs [43], AP-1 and 
ATF-2 represent novel targets in BLBC. Intriguingly, the 
processes enriched in Module 5 genes were exclusively 
related to G-protein coupled receptor signaling (GPCR). 
GPCRs are widely regarded as highly drugable targets, 
although GPCRs have not been traditional targets for anti-
cancer drug development [44]. Traditional GPCR targeted 
drugs include those that interfere with neurotransmitter 
signaling, such as dopamine and serotonin receptor 
antagonists and are widely prescribed to treat mood 
disorders [45]. Recent reports suggest that many of these 
drugs display anti-cancer activity in pre-clinical models, 
including breast cancer models [46, 47]. Our work 
supports these findings and provides additional evidence 
that GPCR signaling drives aggressive tumor behaviour 
and represents a therapeutic target in BLBC. 

There are several limitations of the work described 
herein. All of our conclusions are based on the analysis 
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of retrospective data, which limits its clinical value. 
We demonstrated the predictive capacity of the BLBC 
modules in an independent gene expression cohort, 
as well as with an exploratory 3-biomarker IHC test in 
a local archival FFPE cohort. However, a true estimate 
of the clinical usefulness of the BLBC modules will 
require additional validation in clinical trial samples, or 
completion of a prospective clinical trial examining the 
capacity of the BLBC modules to accurately identify 
low- and high-risk BLBC patients [48]. In addition, it is 
not clear whether the predictive capacity of the BLBC 
modules is a consequence of measuring the natural 
progression of BLBCs or predicting BLBC response 
to anti-cancer therapy. Whereas the majority of the 
training patients were chemotherapy naive, suggesting 
that the BLBC modules are prognostic, the validation 
cohort comprised a majority of chemotherapy treated 
patients (Supplemental Table 6). Hence, we cannot make 
precise conclusions about the prognostic and predictive 
capacities of the BLBC modules and acknowledge that 
their association with patient outcome may contain both 
prognostic and predictive elements. 

As mentioned above, no robustly validated 
biomarker test exists to predict BLBC patient outcome. 
Here we present a network based and genomics driven 
approach to identify outcome-associated BLBC network 
modules. Moreover, we also validated the BLBC network 
modules using an IHC based surrogate assay in an 
additional series of BLBCs. Given the strong relationship 
observed between the BLBC modules and patient outcome 
as well as the widespread availability of IHC, our findings 
if validated, could be rapidly implemented into the 
clinic as a means to spare low risk BLBCs patients from 
aggressive therapy as well as target aggressive therapies 
to those patients with high risk tumors in a timely fashion. 

MATERIALS AND METHODS

Assembly of datasets

A diagram summarizing the analytical strategy 
and the identity of the training and validation cohorts is 
included (Supplementary Figure 3). For the training set, 
we analyzed the gene expression profiles in silico of 5 
independent external datasets, obtained using Affymetrix 
HG-U133A GeneChip arrays, which have been deposited 
in the Gene Expression Omnibus (GEO); accession 
numbers GSE1456, GSE2034, GSE3494, GSE6532, 
and GSE7390 and comprise a total of 1077 samples 
(summarized Supplementary Table 1).

For the validation set, we analyzed the gene 
expression profiles in silico of 5 publically available 
datasets obtained using Affymetrix HG-U133plus2.0 
GeneChip arrays. These profiles were deposited in the 

Gene Expression Omnibus (GEO) (accession numbers 
GSE20685, GSE21653, GSE16446, GSE19615 and 
GSE9195) and comprise a total of 905 samples with 
accompanying clinical follow-up data (summarized in 
Supplementary Table 2). 

All samples used for our study were normalized 
with frozen Robust Multi-array Analysis (fRMA), a 
procedure that allows one to pre-process microarrays 
individually or in small batches and to then combine 
the data into a single dataset for further analysis as 
previously described [49]. Thereafter we used the DWD 
(Distance-Weighted Discrimination) [50] method to 
remove technical variation from the datasets that were 
to be combined for future analysis. After combining all 
datasets, Spearman correlation coefficients for pair-wise 
comparisons of samples using 62 house-keeping probe 
sets were computed, and only samples exhibiting a 
correlation higher than 0.95 with at least half of the dataset 
were selected for further classification. The latter filtering 
method yielded datasets comprising 995 and 894 human 
breast tumor sample transcript profiles for training and 
validation respectively. 

Tumor molecular subtype assignment

All tumors from the independent datasets were 
classified as basal-like, HER2+, luminal A, luminal B, 
claudin-low, normal-like or apocrine by assigning them 
to the standardized centroid of the subtype to which they 
had the highest Spearman rank correlation [11, 12, 51-53]. 
The correlation was computed using 710 intrinsic genes 
as previously described [51]. Reference samples used to 
calculate standardized centroids for the apocrine subtype 
were taken from Farmer et al [53] and for the basal-like, 
HER2+, luminal A, luminal B, claudin-low and normal-
like subtypes from Prat et al [54]. Gene symbols were used 
to match the probes and genes with Gene Symbol names. 
These data were averaged and samples were median-
centered for all datasets prior to subtype assignment. 
Detailed information, including clinico-pathological 
features of the tumors are included in Supplementary 
Table 6.

Network analysis

BLBC modules identification was implemented 
using the Cytoscape Reactome FI plug-in [26]. Briefly, 
outcome associated probe sets were mapped to unigene 
ID and subsequently mapped to nodes in Reactome [25]. 
Weights were assigned to edges connecting interacting 
nodes based on the absolute value of the Pearson 
correlation co-efficient of expression. Markov Clustering 
(MCL) was implemented to identify network modules, 
and we selected modules comprising at least 8 nodes with 
average Pearson correlation of at least 0.25.
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Network index and signature score calculation

We calculated either module indices or signature 
scores as the difference between the geometric means (of 
Log2 expression) of the poor and good outcome associated 
genes, respectively, similar to previous reports [35, 55]. 
This occurred as follows:

N

N
n

P

P
n

n

n xxx
n

n xxx ...... 2121 ••
−

••

Where x is the log2 expression, n is the number of 
probe sets, P is the set of probes reported to be associated 
with poor outcome, and N is the set of probes reportedly 
associated with good outcome.

Assembly and analysis of tissue microarray 
(TMA)

Formalin fixed paraffin embedded (FFPE) blocks 
of triple negative (TN) invasive breast cancer from the 
pathology archive of Hamilton Health Sciences (HHS) for 
the years 2005 to 2009 were collected with institutional 
review board approval. Each tumor was evaluated 
for the expression of CK5/6 and EGFR by standard 
immunohistochemical (IHC) techniques. Those tumors 
identified as TN and positive for either CK5/6 or EGFR 
were deemed BLBCs as previously described [14]. The 
pathological staging, treatment and clinical outcome data 
for each patient was abstracted from the patient clinical 
files by an experienced clinical research associate. Patient 
tumors were excluded if they were locally advanced at 
presentation, had high nodal status (≥N2) or if the patient 
did not receive standard of care management. A total of 
102 such tumors were identified. Three 0.6mm cores 
were taken from the FFPE blocks and used for TMA 
construction. Each slide was stained with antibodies 
against CD8, CD20, and JUN, and quantified using the 
Allred method by an individual blinded to clinical outcome 
[56]. The highest Allred score for each of the three cores 
was used to calculate the Allred score for each sample. To 
calculate an Allred score based on these 3 markers we used 
the formula AllredJUN-AllredCD8-AllredCD20. We confirmed 
the reproducibility of this approach by having a second 
individual blinded to outcome re-evaluate the scoring 
approach (Pearson correlation: 0.84, P = 0. 6.8E-29). 

Statistical analysis

Cox-regression analysis was completed in R 
using the CoxPH package. Kaplan-Meier analysis was 
completed using GraphPad PrismTM 5; P-values less than 
0.05 were taken to indicate statistical significance.
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