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Leptin is a peptide hormone produced by adipose tissue
and acts in brain centers to control critical physiological
functions. Leptin receptors are especially abundant in the
hypothalamus and trigger specific neuronal subpopulations,
and activate several intracellular signaling events, including
the JAK/STAT, MAPK, PI3K, and mTOR pathway. Although
most studies focus on its role in energy intake and
expenditure, leptin also plays a critical role in many central
nervous system diseases. NeuroReport 27:350–355
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Leptin
The endocrine hormone leptin is an adipose-derived

protein, consisting of 167 amino acid residues, and is

encoded by the ob gene on chromosome 6, the murine

homolog of the human leptin gene Lep. Leptin enters the

brain through saturable, passive transport across the

blood–brain barrier [1–3] and then influences a multitude

of biological processes, including controlling food intake

[4], glucose homeostasis [5], and energy expenditure [6].

Although the adipose tissue is the main source of leptin,

it is also produced by other peripheral tissues, such as the

stomach [7], mammary gland [8], placenta [9], skeletal

muscle, heart [10,11], kidney [12], and the brain [4,13].

Therefore, this hormone has a wide range of pleiotropic

effects, affecting the cardiovascular, nervous, immune,

and reproductive systems [14,15], all of which are dys-

regulated when the leptin signaling pathways are com-

promised. In the brain, leptin mRNA expression and

immunoreactivity have been observed in the hypothala-

mus, cortex, dentate gyrus (DG), and the hippocampus of

the rat [16].

Indeed, a lack of leptin in mice and humans leads to

neuroendocrine dysfunction, including neurodegenera-

tive disease, stroke, and cognitive impairment [17].

Recent studies have reported that higher circulating

leptin levels are associated with a lower risk of

Alzheimer’s disease (AD), and lower circulating levels of

leptin have been reported in patients with AD [18–20].

Several studies have suggested that Parkinson’s disease

(PD) patients have lower BMI and serum leptin levels

than controls among the elderly [21,22]. It is also known

that patients with depression experience weight loss

and a decrease in circulating leptin levels [23]. Other

works have suggested that higher circulating leptin

levels increase the risk of vascular disease, such as stroke

[24,25].

Leptin receptor
Leptin receptors (ObRs) belong to the class of the I

cytokine receptor superfamily. Alternative splicings of

the ObRs gene are classified as six leptin receptor forms

(ObRa–ObRf), which have an identical N-terminal [26,

27]. In mice and humans, only five (ObRa–ObRe) and

four (ObRa–ObRd) alternative spliced isoforms have

been described, respectively [28,29]. They all share the

same complex extracellular domain, consisting of two

cytokine receptor homology (CRH) domains separated

by an immunoglobulin-like domain, followed by two

membrane proximal fibronectin type III (FN III)

domains. The membrane proximal CRH2 domain is

necessary and sufficient for leptin binding with an affi-

nity in the nanomolar range [30]. The two FN III

domains have no affinity for the ligand, but are never-

theless essential for receptor activation as mutation of two

conserved cysteines on positions 672 and 751 completely

blocks leptin signaling [31]. The long isoform ObRb is

essential for mediating leptin’s intracellular signal trans-

duction [32]. The ObRb is present in several neural tis-

sues, but is mainly expressed in multiple hypothalamic

regions including the arcuate nucleus (ARC), the ven-

tromedial hypothalamus, the paraventricular nucleus, the

dorsomedial hypothalamus, the lateral hypothalamic area,

and the ventral premammillary nucleus [33,34]. Leptin’s

action on two distinct populations of ARC neurons is well

described, one of which is the orexigenic neuropeptides

neuropeptide Y (NPY) and agouti-related peptide

(AgRP) [35], whereas the other is anorexigenic
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neuropeptides cocaine and amphetamine-related tran-

script and pro-opiomelanocortin [36,37]. In contrast to

ObRb, the short-form leptin receptor ObRa have short

C-terminal domains and are considered to be mainly

involved in endocytosis and transport of leptin across the

blood–brain barrier [38]. Whereas ObRe is the only

soluble isoform, accumulated evidence showed that it is

probably binding circulating leptin and affecting its sta-

bility and availability [39].

Leptin signaling pathways
ObRb, which is lacking in db/db mice [40], is expressed

in several brain nuclei, with higher expression in the

hypothalamic ARC [5]. On binding to the ObRb, leptin

leads to the activation of several intracellular signaling

pathways [41,42], including signal transducer and acti-

vator of transcription 3 (STAT3) [43], and activates

mitogen-activated protein kinase (MAPK) and phospha-

tidylinositol 3-kinase (PI3K) [29]. In addition, the mam-

malian target of rapamycin (mTOR) has emerged as a key

downstream pathway in ObRb signaling and in mediating

leptin’s effects [29,44]. Whether these short isoforms are

still able to bind Janus kinase 2 (JAK2) and signal in vivo
is still doubtful as none of the short isoforms mediates

activation of JAK2 at physiologic levels of JAK2 [45,46].

Leptin and the JAK/STAT3 pathway

The JAK/STATS pathway is one of the best illustrated

pathways in leptin signaling [4,47]. The binding of leptin to

ObRb results in the activation of JAK2. Activated

phosphorylated-JAK2 subsequently phosphorylates con-

served tyrosine residues of ObRb [48] at Tyr985, Tyr1077, and

Tyr1138 [49]. The ObRb phosphorylated at Tyr1077 and

Tyr1138 serves as a docking site and recruits Srchomology 2

(SH2) and Srchomology 3 (SH3) domain comprising proteins

such as STAT3 [50]. The activation of STAT3 induces its

dimerization and translocation into the nucleus, where it

mediates changes in the expression of several genes, includ-

ing suppressor of cytokine signaling 3 (SOCS3), an inhibitor

of ObRb signaling [51], and coordinates the regulation of food

intake and energy homeostasis by altering the expression of

NPY, AgRP, and pro-opiomelanocortin [52].

In addition to STAT3, leptin also induces phosphoryla-

tion of STAT1, STAT5, and STAT6 in cultured cells

[53,54], but only leptin-induced STAT5 phosphorylation

in the hypothalamic ARC of mice [55] and STAT5

nuclear translocation in rat hypothalamic nuclei [56] were

detected.

Leptin and the MAPK pathway

Leptin modulates the phosphorylation of ObRb tyrosine

residues that activate MAPK. Then, MAPK activates

cAMP response element-binding (CREB) protein, which

has an antiapoptotic effect on the cell. Recent studies

suggest that leptin could mediate neuroprotective effects

on dopaminergic cells through the MAPK/CREB

pathway in the central nervous system (CNS) [28].

Leptin induces phosphorylation of Tyr985 in the ObRb,

thereby creating a binding site for the carboxyterminal

SH2 domain of SH2-containing protein tyrosine phos-

phatase 2 (SHP2) [57]. Phosphorylated SHP2 then

recruits the adaptor protein to induce extracellular signal-

regulated kinase (ERK), a member of the MAPK family

[58]. Stimulation of ERK by leptin can also be achieved

by direct interaction with JAK2 [4]. ERK-dependent

upregulation of the immediate early genes egr-1 and c-fos

has been shown in cell culture and in vivo in the hypo-

thalamus [57,59]. The physiological importance of the

MAPK pathway is underscored by the observations that

pharmacological inhibition of ERK1/2 in the hypothala-

mus reverses the anorectic and weight-reducing effects of

leptin [60].

Other members of the MAPK family such as p38 and

JNK have also been reported to be activated by leptin in

several cell types [61], but the associated pathways have

not been well characterized.

Leptin and the PI3K/Akt pathway

The PI3K/Akt pathway was found to be the critical

pathway for the mediation of leptin-induced neuropro-

tection [62]. ObRb activation induces phosphorylation of

several members of the insulin receptor substrate (IRS)

family and then IRS in turn recruits the regulatory p85

subunit and activates PI3K, and leads to sequential

activation of Akt. The hypothalamic PI3K pathway of

leptin signaling is impaired during the development of

diet-induced obesity [63,64] and pharmacological inhi-

bition of PI3K activity blocks the anorectic effect of

leptin [5]. Leptin and insulin may act in coordination to

control energy homeostasis [65] as their intracellular

signalings converge at the PI3K pathway. Although the

relative contributions of leptin in functional hypotha-

lamic signaling are difficult to assess, the importance of

the PI3K pathway is clear.

Leptin and the mTOR pathway

The mTOR protein is a highly conserved

serine–threonine kinase that regulates cell-cycle pro-

gression and growth by sensing changes in energy status.

The mTOR signaling is critically involved in the reg-

ulation of several cellular functions and plays a key role in

the CNS regulation of energy balance and peripheral

metabolism [66]. Leptin increases hypothalamic mTOR

activity and inhibition of mTOR signaling by rapamycin

blunts leptin’s anorectic effect [67]. Systemic deletion of

the ribosomal p70S6 kinase, a major physiological down-

stream effector of mTOR, alleviatives leptin’s acute

anorexigenic action [68].

Leptin in central nervous system disease
All the above evidence suggests that leptin-binding

ObRb initiates the main intracellular signaling passways
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to play a protective role in CNS (Fig. 1). To what extent

can leptin salvage neurons affected by the pathophysio-

logical processes of diseases involving not only neurode-

generation but also acute cerebral ischemia–reperfusion

(I/R) injury? If it can be shown to be leptin-induced

neuroprotection, what is the functional outcome of leptin

treatment on diseases such as AD, PD, depression, and

acute cerebral I/R injury?

Leptin in Alzheimer’s disease

AD is a progressive neurodegenerative disorder resulting

in neurological deficits including memory loss and

diminished cognitive function, making it the most com-

mon neurological condition in the USA [69]. The brains

of patients with AD, in addition to showing nerve and

synapse loss, are histopathologically characterized by two

hallmark lesions, amyloid-β (Aβ) [70] and neurofibrillary

tangles, which are composed of hyperphosphorylated

forms of the tau protein [71,72]. Normally an abundant

soluble protein in axons, the tau is a microtubule-

associated protein that promotes assembly and stability

of microtubules and vesicle transport [73]. In light of the

common belief that the abnormal deposition of both Aβ
and neurofibrillary tangles is critical for the pathobiology

of AD, it has been shown that leptin plays a role in

reversing both pathological hallmarks of AD and results

in better neurological outcomes for the disease state [74].

Leptin receptors are particularly vulnerable in AD [22].

Leptin treatment of neuronal cells reduces the amount of

Aβ secreted into the medium in a time-dependent and

dose-dependent manner [75,76]. Furthermore, leptin

promotes ApoE-driven uptake of Aβ into neurons [77].

Modulation of the tau protein phosphorylation by leptin

represents a significant pathway for protection against

AD pathology. Moreover, growing evidence indicates

that leptin prevents the toxic accumulation of Aβ and

phosphorylated tau in neurons and it has the ability to

improve performance in various memory tasks in murine

AD models [78].

Recent clinical research has shown that individuals with

higher serum leptin levels have a much lower risk of

developing AD in line with rodent models and cellular

studies [20,79]. Moreover, leptin levels are also sig-

nificantly reduced in rodent models of AD [70]. Direct

injection of leptin into the hippocampus of rodents can

improve memory processing and modulate long-term

potentiation and synaptic plasticity [80]. Recent studies

have shown the potential beneficial effects of leptin as an

AD therapeutic [81]. Taken together, our preclinical

data, showing that leptin ameliorates both Aβ-related and

tau-related pathologies, along with its pharmacological

profile, support its use as a novel therapeutic for AD [49].

Leptin in Parkinson’s disease

PD, following AD, is the second most common neurode-

generative disease. Epidemiological studies using 2010 US

census estimates have estimated that ∼630 000 PD were

diagnosed in the USA in 2010 [82]. PD is characterized

clinically by a classic tetrad of motor symptoms: low-

frequency resting tremor, rigidity of the skeletal muscles of

the face and hands, reduced motor activity (bradykinesia),

and in later stages of the disorder, postural instability [83]. As

reported earlier, leptin has been found to promote the sur-

vival of neuroblastoma and neural dopaminergic cells against

1-methyl-4-pyridinium (MPP+) toxicity (dopamine cell-

specific neurotoxins commonly used in experimental

Parkinsonian models) by maintaining ATP levels and mito-

chondrial membrane potential [84]. Leptin was shown to

protect the neuroblastoma cells through a PI3K/Akt-depen-

dent pathway [85], altered Akt, and its downstream target

glycogen synthase kinase-3β (GSK-3β) in depression.

Meanwhile, a MEK/ERK1/2-induced increase in CREB

activation preserved dopaminergic cell survival in proa-

poptotic conditions [85,86]. In-vivo experimentation showed

that up to 2 months after neurotoxin exposure, motor beha-

vior is salvaged in leptin-treated animals compared with

controls in degeneration of dopaminergic neurons’ environ-

ments in part through preservation of nigrostriatal function-

ality. Furthermore, leptin treatment increased the expression

in neuroblastoma cells of mitochondrial uncoupling protein-2

(UCP2) and uncoupling protein-4 (UCP4), both vital to the

reduction of oxidative stress in the mitochondria [84]. UCP2

knockdown cells were shown to lose the protective effects of

leptin when challenged with MPP+. The present study

showed that leptin rescued dopaminergic neurons, reversed

behavioral asymmetry, and restored striatal catecholamine

Fig. 1
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levels in the unilateral 6-hydroxydopamine (6-OHDA)mouse

model of dopaminergic cell death [85,87].

In PD patients who experience unintentional weight

loss, circulating leptin levels have been found to be lower

than in weight-stable PD patients, with lowered leptin

levels consistent with reduced body fat [73]. The weight-

loss associated with PD would then result in less stored

adipose, and thus lowered serum leptin levels [83]. This

scenario is an example of the association between low

leptin levels in the brain and pathogenesis of neurode-

generative disease. Basic science findings suggest that

leptin can reduce or prevent neuronal apoptosis induced

by a variety of pathological conditions and could result in

better functional outcomes for neurodegenerative disease

states, especially those associated with obesity and

metabolic disorders [22].

Leptin in depression disease

Depression is a chronic and debilitating mental illness with

a 17% lifetime prevalence and is a major cause of mor-

bidity, disability, and mortality [88]. Currently available

pharmacologic treatments for depression primarily target

monoamine systems [72]. Systemic administration of leptin

exerts antidepressant-like behavioral effects in male rats

and mice. Several lines of evidence suggest that leptin

exerts its antidepressant-like effects by activating ObRb in

the hippocampus. First, direct infusion of leptin into the

DG of the hippocampus induces an antidepressant-like

effect [89]. Second, deletion of ObRb from the hippo-

campus causes depression-like behaviors and attenuates

leptin’s antidepressant-like effects [89,90]. Third, blockade

of leptin signaling in the DG reverses the antidepressant-

like effects of leptin. These findings support an important

role of leptin actions on mood-related behavior.

Compelling evidence supports the important role of the

glutamatergic system in the pathophysiology of major

depression and also as a target for rapid-acting antidepressants

[91]. Blockade ofN-methyl-D-aspartate (NMDA) receptors by

intra-CA3 infusion of MK-801 (a noncompetitive NMDA

receptor antagonist) reversed behavioral despair [78]. A sub-

population of granule neurons that innervated the CA3 region

expressed leptin receptors and these cells were not activated

by stress. Leptin treatment dampened tail suspension-

evoked glutamate release in CA3 [92]. However, intra-CA3

of the hippocampus infusion of NMDA blocked the

antidepressant-like effect of leptin in reversing behavioral

despair in both the tail-suspension tests and forced-swim

tests, which involved activation of Akt signaling in DG [89].

Results suggest that the DG–CA3 glutamatergic pathway is

critical for mediating behavioral despair and antidepressant-

like responses to leptin in the hippocampus [92]. Elevating

leptin signaling in brain represents a novel approach for the

treatment of depressive disorders.

Leptin in stroke

A stroke occurs when blood flow to the brain is inter-

rupted, either by a blockage or by a burst vessel. Stroke is

responsible for roughly one-tenth of deaths, making it the

second most common cause after heart disease worldwide

[93]. Acute ischemic stroke injuries to brain tissue are

among the leading causes of death and long-term dis-

ability in humans. The pathophysiologic mechanisms of

cerebral I/R injury are primarily related to the energy

deficiency of neurons, cell excitatory responses, inflam-

mation, and the start of the apoptosis cascade [62].

Recent research suggested that leptin decreases tissue

lactate dehydrogenase levels and thereby decreases the

lactic acid/pyruvate ratio, resulting in a mitigation of

acidosis because of anaerobic metabolism within the

brain. This effect is reversed by LY294002, indicating

that the PI3K/Akt signaling pathway plays a critical role

in leptin-mediated neuroprotection [94]. Research shows

that the neuroprotection exerted by leptin in a rat model

of permanent focal cerebral ischemia is associated with

modulation of STAT3 phosphorylation in different cel-

lular populations of the injured brain [95]. The impress-

ive positive effects of leptin administration in rodent

models of ischemic stroke are promising and of potential

therapeutic value to humans [94]. More robust clinical

and scientific studies are necessary before leptin can be

used in clinical practice.

Conclusion
The discovery of leptin 16 years ago was a major break-

through. Beyond its role in glucose homeostasis and

energy balance, leptin has been found to be an important

protective factor contributing toward reproductive func-

tion, bone metabolism, and neuroplasticity. A large and

growing basic research supports the hypothesis that lep-

tin plays a critical role in neuroprotection. Although

recent literature describes the mode of action of leptin, it

remains to be seen as to how the disease-modifying

effects of the hormone in preclinical trials will translate

into a potential therapeutic for patients with neuro-

endocrine dysfunction.
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