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Abstract. Chlamydomonas lytic enzyme of the cell 
wall (gamete wall-autolysin) is responsible for shed- 
ding of cell walls during mating of opposite mating- 
type gametes. This paper reports some topographic 
aspects of lytic enzyme in cells. Both vegetative and 
gametic cells contain the same wall lytic enzyme. The 
purified enzyme is a glycoprotein with an apparent 
molecular mass of 67 kD by gel filtration and 62 kD 
by SDS PAGE, and is sensitive to metal ion chelators 
and SH-blocking agents. These properties are the same 
as those of the gamete wall-autolysin released into the 
medium by mating gametes. However, the storage 
form of the enzyme proves to be quite different be- 
tween the two cell types. In vegetative cells, the lytic 
enzyme is found in an insoluble form in cell 
homogenates and activity is released into the soluble 
fraction only by sonicating the homogenates or freeze- 
thawing the cells, whereas gametes always yield lytic 

activity in the soluble fractions of cell homogenates. 
When vegetative cells are starved for nitrogen, the 
storage form of enzyme shifts from its vegetative state 
to gametic state in parallel with the acquisition of mat- 
ing ability. Adding nitrogen to gametes converts it to 
the vegetative state concurrently with the loss of mat- 
ing ability. We also show that protoplasts obtained by 
treatment of vegetative cells or gametes with ex- 
ogenously added enzyme have little activity of enzyme 
in the cell homogenates, suggesting that lytic enzyme 
is stored outside the plasmalemma. When the de- 
walled gametes or gametes of the wall-deficient mu- 
tant, cw-15, of opposite mating types are mixed to- 
gether, they mate normally but the release of lytic en- 
zyme into the medium is practically negligible. When 
the de-walled vegetative cells are incubated, the lytic 
enzyme is again accumulated in the cells after the wall 
regeneration is almost complete. 

C 
ELL wall lyric enzymes are responsible in the life cycle 
of plant cells for wall extension, zoospore hatching, 
and partial or total dissolution of the cell wall during 

conjugation (32, 35). In the unicellular, biflagellated alga 
Chlamydomonas reinhardtii, shedding of the gametic cell 
wall takes place during mating as a necessary prelude to cell 
fusion (2). This event is caused by a cell wall lytic enzyme, 
referred to as gamete wall-autolysin (31), which is induced 
by the signal of flagellar agglutination. Gametes slip away 
from the walls by breaking off their apical portion with lyric 
enzyme and concurrently excrete the enzyme into the 
medium (recently reviewed in references 34 and 37). Using 
this mating medium as the starting material, we have previ- 
ously purified and identified the gamete wall-autolysin as a 
single glycopolypeptide of 62 kD by SDS PAGE (23) and 
then characterized it as a zinc-containing metalloprotease 
(20). Furthermore, it has been reported recently (4, 10, 20) 
that the sodium perchlorate-insoluble (framework) portion 
(1) of the mutilayered structure (26) of the Chlamydomonas 
cell wall is the target of the lytic enzyme. 

The pioneering work on the Chlamydomonas lytic factor 

by Claes (2) has shown that lyric activity found in the mating 
medium can also be detected in vegetative and gametic cells. 
However, the identity of the gamete wall-autolysin with the 
vegetative and gametic enzymes remains to be clarified. In 
addition, the form and location of the stored enzyme in these 
two cell types are still unknown. We present here some topo- 
graphic aspects of cell wall lyric enzyme. We demonstrate by 
purification and characterization studies that the same en- 
zyme molecules as gamete wall-autolysin exist both in 
vegetative and gametic cells. However, their storage forms 
in the cells appear to be quite different between the two cell 
types. Our results indicate that the vegetative enzyme is 
stored in an insoluble and inactive form, whereas the ga- 
metic enzyme is, at least partly, in a soluble and active form. 
Of particular importance is our finding that the storage form 
shifts back and forth between the two according to the ga- 
metic differentiation and dedifferentiation of the cell. We 
also suggest that the lyric enzyme is localized outside the 
plasmalemma and excreted into the medium during mating 
of gametes. 
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Materials and Methods 

Cell Strains and Culture Conditions 

The wild-type strain 137c, mating-type plus (mr+) 1 and minus (mr-), of 
Chlamydomonas reinhardtii and the cell wall-less mutant strains, cw-2 
mt +, cw-3 mt  +, cw-8 mt +, cw-lO mt-,  cw-15 mt  +, and cw-15 rat- (9) were 
used. All the mutant strains were obtained from the Ch/amydomonas Genet- 
ics Center, Department of Botany at Duke University (Durham, NC), with 
the exception of cwd5, obtained from the Cambridge Algae Collection. 
Vegetative cells were grown in constant light in liquid minimal medium for 
,~40 h (22). Gametes were obtained by flooding 6-d-old cultures on 1.5% 
agar plates containing minimal medium with nitrogen-free induction 
medium at 5 × 107 cells/mi and by incubating for 2-3 h (29). In certain 
experiments, vegetative cells in liquid cultures were harvested by centrifu- 
gation at 700 g for 2 rain, washed twice in induction medium, and 
resuspended at 5 x 106 cells/ml in the medium to induce gametes (22). To 
initiate dedifferentiation, gamete cultures at 5 x 107 cells/nil were trans- 
ferred to 9 vol of minimal medium and incubated. Agglntinability and fusing 
ability (mating efficiency) of cells were determined by mixing them with 
tester gametes of the opposite mating-type in equal numbers as described 
previously (21, 22). 

Preparation of CeU Homogenates and Their 
Fractionation 

Vegetative or gametic cells were harvested by centrifugation, resuspended 
in ice cold 10 mM Tris-acetate, pH 7.5, at 2-5 x l0 s cells/ml, and ho- 
mogenized by passing through a French pressure cell at 400 kg/cm z at 
40C. Complete breakage of cells by French press was regularly monitored 
by phase-contrast microscopy. In some experiments, the pelleted cells were 
frozen at -80"C overnight and thawed before homogenization. Fraetion- 
ation of homogenates was carried out either by differential centrifugation 
ranging from 1,000 to 100,000 g or by density gradient centrifugation using 
Percoll (Pharmacia Fine Chemicals, Piscataway, NJ) at 4"C. Homogenates 
were centrifuged at 8,000 g for 15 rain to remove large cell debris, and the 
supernatant was added with PercoU and sucrose to give a final concentration 
of 15% and 0.25 M, respectively. After centrifugation at 50,000 g for 30 
min with a Hitachi RP50T2 rotor, fractions of 1 ml were collected. The den- 
sity was determined from refractive index. Sonication of homogenates be- 
fore and after fractionation was performed using a Tomy Seiko Ultrasonic 
Vibrator (model UR-200P) at 4°C for 1 min at designated powers. 

Methods of Lyric Enzyme Purification 

Gamete wall-autolysin was purified from the mating medium by the proce- 
dure modified from that described previously (20, 23). The mt + and mt- 
gametes were mixed in equal numbers and allowed to mate for 10 min at 
25°C. The mating mixture (1 liter) was then added with one-fourth volume 
of ice cold 50 mM Tris-acetate, pH 7.5, and 1 M NaCI (5× solution A), 
and centrifuged at 8,000 g for 10 rain at 4°C. Ammonium sulfate was added 
to the cell-free supernatant to 60% saturation for 30 min on ice. After cen- 
trifuging at 13,000 g for 20 rain, the pellets were resuspended in 50 ml of 
10 mM Tris-acetate, pH 7.5, and 200 mM NaCI (solution A), dialyzed over- 
night at 4"C against solution A, and centrifuged at 100,000 g for 30 rain. 
The supernatant was applied to coneanavalin A (Con A)-Sepharose 4B gel 
(Pharmacia Fine Chemicals; 2.2 × 12 cm column) at a flow rate of 25 mlth. 
After extensive washing of the column with solution A, enzyme was eluted 
with 0.1 M methyl-a-D-mannoside in solution A. Fractions containing lytic 
activity were pooled, concentrated by collodion bag (Sartorius) to ,,ol ml, 
and fractionated by gel filtration over Sepbacryl S-200 Superfine (Pharma- 
cia Fine Chemicals) packed in a 2.2 x 30 cm colonm at a flow rate of 30 
ml/h. The most active fractions were pooled, bound to a 2-ml bed of hydrox- 
yapatite, and eluted with 50 mM sodium phosphate in solution A. The frac- 
tions containing lytic activity were pooled, concentrated, and rechromato- 
graphed through a second gel filtration column (2.2 × 60 cm) at a flow rate 
of 10 ml/h. The purified enzyme thus obtained was concentrated by collo- 
dion bag and stored at -80"C. 

Vegetative and gametic enzymes were purified in the following ways. 
Harvested mt+ cells were frozen, thawed, resuspended in 10 mM Tris-ace- 
tate at 5 × l0 s cells/ml, and broken by French press as described above. 

1. Abbreviations used in this paper: mt +, mating-type plus; mt-, mating- 
type minus. 

After a 60-rain centrifaigation at 100,000 g, the supernatant (,-o30 ml) was 
added with 60 ml of DEAE-cellulose (Whatman Inc., Clifton, NJ; DE 52) 
which had been equilibrated with 10 mM Tris-acetate. The mixture was 
stirred gently for 30 rain at 4"C, filtered in a funnel, and the DEAE-cellu- 
lose was washed twice with the buffer. The filtrates, in which most of lytic 
enzyme was recovered (see Results), were combined and added with one- 
fourth volume of 5 x solution A. Subsequently, Con A affinity chromatogra- 
phy, gel filtration, hydroxyapatite chromatography, and the second gel filtra- 
tion were carried out by the same procedures as those described for the 
purification of gamete wall-autolysin. 

Enzyme Assay 

The activity of cell wall lyric enzyme was estimated with the glutamldehyde- 
fixed zoosporangia as substrates by the method described previously (23, 
36). The reaction mixtures contained 10 mM Tris-acetate, pH 7.5, 0.5 
mg/ml BSA, 2.5 × l0 s glutaraldeh)xle-fixed zoosporangia, and 0-240 pl 
enzyme solution in a total volume of 250 gl. The reaction was run at 35"C 
for 30 min and stopped by addition of ElYrA to give a final concentration 
of 20 mM. After stirring vigorously in a Vortex mixer for 15 s, the extent 
of zoospore liberation was determined by phase-contrast microscopy. One 
unit of activity is defined as the amount of enzyme which liberates daughter 
cells at the 50% level. 

Acid phosphatase activity was determined by the method of Loppes and 
Matagne (16) modified from Maclntyre (17) using 1-naphthylphosphate as 
a substmte. Cell homogenates were centrifuged at 100,000 g for 60 rain and 
the supernatants (soluble fractions) were used for enzyme assay. 

SDS PAGE 

SDS PAGE was carried out in the discontinuous buffer system of Neville 
(25) using 7.5-15% linear acrylamide gradients with 3.5% acrylamide 
stacker. Sample preparation and gel stain (silver) were performed as de- 
scribed previously (23, 29). 

Protoplast Formation 

Walled vegetative cells or gametes ("~5 x 106 cells/ml) were incubated 
with 20-50 U/ml crude lytic enzyme and 0.5 mg/ml BSA at 25"C for 30 
min (23). Protoplast formation was monitored by the heating method as de- 
scribed previously (22) and was usually above 95%. For the reformation 
ofceU walls after enzyme treatment of vegetative cells, the lytic enzyme was 
washed away by centrifugation, and the cells were incubated in minimal 
medium supplemented with 1 g/liter sodium acetate at 5 × los cells/ml. 

Inhibitors 
Phenylmethylsulfonyl fluoride (PMSF) was dissolved in isopropanol at 40 
mM, p-chloromercuribenzoic acid in 40 mM NaOH at 50 raM, and 1,10- 
phenanthroline in 95 % ethanol at 100 mM (6). HgC12, iodoacetate, and cy- 
cloheximide were dissolved in distilled water at 100 raM, 500 mM, and 1 
mg/ml, respectively. EDTA was dissolved in 10 mM Tris-HCl, pH 7.0, at 
200 raM. The specified amounts of these stock solutions were added to the 
enzyme solutions or cell suspensions. 

Table L Activity of Cell Wall Lytic Enzyme in 
Cell Homogenates and Mating Medium 

Lytic activity 

Homogenate 

Source Unfrozen cell Frozen cell Medium 

U/IO 9 cells U/IO 9 cells 

Vegetative cell 
mt + <2 460 + 65 
mt-  <2 400 -I- 80 

Gamete 
mt  + 500 + 60 400 + 80 
mt-  370 -I- 80 430 + 60 

Gamete mixture - - 

U/lOOcel~ 

2,560 + 180 

Values are expressed as mean + SD from three separate experiments. 
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Table II. Activities of Lytic Enzyme and Acid Phosphatase 
in the Soluble Fraction Obtained before and after 
Homogenization of mr + Cells 

Lytic enzyme Acid phosphatase 

Cell Before FP After FP Before FP After FP 

/~mol naphthol/lO 9 cells 
U/IO 9 cells per h 

Vege ta t ive  

Unfrozen <2 <2 0 12.1 
Frozen <2 400 11.7 12.7 

Gametic 
Unfrozen <2 500 0 5.8 
Frozen <2 500 4.1 5.4 

Unfrozen and frozen cells were resuspended in 10 mM Tris-acetate buffer. 
Half the amount of cells was centrifuged at 100,000 g for 60 min and the solu- 
ble fraction was saved. The other half was passed through the French press 
(FP); the homogenates were then centrifuged and the soluble fraction was ob- 
tained. 

Results 

Lyric Activity in Homogenates and the Soluble 
Fractions of  Vegetative Cells and Gametes 

The wild-type C. reinhardtii cells were homogenized in a 
French pressure cell, the homogenate was spun at 100,000 g 
for 1 h, and the supernatant termed soluble fraction was 
saved. In these experiments, half the amount of ceils was frozen 
and thawed before homogenization. Tables I and II summa- 
rize the lyric activity found in the homogenates and the solu- 
ble fractions obtained from unfrozen and frozen cells. We 
first noted in vegetative cells that there is a distinct difference 
in the activity between unfrozen and frozen cells. Neither 
the homogenate (Table I) nor the soluble fraction prepared 
from unfrozen cells (Table II) had any detectable activity of 
lyric enzyme, whereas both preparations from frozen cells 
yielded practically the same level of activity (,,0400 U/109 
cells). Since unfrozen cells as well as frozen cells were ob- 
served by phase-contrast microscopy to be disrupted com- 
pletely after passing through the French press, the lack of ac- 
tivity in the former preparation was not due to nonbreakage 
of cells. Furthermore, we found that the activity of the solu- 
ble acid phosphatase, which is located in the vacuoles in 
Chlamydomonas (19), was equally found in the soluble frac- 
tions of homogenates from unfrozen and frozen cells (Table 
II). These results indicate that the lyric enzyme in vegetative 
cells is released into the soluble fraction by freeze-thawing 
the cells before homogenization. 

Different from vegetative cells, both unfrozen and frozen 
cells of gametic origin yielded the same level of lytic activity 
in the homogenates (Table I) and in the soluble fractions (Ta- 
ble II). However, it was noticed that homogenization by the 
French press is required to release the gametic enzyme into 
the soluble fraction since no activity was found in the soluble 
fraction of frozen cells without homogenization (Table II). 
This was a sharp contrast to the soluble acid phosphatase in 
which the activity could be released into the soluble fraction 
only by freeze-thawing the cells (Table II). 

Although the mt ÷ and mt- vegetative cells and gametes 
appeared to have the same amount of lytic activities, this 
amount was significantly lower (~20% level) than that of the 

lyric activity (•2,500 U/109 mixed gametes) present in the 
medium of mating gametes (Table I). We found in the follow- 
ing experiments that the difference is due to the presence of 
some inhibitor(s) of lyric activity in the soluble fraction of 
cell homogenates. 

Purification and Characterization of  Lyric 
Enzyme in Cells 

To see whether the lyric enzymes found in vegetative cells 
and gametes are identical, they were purified using the solu- 
ble fractions of homogenates from frozen cells, and their 
characters were compared with each other or with gamete 
wall-autolysin which had been purified from the mating 
medium (23). 

The first batch use of DEAE-ceilulose at low salt condi- 
tion proved to be valuable for enzyme purification since a 
large amount of protein impurities and some inhibitor(s) of 
lyric activity were bound to DEAE-cellulose. The vegetative 
and gametic enzymes, however, were not absorbed at all, 
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Figure 1. Purification of lytic enzymes from vegetative cells, ga- 
metes, and mating medium by gel filtration. After Con A affinity 
chromatography and concentration, 1 ml of (A) the vegetative en- 
zyme (3,000 U), (B) the gametic enzyme (5,200 U), and (C) the 
gamete wall-autolysin (5,000 U) were fractionaWxl by Sephacryl 
S-200 chromatography. Before fractionation, the samples were 
mixed with 0.25 ml (0.5 rag) of cytochrome C used as a marker. 
Fractions of 1 ml were collected and analyzed for the absorbance 
at 280 nm (solid circles) and lytic activity (open circles). Standard 
proteins used for the determination of the molecular mass of lytic 
enzymes were aldolase (ALD; 155 kD), bovine serum albumin 
(BSA, 66 kD), ovalbumin (OVA, 45 kD), and cytochrome C (CYT, 
12.5 kD). Arrows indicate the peak positions of standard proteins. 
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Figure 2. SDS PAGE of purified lytic enzymes. After a second gel 
filtration, the activity peak fraction (,,o100 U) was analyzed by SDS 
PAGE (7.5-15 % acrylamide gradient gel) and silver staining. Lane 
1, Vegetative enzyme; lane 2, gametic enzyme; lane 3, gamete 
wall-autolysin; lane 4, marker proteins: ferritin half unit (220 kD), 
bovine serum albumin (67 kD), catalase (60 kD), lactate dehydro- 
genase (36 kD), and ferritin (19 kD). 

resulting in elimination of ,o90% of the total protein after 
this purification step. In addition, the elimination of inhibi- 
tor(s) by DEAE-cellulose binding resulted in a three- to 
fivefold increase in total activity. There was no indication of 
total activity increase in the mating medium by the DEAE 
treatment. Similar to the gamete wall-autolysin (23), both 
enzymes were then bound specifically to a Con A-Sepharose 
column (the flow-through did not contain any lyric activities) 
and eluted with 0.1 M methyl-a-D-mannoside, indicating that 
these enzymes have mannose and/or glucose residues. 

Further purification of the enzymes was achieved by gel 
filtration using Sephacryl S-200 (Fig. I). Both vegetative 
(Fig. 1 A) and gametic enzymes (Fig. 1 B) eluted in one peak 
of activity at the same position with an apparent molecular 
mass of 67 + 2 kD (mean value with SD in three separate 
analyses). Furthermore, this value was quite similar to that 
of gamete wall-autolysin (65 + 4 kD in three separate anal- 
yses) (Fig. 1 C). After rechromatography of the vegetative 
and gametic enzymes on a second gel filtration column, the 
enzyme peak fractions were visible after SDS PAGE and sil- 
ver staining as a single 62-kD polypeptide accompanied by 
two to three faint bands around this main band (Fig. 2, lanes 
I and 2). The 62-kD polypeptide corresponded exactly to the 
gamete wall-autolysin on SDS PAGE (lane 3). This mole- 
cule is therefore considered to be the vegetative and gametic 
enzymes. 

Table III lists the effects of potent inhibitors of serine, 
thiol, and metalloproteases on the purified vegetative and 
gametic enzymes. Chelators of the metal ions (EDTA, 1,10- 
phenanthroline) and SH-blocking agents (p-chloromercuri- 
benzoic acid, iodoacetate, HgC12) have previously been 
shown to inactivate the gamete wall-autolysin (23) and did 
also inactivate the two cellular enzymes. By contrast, PMSE 
which is a potent inhibitor of serine protease and ineffective 

Table III. Effects of lnhibitors on Lytic Activity of Enzyme 
Purified from Vegetative Cells and Gametes 

Percent inhibition 

Vegetative Gametic 
Inhibitor Concentration e n z y m e  enzyme 

mM 

PMSF 1.0 0 0 
EDTA 0.02 12 8 

0.05 100 100 
HgC12 0.2 6 100 

0.5 100 100 
Iodoacetate 4 67 68 

5 100 100 
p-Chloromercuribenzoic acid 2.5 10 36 

5 100 100 
1,10-Phenanthroline 0.05 18 100 

0. l 59 100 

Purified enzymes after the second gel filtration were used. Inhibitors were add- 
ed to reaction mixtures containing 0.25-0.5 U of enzyme activity, and reaction 
was started by adding zoosporangia as substrate. 

against gamete wall-autolysin (23), did not abolish the 
vegetative and gametic enzymes. 

From all the above results we conclude that both vegetative 
cells and gametes contain the same cell wall lytic enzyme as 
gamete wall-autolysin. 

Solubilization of Lyric Enzyme from 
Homogenates of Unfrozen Vegetative Cells 
Although vegetative cells had no detectable lyric activity un- 
less they were frozen before homogenization (see above), 
sonication was found to be effective to release the lyric en- 
zyme from the homogenate of unfrozen vegetative cells (Fig. 
3). At an appropriate power setting ('o50 W), the sonicated 
homogenates had the same amount of lyric activity as the 
homogenates from frozen cells. Furthermore, almost all the 
activity was observed in the soluble fraction after sonication. 
To see where the lyric enzyme is concealed, the homogenate 
from unfrozen cells was first fractionated by differential cen- 
trifugation and then each fraction was sonicated to solubilize 
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Figure 3. Sonication of homogenates from unfrozen vegetative 
cells. Unfrozen vegetative cells were homogenized completely by 
French press at a density of 5 x 108 cells/ml. Aliquots of 2 ml 
were sonicated at different power settings shown on the abscissa for 
1 min at 4°C, and lytic activities were determined. 
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Table IV. Distribution of Lyric Activity after Fractionation 
of Homogenate from Unfrozen Vegetative Cells by 
Differential Centrifugation 

Fraction Lytic activity 

% 
1,000 g pellet 6.8 
8,000 g pellet 6.8 

15,000 g pellet 56.4 
30,000 g pellet 17.1 

100,000 g pellet 8.5 
100,000 g supernatant 4.3 

(soluble fraction) 

Homogenate was prepared from the mt + vegetative cells without prefreezing. 
Centrifugations were carded out for 15 rain with the exception of 100,000 g, 
done for 60 rain. Pellets were resuspended in 10 mM Tris-acetate buffer and 
sonicated at 50 W for 1 min to solubilize the enzyme. 

the enzyme. Table IV shows that the 15,000 g and 30,000 g 
pellets contain a considerable amount of enzyme in an inac- 
tive form. Fig. 4 shows the distribution pattern of the inactive 
enzyme after Percoll density gradient centrifugation. Cell 
homogenate was spun at 8,000 g to remove the large cell frag- 
ments, and the supernatant was mixed with Percoll, cen- 
trifuged at 50,000 g, and fractionated. By sonicating each 
fraction, lyric activity was detectable as two peaks at a den- 
sity of 1.085 and 1.100, respectively. These two activity peaks 
were reproducible in repeated experiments although their 
relative activity ratio was changed. 

Changes in Enzymatic Behavior during Gamete 
Differentiation and Dedifferentiation 
The above results clearly indicate that there is a distinct 
difference between the vegetative cells and the gametes with 
respect to lyric enzyme behavior. In C. reinhardtii, differen- 
tiation of vegetative cells to gametes is a reversible process 
that can be controlled experimentally (11, 28). Withholding 
a nitrogen source induces gametogenesis, and adding it back 
converts gamete to vegetative cell. We therefore used the 
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Figure 4. Percoll density gradient fractionation of homogenate from 
unfrozen vegetative cells. Cells were broken, centrifuged at 8,000 g 
for 15 min to remove the large cell fragments, and the supernatant 
(20 ml) was mixed with Percoll and sucrose to give a final concen- 
tration of 15% and 0.25 M. After centrifugation at 50,000 g for 30 
min, fractions of I ml were collected, and analyzed for the density 
(open triangles) and lytic activity (open circles) after sonicating at 
50 W for 1 min. 
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Figure 5. Changes in enzymatic behavior during differentiation of 
gametes. Vegetative cells of mt + in nonsynchronized liquid culture 
were transferred to nitrogen-free medium at a density of 5 x 106 
cells/ml. At the times indicated, 1-ml portions of cells were taken 
and mixed with the tester gametes of rot- in equal numbers to de- 
termine their agglutinability (open triangles) and mating efficiency 
(solid circles). At the same time, 100-ml portions were harvested 
by centrifugation at 4°C, resuspended in 2.5 ml of ice cold 10 mM 
Tris-acetate, pH 7.5, and the suspensions were passed through the 
French press. Lytic activity (open circles) was assayed by use of the 
homogenates. 

differentiation and dedifferentiation processes to examine 
how the lyric enzyme changes its behavior. 

Since we can now distinguish between the two cell types 
by a simple determination of lyric activity containing in the 
homogenates from unfrozen cells (Table I), this assay 
method was used in the following experiments. Fig. 5 gives 
plots of lyric activity determined during gametogenesis that 
occurs when vegetative cells in nonsynchronized liquid cul- 
ture are transferred to nitrogen-free medium. Lyric activity 
was not detectable during the first 4 h of gametic induction, 
then developed rapidly and reached the level of gametes after 
8 h (Fig. 5). It is important that the transition of enzymatic 
behavior from its vegetative (i.e., inactive) to gametic (i.e., 
active) state occurred in parallel with the acquisition of ag- 
glutinability and fusing ability of cells (Fig. 5). During the 
gamete induction, the increase in cell number was neg- 
ligible. 

When fully differentiated gametes were returned to a nitro- 
gen-containing medium, the lyric activity found in the ho- 
mogenates from unfrozen ceils decreased again in parallel 
with the loss of mating ability (Fig. 6). After a 14-h incuba- 
tion, cells lost completely both activities (Table V). How- 
ever, when the same cells were frozen, the homogenate had 
the same amount of lyric activity as gametic homogenate (Ta- 
ble V), indicating that the lyric enzyme returned completely 
to an inactive form characteristic of the vegetative cells. Dur- 
ing the dedifferentiation of gametes, the increase in cell num- 
ber was at most 20%. Table V also shows that cycloheximide, 
an inhibitor of protein synthesis, blocks the gamete dediffer- 
entiation; that is, the loss of mating ability and the transition 
of lytic enzyme from the gametic to the vegetative form. 

Localization of Lytic Enzyme 
To determine whether the lyric enzyme is localized within 
the cytoplasmic membrane or outside, the cell walls of 
vegetative cells and gametes were removed by gamete 
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Figure 6. Changes in enzymatic behavior during dedifferentiation 
of gametes. Fully differentiated gametes of mt + (5 x 10 7 cells/ml) 
were transferred to 9 vol of nitrogen-containing medium. At the 
times indicated, portions of cells were taken to determine their ag- 
glutinability (open triangles), mating efficiency (solid circles), and 
lyric activity (open circles) by the methods as described in the leg- 
end to Fig. 5. 

wall-autolysin. The protoplasts thus obtained were har- 
vested, washed to remove the digested cell walls and added 
enzyme, frozen, homogenized, and then the lyric activity 
was determined. The homogenates from vegetative cells and 
gametes after enzyme treatment had only 10% or less of lytic 
activity as compared to those from untreated cells (Table 
VI). These results indicate that the lyric enzyme is localized 
largely outside the cytoplasmic membrane. This was also in- 
dicated by use of the cell wall-deficient strains. All the 
vegetative cells of the cell wall-deficient strains, cw-2, cw-3, 
cw-8, cw-lO, and cw-15 lacked any detectable lyric activity in 
their homogenates from frozen cells (Table VI). The level of 
lyric activity in gametes of cw-15 was 3-5 % that of the wild- 
type cells (Table VD. 

To determine whether the lyric enzyme localized outside 
the plasmalemma is actually released into the medium dur- 
ing mating, mt+ and mr- gametes of the wild-type cells, the 
wall-digested cells with enzyme or the cw-15 mutant cells 
were mixed together, and kinetics of enzyme release into the 
medium was examined (Fig. 7). As Snell (33) has first 
reported, the release of lyric enzyme was complete within 5 
rain after opposite mating-type gametes were mixed to- 
gether. In the mixture of wall-less cells treated with gamete 
wall-autolysin, agglutination and cell fusion occurred nor- 
mally (mating efficiency, 87 %), but the amount of lyric enzyme 
released was only 10% that of the walled cells (Fig. 7). This 
proportion was practically in agreement with that of lyric ac- 
tivity observed in the wall-digested cells before mixing (see 
Table VI). By mixing the walled gametes of opposite mating 
types, the lyric activity in cell homogenates was reduced to 
<4% level within 10 rain. 

Similarly, gametes of cw-15 cells showed good agglutina- 
tion and fusion (mating efficiency 76%), whereas the level 
of lytic enzyme released was <10% that of the wild-type cells 
(Fig. 7). 

When protoplasts of vegetative cells are incubated in lyric 
enzyme-free medium, they reform new walls over a period 
of several hours (4, 27). Here we followed this process to see 
the correlation of lyric enzyme restoration with wall regener- 

Table V. Loss of Mating Ability and Gametic Form of Lytic 
Enzyme during Dedifferentiation of Gametes and the Effect 
of Cycloheximide on Dedifferentiation 

Treatment 

Mating ability Lytic activity 

Agglutination Fusion Unfrozen cell Frozen cell 

% U/IO 9 cells U/IO 9 cells 

- N  + + +  61 250 ND 
+ Cycloheximide + + +  26 500 ND 

+N - 0 <5 400 
+ Cycloheximide + + +  18 400 400 

Gametes (rat +) were incubated in nitrogen-free (-N) or -containing (+N) 
medium for 14 h. Cycloheximide (2 Ilg/ml) was ~fdded at the beginning of incu- 
bation. ND, not determined. 

ation. The development of lyric activity determined by use 
of frozen cells occurred after wall construction was almost 
complete (Fig. 8). 

All the above results support the hypothesis that the lyric 
enzyme located within the periplasmic space or in the cell 
walls of gametes is excreted into the medium as the gamete 
wall-autolysin during mating. 

Discussion 

An Identical Lytic Enzyme Exists in Vegetative Cell and 
Gamete, but the Storage Form is Different 

At the beginning of this study, we confirm Claes's finding (2) 
that the cell wall lyric activity is present both in vegetative 
cells and gametes of C. reinhardtii. Quantitative assays show 
that these two cell types and also both mt + and mt- cells 
have the same level of lyric activity (Table I). Purification 
studies show that both vegetative and gametic enzymes are 
a glycoprotein with an apparent molecular mass of 67 kD on 
gel filtration (Fig. 1) and 62 kD on SDS PAGE (Fig. 2). 
Moreover, these values are in agreement with those of ga- 
mete wall-autolysin which is excreted into the medium by 
mating gametes (Figs. 1 and 2 and reference 23). Further 
characterization of the purified enzymes by use of various 
protease inhibitors (Table HI) shows that the cellular en- 

Table VI. Lyric Activity in the Wild-type Cells Treated with 
Gamete Wall-Autolysin and in the Wall-less Mutant Cells 

Lytic activity* 

Gamete wall-autolysin 
Strain Culture* Untreated Treated 

U/IO 9 cells U/IO 9 cells 

Wild-type m t  + V 400 20 
G 450 40 

m t -  G 440 20 
c w - 2  mt + V <5 - 
cw-3 mt + V <5 - 
cw-8 mt + V <5 - 
c w - l O  rot- V <5 - 
c w - 1 5  m t  + V <5 - 

G 25 - 
m t -  V <5 - 

G 15 - 

* V, vegetative culture; G, gametic culture. 
* Activities were measured by use of homogenates from frozen cells. 
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Figure 7. Release of lytic enzyme into the medium during mating 
of gametes. The wild-type cells (solid circles), their wall-digested 
cells (open circles), and the cw-15 mutant cells (open triangles) of 
mt ÷ and rot- were mixed together at 5 x 10 7 cells/ml. At the times 
indicated, 1-ml portions were taken, centrifuged quickly, and the 
supernatant was assayed for lytic activity. 
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Figure 8. Re-accumulation of lytic enzyme after wall regeneration. 
After treatment of vegetative cells with gamete wall-autolysin and 
washing out of the enzyme, protoplasts were incubated in culture 
medium from time zero shown on the abscissa. At the times indi- 
cated, aliquots were taken to determine the proportion of walled 
cells (solid circles) and lytic activity (open circles). The proportion 
of walled cells was quantified by the heating method (22). Lytic ac- 
tivity was assayed by use of homogenates from frozen cells. 

zymes are, like gamete wall-autolysin (23), sensitive to SH- 
blocking agents and metal ion chelators, but are insensitive 
to the inhibitor of serine protease. We therefore conclude that 
vegetative cells as well as gametes possess the same enzyme 
molecules as gamete wall-autolysin. 

The present paper, however, demonstrates that there is a 
distinct difference between the vegetative and gametic en- 
zymes with respect to their storage forms. We first note that 
freezing and homogenization are required to release the 
vegetative form of the enzyme into the soluble fraction, 
whereas the gametic form is released by homogenization 
alone (Table II). Sonication of the inactive homogenate from 
unfrozen vegetative cells is also effective to release and acti- 
vate the vegetative form of the enzyme (Fig. 3). Since Claes 
(2) has used ultrasonicarion to disrupt cells, activity would 
be detectable in vegetative cells. That author has also re- 
ported as unpublished results (3) that gametes broken by the 
French press yield no activity unless the homogenate is sub- 
jected to sonication. In the present study, however, the above 
features apply to vegetative cells, but not to gametes. The 
reason for this discrepancy in the results remains obscure at 
present since we do not know her experimental details (3). 

Since the vegetative form of the lyric enzyme is found 
mainly in the particulate fractions (15,000 to 30,000 g pellets) 
of cell homogenate (Table IV), the enzyme may be stored in 
the vesicles or granules in an inactive state. Freeze-thawing 
or sonication of cells or homogenates may result in the 
breakage of these vesicles or granules and release of the ac- 
tive enzyme into the soluble fraction. Another possibility is 
that the enzyme is inactivated in that it might be rightly at- 
tached to the cell structure such as the cell wall. An analo- 
gous situation is found in yeast (7, 8) and Chlorella (14), 
where the lytic enzymes show two forms during the cell cy- 
cle, the soluble form and the cell wall-associated form which 
is presumably the inactive one. 

By contrast, the lytic enzyme of gametes may either be 
contained freely or associated loosely with the cell structures 
in that it can be solubilized and activated by French press dis- 

ruprion alone. In this study, we also analyzed the soluble acid 
phosphatase activity and find that this vacuolar enzyme (19) 
is released into the soluble fraction with similar ease by 
French press in vegetative cells and gametes (Table ID. In 
addition, this enzyme comes out if only cells are frozen. On 
the other hand, homogenization by French press is required 
to solubilize the lyric enzyme even in gametes (Table ID. We 
have shown previously that gamete wall-autolysin tends to 
form a large aggregate of 62-kD subunits in the culture 
medium or low salt buffer (23, 36). It is therefore possible 
that the acid phosphatase is released from gametic cells bro- 
ken by simple freeze-thawing whereas the lyric enzyme 
remains in the cells due to the large size of the enzyme ag- 
gregate. Another possibility is that the lyric enzyme is as- 
sociated with cellular components still in frozen gametes un- 
til the cells are homogenized drastically. 

The present study also shows that homogenates or their 
soluble fractions of vegetative cells and gametes have only 
20 % of the lyric activity present in the medium of mating ga- 
metes (Tables I and II). This difference is due to the presence 
of some, if not all, inhibitor(s) of lyric activity in the soluble 
fraction. The inhibitor(s) is absorbed to DEAE-cellulose so 
that the total activity in the soluble fraction increases and 
reaches the level of the activity present in the mating me- 
dium. It is possible that the endogeneous inhibitor acts on 
the lyric enzyme in cells to keep the activity below the criti- 
cal level until its release by mixing opposite mating-type ga- 
metes. 

The Storage Form of  Lyric Enzyme Shifts via a 
Differentiation and Dedifferentiation Program 

Nitrogen starvation triggers in C. reinhardtii a gametogenic 
program (18) designed to acquire the flagellar agglutinability 
and fusing ability. According to this program, cells synthe- 
size agglutinins in their cell bodies which are then trans- 
ported to the flagellar surfaces for agglutination (21, 30) and 
construct the mt + or mt- mating structure for cell fusion 
(5). We predict from the present results that the gametogenlc 
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program in C. reinhardtii also includes the event of the shift 
of the storage form of lyric enzyme. Upon nitrogen removal, 
the enzymatic behavior shifts from the vegetative state to the 
gametic state in parallel with the acquisition of mating ability 
(Fig. 5). Adding nitrogen back converts gamete to vegetative 
cell concurrently with the shift of the enzymatic behavior to 
the vegetative state (Fig. 6 and Table V). We therefore as- 
sume that the loss of mating ability and the return of the cell 
wall lytic enzyme to the vegetative state are both involved in 
a dedifferentiation program. Since cycloheximide appears to 
block the proceeding of the dedifferentiation program (Table 
V), the drug may prevent cells from responding to nitrogen 
addition. 

Although vegetative cells and gametes of C. reinhardtii are 
morphologically very similar, one can now clearly distin- 
guish between the two cell types by a simple determination 
of lytic activity by use of homogenates of unfrozen cells. This 
assay method will become a valuable tool to determine 
whether cells, which have been placed in a nitrogen starved 
condition, can truly differentiate into gametes, especially in 
cases of the non-agglutinating mutants or flagellar-deficient 
mutants. 

Lytic Enzyme Is Stored Outside the Plasmalemma 
Finally, we suggest here that lyric enzyme is stored either in 
the periplasmic space or attached to the cell wall. Removal 
of the cell walls of vegetative cells or gametes by the exogene- 
ously added enzyme causes almost complete loss of the en- 
zyme from the cells (Table VI). When these de-walled ga- 
metes are mixed together, they normally agglutinate and 
fuse, but release only very small amounts of the enzyme into 
the medium (Fig. 7). Similarly, in the wall-deficient mutants, 
cw, the amount of lyric activity in the homogenates of cells 
and in the medium after mating is practically negligible (Ta- 
ble VI and Fig. 7). These facts support that the lyric enzyme 
within the periplasmic space or in the cell walls and the ga- 
mete wall-autolysin released into the mating medium are 
identical. 

When the de-walled vegetative cells are incubated after 
removing the exogeneously added autolysin, the lytic en- 
zyme is again accumulated in the cells after the reformation 
of the cell walls is almost complete (Fig. 8). Goodenough 
and Heuser (4) have analyzed the wall regeneration using the 
quick-freeze, deep-etch technique and shown that after lytic 
enzyme is washed away, cells quickly regrow radial fibers to 
constitute the "warp; and the elements of the central triplet 
are then assembled to form the "weft" within a period of a 
few hours. We therefore predict that the newly synthesized 
lyric enzyme would be organized outside the plasmalemma 
after the "weft" is formed. 

In this organism, insoluble phosphatases and carbonic an- 
hydrase are also located outside the plasmalemma (12, 13, 15, 
19). As for the carbonic anhydrase, treatment of walled cells 
with trypsin causes a quantitative release of this enzyme into 
the medium, indicating that its locality is on the outer surface 
of the cell wall (38). We have used trypsin to examine its 
effect on the lyric enzyme in the cells. We find that treatment 
of gametes with trypsin does not cause any release of lytic 
activity, from the cells, although this treatment has previ- 
ously been shown to cause a complete release of agglutinins 
(30). Therefore, the lytic enzyme may not be located on the 
cell surface. Since the innermost layer of the central triplet 

(W2 layer) has been proposed to be the target of lytic enzyme 
(4), it is plausible to assume that the enzyme is stored in the 
vicinity of the W2 layer. In this context, Millikin and Weiss 
(24) have analyzed the binding of Con A to the Chlamydo- 
monas gametic cells and proposed that periplasmic Con 
A-binding sites represent lytic enzyme or a precursor of 
enzyme. 
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