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Abstract: Recent challenges in biomedical diagnostics show that the development of rapid affinity
sensors is very important issue. Therefore, in this review we are aiming to outline the most important
directions of affinity sensors where polymer-based semiconducting materials are applied. Progress
in formation and development of such materials is overviewed and discussed. Some applicability
aspects of conducting polymers in the design of affinity sensors are presented. The main attention
is focused on bioanalytical application of conducting polymers such as polypyrrole, polyaniline,
polythiophene and poly(3,4-ethylenedioxythiophene) ortho-phenylenediamine. In addition, some
other polymers and inorganic materials that are suitable for molecular imprinting technology are
also overviewed. Polymerization techniques, which are the most suitable for the development
of composite structures suitable for affinity sensors are presented. Analytical signal transduction
methods applied in affinity sensors based on polymer-based semiconducting materials are discussed.
In this review the most attention is focused on the development and application of molecularly
imprinted polymer-based structures, which can replace antibodies, receptors, and many others
expensive affinity reagents. The applicability of electrochromic polymers in affinity sensor design
is envisaged. Sufficient biocompatibility of some conducting polymers enables to apply them as
“stealth coatings” in the future implantable affinity-sensors. Some new perspectives and trends
in analytical application of polymer-based semiconducting materials are highlighted.

Keywords: immunosensors; affinity sensors; DNA-sensors; conducting polymers (CPs); biosensors;
polymer-modified electrodes; electrochemical deposition; electrochemical sensors; electrochromic
organic polymers; molecularly imprinted polymers (MIPs)

1. Introduction

Affinity sensors are widely used in many analytical fields, but the most frequently
they are applied for various biomedical purposes [1]. Due to the variation of different
analytes and the variety of matrixes where these analytes are determined, many different
analytical signal transduction techniques are applied to design suitable affinity sensors.
Moreover, some new and advanced materials are used to improve the selectivity of affinity
sensors, which is required to fulfil recent trends and requirements of newly designed
analytical systems [2]. Due to significant efforts of researchers, biosensors are applied
in the detection of many biologically active compounds in complicated biological aliquots
such as blood, blood serum, saliva urine, etc. [3,4]. These sensors are used to solve some
still challenging tasks in pharmacy and biomedicine, such as tissue regeneration [5] or
sensor design [6,7]. To advance performance of sensors, various semiconductor-based
structures are applied [8,9], very often such structures involve conducting polymers (CPs)
and CPs-based heterostructures. CPs can be used for the formation of sensor-structures
that are selective toward selected analyte, because they can be used for the immobilization
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of various biological materials, ranging from enzymes [10,11], antigens [12], antibodies
receptors and for the formation of molecularly imprinted polymers [13,14]. CPs are char-
acterized by a rather good electrical conductivity [15] and capacitance [16–18], adhesion
to electrically conducting surfaces and mechanical stability [19,20], charge transfer ability,
which can be successfully exploited in charge transfer from redox proteins towards metal-
or carbon-based conductors [21]. Therefore, various electrochemically and optically active
conducting polymers are used in the design of various sensors and biosensors as signal
transducing systems.

Recently, many CPs are applied in sensor design, but among them the most fre-
quently used are polypyrrole(Ppy), polyaniline (PANI) and polythiophene(PTH), poly(3,4-
ethylenedioxythiophene) (PEDOT) [22–26].

Various methods can be applied for the formation of CP-based sensing structures,
namely: chemical [27], electrochemical [16], enzymatic [10], and/or microorganism as-
sisted [28–31]. The selection of the most appropriated monomers, which are forming
backbone of CPs, is a critical issue in the design of sensing structures. Then, selected
monomers are polymerized and, if necessary, formed CP-based layer can be very easily
modified by entrapped DNA [32], redox proteins [33], antibodies [34] or other specific
proteins [12], which are providing specific selectivity towards selected analytes. Hence,
due to entrapped biological recognition elements different CP-based composite structures
might have good selectivity towards analytes. Hence, the application of biologically ac-
tive materials in affinity-based sensing devices (immunosensors, DNA-sensors, etc.) is
often related to some disadvantages such as limited stability or expensiveness of applied
biomaterials. Therefore, researchers are searching for some reliable replacements and are
developing so called molecularly imprinted polymers (MIPs) [35] and some other types of
“synthetic receptors”.

Taking in to account all above mentioned advantages of conducting polymers, we are
aiming to overview the most reliable methods recently used for the formation of CP-based
sensing structures, the application of conducting polymers and some other structures
in the design of molecularly imprinted polymers in affinity sensors.

2. Oxidative-Chemical Polymerization Based Synthesis and Processing of Conducting
Polymers

Due to versatile technological applications, a variety of different methods for CPs syn-
thesis have been developed. Sensing structures based on CPs can be formed by oxidative-
chemical polymerization initiated by oxidizing compounds such as FeCl3, which was
the most frequently used for the formation of conducting polymer–polypyrrole (Ppy).
Some years ago, we have proposed to apply H2O2 as initiator/oxidator in the forma-
tion of polyaniline [36–38] (Figures 1 and 2), polypyrrole [27,38,39] (Figure 2), polythio-
phene [38,40] (Figure 2), nanobiocomposite based on poly(1,10-phenanthroline-5,6-dione),
poly(pyrrole-2-carboxylic acid) [41], poly-9,10-phenanthrenequinone [42], polyphenanthro-
line [21], carbazole [43], azobenzene [44] and some other conducting polymers.
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The advantage of H2O2 application is based on their ability to form pure Ppy—with-
out any additives and/or dopants, because the excess of H2O2 can be easily degraded into 
water and oxygen, which both anyway are present in aqueous polymerization bulk solu-
tion. Hence, very pure polypyrrole, polyaniline, polythiophene can be formed, which 
mostly appears in the form of nanoparticles of different size when this polymerization 
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Figure 2. Formation of conducting polymer (A—polyaniline, B—polypyrrole, C—polytiophene) layers around redox
enzyme–glucose oxidase, which during catalytic action is producing H2O2 that in here presented polymerization reactions
is acting as an initiator. Adapted from [38].

The advantage of H2O2 application is based on their ability to form pure Ppy—without
any additives and/or dopants, because the excess of H2O2 can be easily degraded into
water and oxygen, which both anyway are present in aqueous polymerization bulk so-
lution. Hence, very pure polypyrrole, polyaniline, polythiophene can be formed, which
mostly appears in the form of nanoparticles of different size when this polymerization
method is applied. Enzymes and various nanostructures (e.g., gold nanoparticles (AuNPs))
can be embedded within CP-based particles formed [33,41,46–48]. Some our studies illus-
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trated that polypyrrole-based structures have sufficient bio-compatibility towards stem
cells [49,50] and do not irritate immune system of laboratory mice [51]. Due to simplic-
ity of chemical polymerization significant amounts of CPs or CP-based hetero-structures
can be synthesized, but it should be noted that due to limited solubility in such way
only colloidal solutions of CPs can be formed. These CP-based colloidal nanoparticles
can be modified by biological and/or other materials and then they can be applied for
the formation of sensing layers of biosensors and/or other analytical systems. Very similar
approach suitable for the synthesis of CP can be realized in the presence of some redox
enzymes (oxidases, such as glucose oxidase and many other oxidases) and their substrates
because during catalytic action of oxidases hydrogen peroxide is formed [10,33,41,46–48],
which as it was noticed before, can be involved in the synthesis of some conducting
polymers, namely Ppy [10,33,41,46–48,52], PANI [37,38,46–48], polythiophene [38,40], poly-
9,10-phenanthrenequinone [42], polyphenanthroline [21] and some other CPs (Figure 3).
Enzymatic formation of CPs is performed in water-based environment, at neutral pH and
temperatures that are close to “room temperature” because under these conditions maxi-
mal enzymatic activity is observed [53]. For here mentioned enzymatic synthesis glucose
oxidase, which was dissolved in water [46,48] or immobilized on electrode [10,33,41,47],
was employed and it is very interesting and purposeful that the enzyme molecules are
encapsulating them-self within formed CP shell during the synthesis, which is performed.
Conducting polymers formed by this way show sufficient biocompatibility towards en-
zymes [33,41,46,47]. Catalytic activity of encapsulated enzymes is retained when enzymes
are encapsulated in such CP-based matrixes, but catalytic characteristics of such CP struc-
tures based on encapsulated enzymes are different from those of native enzymes. These
differences are induced by formed CP-layer, which hinders the diffusion of reaction sub-
strates towards enzyme active site as well as diffusion out of formed reaction products.
Therefore, in this way formed CP-based nanoparticles and other structures formed on
the surface of electrode are well suitable for the design of biosensors [54,55] and some
bioelectronics based devices.
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In addition to the application of H2O2 [27], we have developed polypyrrole syn-
thesis method where [Fe(CN)6]3− was applied as an initiator of polymerization reac-
tion [57]. This approach is very useful, because if such polymerization reaction is performed
in the presence of microorganisms, during the subsequent initiation of polymerization
reaction forming [Fe(CN)6]4− can be recycled by the re-oxidation of this compound by
redox enzymes and/or metabolic redox-processes, which are taking place in life-cycle of
microorganisms [28–31].

Chemical synthesis enables to synthesize micro- and nano-particles of conducting
polymers that could be useful for the formation of MIP-based structures required for
sensors, affinity chromatography [58] and some other technological purposes [59]. When
the synthesis of CPs is completed, spin-coating techniques [60] can be applied to deposit
polymer layer on the surface of signal transducer.

3. Advantages of Electrochemical Conducting Polymer Based Layer Formation

Conducting polymers are poorly soluble in usual solvents, for this reason it is not
very easy to apply CPs in the formation of sensing layers (Figure 4). These technological
problems can be solved by electrodeposition, which is more reliable for the formation of
CP-based structures on conducting substrates. The selection of electrodeposition meth-
ods [61] and the adjustment of parameters that are used during the deposition of CP-based
films enables to form sensing layers with very different analytical characteristics. The most
easily adjustable synthesis parameters are: (i) voltage of applied potential, (ii) the duration
of potential pulses or potential sweep rate used when potential cycling is applied, (iii)
the limitation of electrical current passing through the electrochemical system, [62,63],
(iv) some other additionally applied external factors (e.g., treatment by ultrasound) [64].
The variation of all these parameters enables changing many physicochemical properties
of polymeric layers. Hence, some electrochemical characteristics of CP-based layers can be
adjusted by the adaptation of concentrations of all materials, which are used in polymer-
ization bulk solution [65–67]. The most important characteristics including sensitivity and
linear range of CP-based sensors are predetermined by the thickness, density, permeability
and other properties of CP-based layers. Therefore, by variation of above mentioned and
some other polymerization conditions (such as thickness and morphology) the porosity
of deposited conducting polymer layer can be easily changed [12,68]. Control of formed
layer morphology enables to change the permeability of CP-based films [12,69]. The dif-
fusion of target/analyte and some other compounds through CP-based matrix is very
important for the action of affinity sensors based on these structures. Conducting polymers
from this point of view are very attractive, because by the selection of proper synthesis
conditions porous structures based on CPs can be formed [70]. In addition, such porous
structures mostly are amorphous and do not display long-range order of polymer-film
forming molecules. Some researchers are reporting the possibility to adjust the porosity
of CPs by using some organic compounds as spacers, which are interlinking different
polymer chains [71]. Conducting polymers of high porosity were exploited in the design of
sensor dedicated for the determination of antibiotic-aminoglycoside, which was evaluated
in aqueous samples [72]. Hence, electro-deposition of CP-based structures offers many
possibilities for the design of sensors with tunable analytical characteristics. In addition to
above mentioned advantages, there are many other serious reasons to choose electropoly-
merization for the formation of CP-based layers, because: this technique is much faster than
the classical oxidative-chemical polymerization in the bulk but also it can be carried out
in situ on the working electrode’s surface [73], and if potentiostat/galvanostat is controlled
by properly developed software, then the whole process can be clearly observed on com-
puter screen and evaluated/controlled using elaborated mathematical algorithms [12], the
most recently used electrochemically deposited polymers are: polyaniline [36,56], polypyr-
role [1,12,16,19,22,23,35,39], polythiophene and poly(3,4-ethylenedioxythiophene) (PEDOT)
derivatives [36,74], Poly-9,10-phenanthrenequinone [42], In addition, some derivatives of
these polymers can be electropolymerized and/or electro-copolymerized with some other
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monomers, which themselves are also forming conducting polymers, e.g., polypyrrole
was copolymerized with other polypyrrole derivatives containing different 4-(pyrrol-1-
yl)-benzenethiol groups and such copolymer was showing some properties desired for
the application in sensors and biosensors [75].
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Both, chemical and electrochemical polymerization can be applied for the develop-
ment of electrochemical affinity-sensors based on MIPs. However, electro-polymerization
has more advantages [76] in comparison to chemical methods. As it allows many more
possibilities for the control of morphology, thickness and doping of electrochemically
formed MIPs. Moreover, some additional electrochemical manipulations are possible after
the formation of initial electrochemically deposited polymer layer, e.g., some conducting
polymers such as polypyrrole can be overoxidized by applying higher electrode potentials
in comparison with that, which are required for the formation of corresponding conducting
polymer. The same overoxidation can happen in the presence of oxygen, which is dissolved
in polymerization bulk solution, and/or by oxygen formed at the anode by the oxidation
of hydroxyl ions.

From one side, the overoxidation is an unwanted process, because it can terminate
polymerization process and/or damage π-π conjugated system of conducting polymers,
but during the formation of MIPs this process plays a positive role since it creates oxygen
containing groups (mainly carboxyl (–COOH), carbonyl(–CH=O), hydroxyl (–OH)) in close
proximity to entrapped molecules and these charged groups form specific environment,
which is suitable for the recognition/attachment of imprinted template molecule the same
that after the formation of MIP acts as a target. Hence, electrochemical polymerization,
which is followed by overoxidation is a powerful combination of electrochemical technique,
which can be used in the development of new conducting polymer-based MIPs. It should
be noted that chemical oxidative polymerization is simple and suitable for the produc-
tion of significant amounts of molecularly imprinted conducting polymers [77,78]. Dur-
ing the development of electrochemical affinity sensors, electro-polymerization shows
significant advantages in comparison with oxidative chemical polymerization, because
this electrochemical method enables the deposition of molecularly imprinted conducting
polymer-based film on the electrode surface. Electropolymerization can be conducted
in solutions of different composition and concentration of monomer, which is required for
the formation of MIP, and/or template molecules. Variation of electrical parameters during
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electrochemical polymerization opens a very attractive possibility for the tailoring of some
physical properties of deposited polymers. The most attractive properties to be tailored are:
thickness, conductivity, morphology, and homogeneity. In addition, the oxidation level of
deposited MIP-based film can be easily controlled by the selection of particular electro-
chemical method and adjustment of applied potentials, their durations and many other
parameters applied for electopolymerization. For electrochemical formation of conducting
polymer based MIPs potentiodynamic methods are providing the most reliable sensing
layers, because the variation of potential enables control different phases of conducting
polymer based film formation, e.g., during the polymerization phase, which is performed at
high potential concentration of polymerizable monomer and template molecule is decreas-
ing and therefore some time is required for the ‘system relaxation’ and reestablishment of
concentration of polymerizable monomer and template molecule at the surface of electrode.
If overoxidation phase is applied to form conducting polymer-based MIP, this process can
be easily controlled. It should be taken into account that in some research serious problems
during the removal of imprinted target molecules have been observed. However, in some
cases, these problems were easily resolved by over-oxidation of formed MIP [79], which
shows additional advantages of over-oxidation process.

Development of molecularly imprinted over-oxidized polypyrrole-based sensors is
probably the most efficient direction in MIP-related area, since Ppy-based layers can be
electrochemically deposited from aqueous solutions of pyrrole while using simple electro-
chemical methods [12,23,35,80], which can be well controlled using developed mathemati-
cal algorithms [12] (Figure 5). In many studies, electrochemically synthesized Ppy-based
MIPs were designed and applied in sensors. These sensors were suitable for the determina-
tion of analytes with low molecular weight, namely: caffeine [23,81], theophylline [35,82],
dopamine [83,84], histamine [85], gallic acid [86], quercetin [87], sarcosine [88], biliru-
bin [89], microcystin-LR [90], tetracycline [80], adrenaline [91], sulfanilamide [92], uric
acid [93], ganciclovir [94], L-aspartic acid [95], serotonin [96], kanamycin [97], cysteine
enantiomers [98], fenvalerate [99], dibutyl phthalate [100] and testosterone [101]. In our pre-
vious study we have electrochemically deposited caffeine-imprinted Ppy layer on a quartz
crystal based resonator and applied this resonator in a quartz crystal microbalance based
sensor [23]. We have observed that during the interaction between dissolved caffeine and
MIP-based layer the equilibrium is shifted toward the formation of caffeine/MIP-complex.
When the interaction of caffeine-imprinted MIP with dissolved theophylline was investi-
gated opposite result was obtained and the formation of caffeine-MIP complex with theo-
phylline was almost imperceptible. Hence, formed caffeine-MIP showed significantly better
selectivity toward caffeine in comparison with that toward theophylline, which is a homo-
logue of caffeine. Electrochemical affinity sensor based on hyaluronic acid and multi-walled
carbon nanotubes additionally modified by tryptamine-imprinted polypyrrole-sulfonated
graphene were developed [102]. This sensor well discriminated tryptamine from several
others in this research tested interfering materials such as (dopamine, tryptophan and
tyramine). One more molecularly imprinted polypyrrole-based affinity sensor was devel-
oped for the determination of epinephrine, which was within Ppy deposited on glassy
carbon electrode pre-modified by multi-walled carbon nanotubes and silica nanoparti-
cles [103]. In this sensor, multi-walled carbon nanotubes and silica nanoparticles provided
multi-porous network structure, which increased the accessibility of analyte (epinephrine)
towards imprinted sites. Screen printed carbon electrodes were modified by clopidol-
imprinted Ppy structures, which were electro-deposited from water-based solution con-
taining both pyrrole and clopidol [104]. For the determination of analytical signal by this
sensor differential pulse voltammetry was applied. Polymer based on NO3−-imprinted
phenothiazine derivative, poly(Azure A), was applied as nitrate scavenger in aqueous
contaminated environments [105].
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MIPs-based on ortho-phenylenediamine (o-phenylenediamine) [106] and some other
phenylenediamine-derivatives [107,108] are frequently applied for analytical and pharma-
ceutical purposes, e.g., molecularly imprinted ortho phenylenediammine (o-phenylenedia-
mmine) was applied for the determination of butyrylcholinesterase [109] and anticancer
drug pemetrexed [110]. Therefore, MIPs are very attractive for the determination of var-
ious anticancer drugs [111]. Erythromycin imprinted poly-meta-phenylenediamine was
electrochemically deposited on screen printed electrodes and was applied for selective
determination of erythromycin in real aqueous samples [108]. Ratiometric electrochemical
sensor based on polythionine modified by corresponding MIP was applied for the detection
of dopamine [112]. Sulphanilamide imprinted polyresorcinol electrochemically deposited
on a gold electrode was applied for the determination of antibiotic sulphanilamide in water
and milk samples [113]. Azorubine imprinted poly(1-naphthylamine), triphenylamine
based copolymer was applied for the determination of azorubine in water samples [114].
Electrochemically polymerized nicotinamide was imprinted by dopamine (DA) and chlor-
promazine and deposited on a gold electrode modified by graphene oxide-based quantum
dots and applied for electrochemical synthesis of both imprinted compounds [115]. It was
demonstrated that some metal oxides (such as TiO2) can be also imprinted by some pro-
teins, e.g., potentiometric urea biosensor based on TiO2 layer molecularly imprinted by
urease was developed [116].

4. Physicochemical Properties of Conducting Polymers

Conducting polymers are based on π-π conjugated bond structure formed along
polymeric chain, therefore, π-electrons are delocalized along these conjugated bonds and,
for this reason, CPs are electrically conducting [21,68,117,118]. In addition, CPs have
advantageous electrochemical [21], optical [119] and many other physical properties that
can be exploited for technological purposes [33,119,120]. For this reason, many CPs are
applied in the design of various devices such as rechargeable batteries and ‘smart windows’
that are changing transparency and translucency towards passing light, electrochromic
displays, organic-photovoltaics and light emitting diodes for organic-electronics, sensors
and biosensors [121–123]. Some of these CPs have very versatile electric/optical [124],
affinity [125], and/or electrochemical [10] properties and, therefore, variables of some
physicochemical properties such as electrical impedance, capacitance, optical density, etc.
It is important that the variation of photoluminescence or other optical properties can
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be exploited for the registration of analytical signals [126,127]. Among a vast variety of
different CPs, polypyrrole (Ppy) is one of the most frequently used conducting polymers
in the design of affinity sensors [10]. Some nanocomposite structures based on conducting
polymers (e.g., SWCNTs/PANI-based hetero-structure) have been applied in the design of
sensors suitable for the detection of Pb2+ [128], Hg2+, Cu2+ [128,129] and some other heavy
metal ions [130]. Due to high affinity towards metal ions and other hazardous compounds,
some CPs-based structures can be applied in chromatography and/or for the extraction of
such materials from polluted/intoxicated environments [131].

Some conducting polymers are cheap and have good environmental stability and easy
tunable physical properties [10]. Besides, CPs can form various heterocomposites with in-
organic [33,41,46–48], organic [132], and biomaterials [38,46,48]. Many of above mentioned
electrochemically active CPs are well suitable for immobilization of biomaterials [133,134],
therefore, they have been used as transducers in sensors [135].

Efficient doping of CPs can increase electrical conductivity of CPs by several orders of
magnitude [136]. Electrical conductivity of polypyrrole (Ppy) [12], polyaniline (PANI) [137],
and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) [123] is based
on p- or n-type charge carriers induced by corresponding dopants. Doping/de-doping
by some materials is reversible and induces well detectable changes of electrical and
optical properties, therefore, it can be applied for the design of some affinity sensors
in which specific affinity of conducting polymers towards some ions is exploited [137].
In addition, the conductivity of CPs can be changed by electrochemical and/or chemical
oxidation/reduction. Electrochemical sensors based on Ppy and PANI are operating at
ambient conditions and have sufficient sensitivity, therefore, these CPs were successfully
applied in sensing elements of electrochemical sensors.

Due to attractive optical properties conducting polymers can be used in optical sen-
sors [138,139]. Conducting polymers can be well exploited in the design of photolumines-
cence sensors [140,141]. Several carbazole-based conducting polymers (N-benzylcarbazole,
N-benzyldimethoxy-carbazole and N-benzyldibromo-carbazole) were used for the devel-
opment of photoluminescence sensors suitable for the detection of such pesticides as:
isopropalin, trifluralin, imidacloprid, fenitrothion, cyfluothrin and glyphosate [120].

In contrary to photoluminescence ability of some conducting polymers [120,140,141],
our research team has determined that some other conducting polymers (e.g., polypyrrole)
have a very attractive feature to quench photoluminescence of adsorbed molecules, which
are exhibiting photoluminescence [142,143]. This effect is based on so called “Forster
resonance energy transfer (FRET)” that can be observed if photoluminescence emitting
molecules are located in close proximity to photoluminescence quencher. This property
of CPs can be well exploited in the design of photoluminescence-based immunosensors,
where CP-based matrix is used for the immobilization of biomolecules that are exhibiting
biological recognition and for the quenching of photoluminescence of various not specif-
ically adsorbed compounds (e.g., proteins), while photoluminescence exhibiting target
molecules immobilized on conducting polymer are located far out of the distance at which
FRET is still efficient [142,143]. Therefore, such systems enable increasing both selectivity
and sensitivity of some affinity-sensors [142,143]. In several investigations, we have shown
how Ppy-based structure can be applied for the reduction of the photoluminescence, which
is generated by non-specifically bounded interfering materials, during the registration
of sensor response [142,143]. Protein–ferritin–molecularly imprinted poly-scopoletin mi-
croarray has been formed by microelectrospotting on bare gold-based surface plasmon
resonance (SPR) imaging chips for the determination of ferritin [144].

Electrochromism is another important opto-electrochemical characteristic of many
CPs that can be well adapted for the design of affinity sensors [137]. Electrochromic effect
is a reversible variation of some optical characteristics if material is oxidized or reduced by
applied electrical potential/current and materials that are changing their visible color are
considered as electrochromic, therefore, some such materials like metal oxides (WO3 [145])
and conducting polymers (PANI [137], Ppy [39] PEDOT/PSS [137] etc.) can be applied
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for the design of sensors. Some such materials have more than two oxidation states that
are differently colored, therefore they are called as ‘multi-electrochromic’ materials. Some
electrochromic materials can be incorporated in structure of various devices, which en-
ables the modulation of their optical transmittance, absorbance, light emission, and/or
reflectance. The most efficient electrochromic compounds have distinct differences of opti-
cal characteristics at differently colored states, fast transition from one state to another and
good durability. Some gaseous materials, volatile organic compounds, vapors and various
dissolved materials are changing electronic structure of the electrochromic material, there-
fore, variations of their spectra are observed. In addition, some semiconducting properties
of these compounds can be changed, therefore, simultaneously different measurements
(optical and electrical) can be applied, e.g., for optical/electrochemical determination of
Cu(II) ions [137]. Electrochromic conducting polymers can be applied for the design of
optical sensors dedicated for the determination of some gaseous materials (e.g., CO2 and
NH3) that are water soluble and are changing the pH of solution where transparent ITO
based electrode additionally coated by electrochromic material is immersed [74,146,147].
Therefore, Ppy, PANI, and PEDOT/PSS, and various composites based on these CPs are
often used in the design of electrochromism-based sensors. Electrochromic and some
other optical properties of CPs depend on many factors including application of vari-
ous dopants [137,148], which can increase the application of electrochromic sensors for
the determination of new analytes.

Various artificial polymers can selectively recognize biocompounds and are more
resistant to harsh physical, chemical, and physiological conditions than natural biopoly-
mers. Therefore, due to advanced stability and recognition of analytes at a molecular level,
MIPs are powerful tools for the development of next-generation chemical sensors [149].
Therefore, due to relatively low cost, easy preparation and good stability MIP-based sen-
sors have great potential for practical applications and commercialization [150]. The basis
for MIP formation and action was proposed on the basis of phenomenological thermo-
dynamic model for the chemo-responsive shape memory effect in polymers based on
Flory-Huggins solution theory [151]. This model predicts the constitutive relations and
working mechanism of the chemo-responsive shape memory effect in shape memory
polymers. On the origin of the Hildebrand solubility parameter [152,153], Flory-Huggins
interaction parameter [154] and polymer relaxation theory, a phenomenological model has
been proposed, which enables to quantitatively identify the factors influencing the chemo-
responsive shape memory polymers. A free-energy function can be implemented to couple
the constitutive relations of the chemical potential and stress as a function of the weight
fraction of solvent and stretch, respectively. Furthermore, the simulation of the phenomeno-
logical thermodynamics model can be compared with the available experimental results
and the simulation results of a semi-empirical model reported in the literature for verifi-
cation. Swelling degree [155], swelling effect-induced shape recovery and complex shape
memory behavior [156] are also very important characteristics, which should be taken
into account during the development of polymers with chemo-responsive shape memory
effect. Recently, to predict and/or optimize the efficiency of newly designed MIPs var-
ious computational methods based on DFT [157,158] and molecular dynamics [159] are
applied. Hildebrand’s [152,153] and Hansen’s [160] theories for the prediction of polymer
compatibility with porogenic solvents are used to predict the efficiency of MIP performance
in different solvents, as it was well demonstrated in the case of L-phenylalanine imprinted
within macroporous poly(2-aminoethyl methacrylate-co-2-hydroxyethyl methacrylate-co-
ethylene glycol dimethacrylate) [161].

5. Entrapment of Proteins within Polymer Layers during the Development of
Affinity Sensors

A large number of affinity sensors based on immobilized proteins have been devel-
oped, they most commonly are called as affinity sensors. An immunosensor is a type of
affinity sensor in which a specific target analyte (e.g., antigen (Ag)) is detected by forma-
tion of immune complex between antigen and immobilized antibody (Ab) what results
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in the generation of a measurable response [162]. In affinity sensors CPs can serve as:
(i) matrix for the immobilization of antibodies, receptors or other compounds that are
able selectively bind analyte [12]; (ii) parts of signal transducer where the variation of
semiconducting properties of CPs can be exploited for the generation of analytical sig-
nal [1,12,21], and (iii) molecular imprint-based structures that are recognizing imprinted
targets [93,125,163,164]. Electro-deposition enables to form sensing layers that are contain-
ing proteins entrapped within the polymer layer (e.g., antibodies, receptors) or antigens,
which are able to bind selectively some specific antibodies that are present in the sam-
ple) [12]. We have demonstrated that due to remarkable electrochemical capacitance
conducting polymer-based films are amplifying electrochemically registered analytical
signals of immunosenors, especially if these signals are generated using potentiodynamic
electrochemical approaches [12]. Oriented immobilization of affinity agents is very impor-
tant for the development of all kinds affinity sensors [142,165,166], because some analytes,
which are usually determined by affinity sensors, are large and cannot freely-diffuse within
CP-based matrix and/or other materials based sensing layers, therefore, they can effi-
ciently bind corresponding sites only in the cases if they are properly exposed towards
solution [93]. Therefore, the selection of proper immobilization methods is critical during
the development of affinity sensors. A number of electrochemical affinity sensors suitable
for the determination of pesticides such as paraquat were designed [167]. Hence, the cor-
rect orientation of immobilized antibodies [168], selected fragments of antibodies [165],
and receptors [166] increases the efficiency of affinity sensors. A capacitive immunosensor
based on o-phenylenediamine electrochemically deposited on indium tin oxide glass (ITO)
electrode has been developed, after the deposition o-phenylenediamine layer and modi-
fication by bonding with anti-sulphathiazole antibody. Such sensor has been applied for
the determination of sulphathaizole in spiked drinking water and milk by electrochemical
impedance spectroscopy [169].

6. Formation of MIPs Imprinted by Proteins and by Other Large Biological Objects

Many conventional immunoanalytical techniques provide ability for accurate deter-
mination of various analytes. However, mostly these techniques such as enzyme linked
immunosorbent assay (ELISA) are requiring expensive immune-chemicals and/or long-
lasting analyte determination protocols and are based on the application of expensive and
sophisticated equipment. Therefore, many research efforts are dedicated to the replace-
ment of antibodies, receptors, many other affinity exhibiting proteins and DNA-based
structures (e.g., DNA-aptamers) by artificial receptors or MIP-based structures. Due to
this fact, the development of affinity sensors based on molecularly imprinted polymers
(MIPs) has been achieving significant attention as a new trend of sensorics. Sometimes
MIPs are determined as “biomimetic receptors”, which are formed by the polymerization
of corresponding monomers in the presence of the analyte, which is acting as a template
for the formation of molecular imprints [23,35,82,85,93,125,170]. After the removal of
template three dimensional imprints are formed within imprinted polymer-based matrix.
Such MIP-modified polymer has not only the shape and dimensions suitable for analyte
binding but also provides complementary electrostatic environment that is optimal for
the recognition of an imprinted analyte. Hence, these imprints are complementary to
removed template. Therefore, such artificially created cavities are very selectively recogniz-
ing imprinted molecules and the action of MIPs is similar to that of antibodies or receptors.
In addition, MIPs-based sensors are rather stable, because they mostly are based on a stable
polymeric-matrix, e.g., acrylamide [171], acrylic acid and methacrylic acid, which both
are frequently applied in the design of various molecularly imprinted polymer-based
structures [172–175]. For the development of MIPs many different methods can be applied.
However, most of these methods have some similar development/application phases: (i)
formation of MIPs very often starts from the pre-incubation of polymerizable monomers,
which are modified with the attached functional groups that are able to recognize and
to bind the particular group of used template molecule; (ii) monomers, which are able
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to cross-link polymeric structure but do not have any attached functional groups, added
into polymerization bulk solution and where in the presence of corresponding initiators
and/or physical stimulation, the co-polymerization is performed; (iii) imprinted template
molecules are removed from the polymer matrix and MIP-based structure is formed [176].
MIPs for the determination of large organic analytes such as ∆4-androstene-3, 17-dione, 1, 4-
androstadiene-3, 17-dione, testosterone, testosterone propionate, β-estradiol, progesterone,
were designed [174]. In these sensors, methacrylic acid was used as a matrix, which was suc-
cessfully imprinted by above mentioned templates, and used in affinity-sensor design. One
more electrochemical affinity-sensor for the determination of β-estradiol based on molecu-
larly imprinted bifunctional monomers, N-phenylethylene diamine methacrylamide, has
been reported in another research [175]. Another MIP, which was selective to β-estradiol,
was applied for the modification of Fe3O4-based magnetic nanoparticles that were also ap-
plied in MIP-based sensor design [177]. Estradiol was imprinted within electrochemically
deposited overoxidized polypyrrole [178]. Molecularly imprinted poly(ethylene–co–vinyl
alcohol) heterocomposite with quantum dot nanoparticles was applied for optical deter-
mination of salivary proteins [179], and in many other researches some MIPs in different
with nanomaterials were applied for electrochemical/optical assays [180]. Copper-based
metalorganic framework molecularly imprinted by tetrabromobisphenol A was designed
by a sol-gel method and it showed some enzyme-like activity towards oxidation of tetra-
bromobisphenol A in the presence of hydrogen peroxide [181].

Molecular imprinting of proteins is a very attractive research direction [182] because
expensive and unstable biological compounds such as antibodies [12] and receptors [166]
can be very efficiently replaced in various immunanalytical systems by MIP-based struc-
tures [183]. However molecular imprinting of proteins is not very trivial and is related
to several critical challenges [184] such as extraction of proteins from MIP-matrix and
multiple reusability of such imprinted protein-based sensors (Figure 6) [2,185], confor-
mational changes of proteins during imprinting phase [186], and suitable orientation of
proteins during the imprinting phase [187]. Hence, due to numerous efforts of various
research groups, significant progress has been achieved in the development of MIP-based
sensors for the determination of proteins, which sometimes are called as “plastic anti-
bodies” [188,189], “artificial receptors” or “synthetic receptors” [2,185,190]. During this
development many practical problems traditionally associated with molecularly imprinted
polymers (MIPs), should be solved, that includes some challenges related to imprinting of
proteins, namely, hydrophobic nature of some polymers that are applied for the formation
of MIPs, insufficient compatibility with template, and the formation of not-specific binding
regions in imprinted polymers that are responsible for non-specific binding of different
proteins and/or other molecules. The success in MIP-formation is well related to techno-
logical advances in organic chemistry, polymer chemistry and nanotechnology [2,185,191].
According to here presented challenges, which are facing technologists during the develop-
ment of MIPs, it is evident that this promising research direction, which enables to develop
MIPs as a real alternative to antibodies and/or receptors, is based on mulitidisciplinary
and interdisciplinary investigations. Despite impressive number of recent publications
related to the development of MIPs for various analytes, commercial applications of these
promising materials are still limited and many above mentioned problems need to be
solved to overcome critical limitations before they will find their place in commercially
available bioanalytical systems [2,192].
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It is important to note that conducting polymers can be molecularly imprinted by some
high molecular mass biomolecules including DNA [2,125] and proteins [2,185,193,194].
During the development of DNA sensors conducting polymer–polypyrrole—was applied
for both immobilization of single stranded DNA (ssDNA) and detection of complementary
strand of ssDNA [32], and for the formation of molecular imprints of DNA-based struc-
tures [125] and the recognition of such structures in solution. Thin polymer layer able to
recognize double-stranded DNA (dsDNA) was developed by using 2-vinyl-4,6-diamino-
1,3,5-triazine (VDAT) as a functional monomer for the formation of DNA-imprinted poly-
mer [195]. A molecularly imprinted electrochemoluminescence sensor for ultrasensitive
HIV-1 gene detection using EuS nanocrystals as luminophore was developed [190]. Methy-
lene blue imprinted polyvinyl pyridine polymer modified carbon paste electrodes were
applied for the electrochemical monitoring of DNA [196].

During the development of protein sensors molecularly imprinted polypyrrole based
sensor for direct detection of bovine leukemia virus glycoproteins was designed in our
group [186]. Human serum albumin (HSA) imprinted o-phenylenediamine and hydro-
quinone (HQ) based copolymer, which was electrochemically deposited on a gold elec-
trode orderly pre-modified by gold nanoparticles and polythionine-methylene blue was
applied for the determination of HSA in urine [197]. Surface molecularly imprinted
polydopamine films were applied for the determination of immunoglobulin G [198]. Elec-
trosynthesized surface-imprinted PEDOT/PSS-based microrods were applied for selective
protein recognition [187]. Synthetic receptors, which were comprising of highly selective
aptamer-lined pockets formed within electropolymered dopamine, deposited on metal–
oxide–semiconductor field-effect transistor (MOSFET) was dedicated for the detection of
prostate specific antigen in human blood plasma were developed [199]. Electrochemically
formed molecularly imprinted polypyrrole/(carbon nanotube) composite was applied
in electrochemical sensor for the determination of S-ovoalbumin in egg white [200]. Elec-
trochemically deposited molecularly imprinted poly–o–phenylenediamine was applied
for direct electrochemical determination of myoglobin [201]. Electrosynthesized molec-
ularly imprinted polyscopoletin nanofilms were used for the detection of human serum
albumin [202]. Sensor based on poly-scopoletin imprinted by cytochrome C, deposited
on 11-Mercaptoundecanoic acid (MUA) based self-assembled monolayer was applied for
direct detection of cytochrome C [203]. Lysozyme-imprinted hydroxyethyl acrylate and
ethylene glycol dimethacrylate based copolymer microspheres were applied for the de-
termination of lysozyme [204]. N-Acetylneuraminic acid molecularly imprinted poly(2-
hydroxyethyl methacrylate-N-methacryloyl-(L)-histidin-Cu(II)) has been synthesized by
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radical polymerization and applied for site recognition of highly biologically active protein–
ceruloplasmin [205]. It should be noted that very recently portable molecularly imprinted
poly-m-phenylenediamine based electrochemical sensor for the detection of SARSCoV-2
antigen was developed [107], which is much cheaper in comparison to recently developed
ellipsometric COVID-19 diagnosis techniques based on SARSCoV-2 nucleocapsid protein
and specific antibody complex formation [206].

Alpha-fetoprotein-imprinted ortho-polydopamine (o-polydopamine) electro-deposited
on AuNPs-based film, in which alpha-fetoprotein was temporarily covalently immobilized
before electrochemical polymerization of dopamine, was developed [207]. Differential
pulse voltammetry was applied for the determination of analytical signal, where the peak
current has decreased with the concentration of α-fetoprotein increasing. This MIP sen-
sor was characterised by long linear range within 0.001 ng/mL and 800 ng/mL and
α-fetoprotein detection limit of 0.8 pg/mL. Another affinity sensor was based on a acry-
lamide/N,N0-methylenebisacrylamide copolymers, which were imprinted by different
analytes: (i) prostate-specific antigen and (ii) myoglobin [208]. Before electrochemical poly-
merization of dopamine both target proteins were covalently immobilized on the surface
of 3,30-dithiodipropionic acid di(N-hydroxysuccinimide ester), which was pre-deposited
on substrate before the immobilization. Then acrylamide/N,N0-methylenebisacrylamide
copolymer based MIPs were formed on the surfaces of electrodes, which were applied
for the determination of prostate-specific antigen and myoglobin in human urine and
blood serum. Hemoglobin imprinted polyacrylamide membrane was reported [209].
O-phenylenediammine was applied for the determination of protein troponin T [210],
which is a specific biomarker for myocardial tissue that is used as cardiac biomarker for
early cardiac disease diagnosis.

It is interesting to note that some researchers are reporting that polypyrrole was
successfully imprinted by spores of Bacillus cereus [211], and even by bacteria such as
Escherichia coli [212]. Hence, these and some other MIP-based investigations illustrate that
MIPs are suitable for the design of sensors dedicated for the determination of infectious
diseases [213], viruses [214], spores [211], and bacteria [212,215,216] imprinted MIPs based
sensors.

Numerous abovementioned researches were dedicated for the application of polypyr-
role, overoxidized polypyrrole [1,80,98] and/or phenylenediamine-derivatives [106] in MIP-
based sensors, but another for different technological purposes very frequently used
conducting polymer–polyaniline (PANI) is still rarely applied for the development of
molecular imprinting-based sensors. In one report molecularly imprinted PANI was ap-
plied for the determination of antibiotic azithromycin at low concentrations, which were
below 0.1 nM [217].

Selection of the most suitable polymeric matrix for the formation of MIP-based layer is
very important task during the fabrication of MIP-technology based affinity sensors [218],
the newly designed MIP should have capability to interact with target electrostatically, via
van der Waals forces, formation of hydrogen bonds, π-π interactions and/or establishing
of some ‘hydrophobic interactions’ [219]. Here addressed interactions enable reversible
formation/dissociation of complex between analyte and imprints formed in the MIP-based
layer [174,220,221]. During the realization of some strategies applied in the design of
MIP-based sensors some additional functional groups, which are able to form complexes
with target, can be incorporated into the polymeric structure [175]. It is important to note
that formed complex between an imprinted template and MIP-based matrix should be
not very strong, because then it will be hard to remove template from the matrix, be-
cause imprinted template molecules usually are simply “washed out” by usual solvents
such as water [173]. One of the main advantages of MIP-based sensors is the fact that
in comparison with antibodies or receptors based sensors they are more stable at a broad
temperature interval. Dependently on applied monomers MIPs can be divided into several
types; the simplest MIPs are based on single monomer, which is applied in the formation
of polymeric matrix [173] such sensors can be based on the conducting polymers, which if
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necessary, can be overoxidized to create functional groups that are able more efficiently
interact with the target analyte [80,85], e.g., Ozkan’s research group has applied overox-
idized Ppy (overoxidized-Ppy), which was involved into carboxylic acid functionalized
multi-walled carbon nanotubes and overoxidized polypyrrole modified (overoxidized-
Ppy/MWCNTs-COOH/GCE) glassy carbon electrodes by cyclic and adsorptive stripping
differential pulse voltammetric techniques for selective determination of Pemetrexed [222]
and Ppy/GCE electrode for the determination of Adefovir [223].

7. Physicochemical Methods Used for the Determination of Analytical Signal by MIPs
Based Sensors

A vast number of research illustrates the applicability of electrochemical methods
in MIP-based sensors. The determination of target-binding generated signal can be per-
formed directly, if the target is electrochemically active, and/or the determination can
be performed indirectly by the modulation of diffusional permeability of a redox probe
through MIP-based layer. However, in an indirect way registered overall signal includes
effects from all nonspecific interactions. Therefore, MIP-based methods for the determi-
nation of redox-active low-molecular-weight analytes and the application of some redox-
active metalloproteins enable a more accurate direct determination of target interaction
with MIPs using determination of electrochemical activity [224] or enzymatic (e.g., acetyl-
cholinesterase [225], tyrosinase [226], glucose oxidase [227], creatine kinase [228], hexameric
heme protein [229], cytochrome P450 [230], laccase [231], horseradish peroxidase [232–234],
microperoxidase [232], lactoperoxidase [232], and hemoglobin [232] catalytic activity of
target molecules. Pt/Cu bimetallic nanoparticles modified by MIP-based on poly (styrene
sulfonate) functionalized by graphene, which showed peroxidase-like activity to catalyze
the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2, was applied
for the determination of heterocyclic isoflavone–puerarin [235]. Trypsin imprinted molecu-
larly imprinted water-soluble methacryloylaminobenzamidine micro-gels were applied as
inhibitors of this enzyme, because molecularly imprinted sites were selectively bounded
in close proximity of the substrate recognition site of trypsin. [236].

Several very different mechanisms of the “gate effect” can be successfully applied
for analyte quantification by MIPs-based electrochemical affinity sensors: (i) The simplest
mechanism involves structural rearrangement of MIP-based layer by shrinking or swelling
caused by binding of analyte within imprinted structure, such changes of MIP-structure
influence the diffusion rate of ions or/and the redox probe through the film and, there-
fore, they can be easily detected by many different electrochemical methods [2,185,237];
(ii) The next mechanism is based on the charged state of the MIP-forming polymer, e.g.,
during the interaction with target the accumulation positively/negatively charged ions
is restricting the diffusion of a oppositely charged ions and/or redox probes [2,185,238].
In addition, the electronic structure of the MIP-forming polymer can vary due to remov-
ing/entrapping of analyte from/into the MIP structure, thus changing the conductivity of
MIP-based layer [2,185,237], acting MIP-based modified gate electrode was incorporated
within organic electrochemical transistor and applied in the design of sensor suitable for
the determination of ascorbic acid [239].

Quartz crystal microbalance (QCM) is a method, which can be easily coupled with elec-
trochemistry when it is applied in electrochemical QCM (EQCM) setup [23,93]. QCM-based
methods were applied for the determination: (i) of low molecular weight analytes [240,241],
including histamine [242], naproxen [243], ibuprofen [244], S-propranolol [245]; (ii) pro-
teins [246–249], ribonuclease A [250], oxidized-low-density lipoprotein in blood serum [251]
and trypsin [252]; (iii) DNA and [249,253]. More advanced QCM-based techniques such as
electrochemical QCM (EQCM) [23,93,254] and QCM with dissipation (QCM-D) [255] were
also applied for the determination of analytical signals generated by molecularly imprinted
and not imprinted CPs-based sensors.

As it was presented above various electrochemical detection methods used for the de-
termination of analytical signal [23,93,256] other analytical signal determination methods
such as photoluminescence [126,140,257] and QCM [23,93] are used for MIP-based molecu-
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lar recognition. In addition to above mentioned methods, it was demonstrated that surface
plasmon resonance can be applied for the evaluation of analytical signal by MIP-based
sensors, e.g., theophylline-imprinted poly-methacrylic acid based SPR sensor has been
reported [258]. Very attractive area in the development of molecularly imprinted materials
and new methods for the determination of analytical signals is based on the application
of combination of photonic crystals with molecularly imprinted polymers [259]. It was
demonstrated that some liquid crystals with a different optical birefringence can be applied
in MIP-based sensor design, which are suitable for the determination of proteins [260].

8. Towards Implantable Affinity Sensors Based on Biocompatible Polymers

Biocompatibility of sensor structures is an extremely important issue during the de-
sign of implantable affinity-based sensors and biosensors. However, in the most scientific
papers compatibility of polymers and especially of conducting polymers is investigated just
with simple biological structures such as proteins, e.g., the ability of entrapped enzymes
to retain their catalytic activity [10,33,41,46–48]. However, such investigations are not
presenting the real biocompatibility of these polymers, because the evaluation of cellular
response to any implantable/attachable material is essential for all biomedical applica-
tions [261]. For this reason, experiments on laboratory animals or on actual cell lines are
required to evaluate the biocompatibility of the most conducting polymers. Hence, in some
research we have demonstrated that some CPs including Ppy show sufficient compatibility
towards immobilized proteins [10,12,33,41,46–48]. Our and some other researches have
illustrated that Ppy-based polymeric structures are biocompatible to steam cells [49,50] and
neuronal cells [262] and CPs are just not significantly influencing the immune system of
mammalians [51]. It was determined that Ppy-based particles do not affect hematological
parameters of immune system [51]. However, some toxicity of Ppy-based nanoparticles on
stem cells derived from bone marrow were observed [49]. We also investigated the toxi-
city of Ppy-based nanoparticles towards mouse hepatoma cell line (MH-22A), human T
lymphocyte Jurkat cells and primary mouse embryonic fibroblasts (MEF), which was very
low [40]. Conducting polymer-based hydrogels have good biocompatibility, which is deter-
mined by the presence of significant amount of water in their structure [263] and, if it is
necessary, it can be improved by the addition of biocompatible polymers like chitosan [264]
or other biocompatible materials [265–267]. It was demonstrated that chitosan-based
structures, which can be modified in many different ways, are able to advance selectivity
and some other analytical properties of molecularly imprinted polymers [268]. There-
fore, some CP-based hydrogels were used for the immobilization of living cells during
the formation of scaffolds [269,270] that were applied for transplantation [271] and for
many other biomedical purposes [272–275]. Very good biocompatibility of conducting
polymer polypyrrole [49–51] and some other polymers enables to apply them in the future
for the design of implantable/attachable [276], wearable [277], and other [278,279] sensors.

9. Conclusions

Conducting and many other polymers are offering many analytical and/or techno-
logical advantages and, therefore, they are finding applications in various analytical and
bioanalytical systems. The ability to design molecularly imprinted polymers enables to
create such artificial structures that can replace some natural biological structures such as
DNA-aptamers or biological recognition exhibiting proteins (including antibodies and re-
ceptors). Various polymerization methods can be applied for the formation of molecularly
imprinted polymers, but electrochemical deposition of conducting polymer some other
polymers that can be electrochemically deposited on electrodes are the most promising,
because electrochemical methods enable to adjust the most suitable electropolymerization
conditions. Therefore, a variety of electrochemically deposited conducting polymers with
very different properties can be designed and among many other polymers these CPs
are offering probably the most interesting technological possibilities for the design of
MIPs based sensors. Especially efficiently overoxidation of some conducting polymers
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(e.g., polypyrrole) can be exploited for the removal of template, regeneration of molecularly
imprinted polymer-based layer and what is the most important—for the establishment
of oxidized groups that are providing selectivity towards molecularly imprinted analytes.
It should be noted that some MIP-based sensors are robust and are operating at room
temperature, are providing high selectivity and sensitivity. Electrochromic properties of
some conducting polymers are already used in some affinity sensors for the determination
of metal ions, therefore, electrochromism eventually can be also exploited in the design of
signal transduction systems of some MIP-based sensors. Many polymerization methods
can be applied for the formation of conducting polymer-based layers, probably the most
unique and well controllable polymerization methods are based on electrochemical tech-
niques, because these techniques are providing abilities for the most efficient control and
modification of formed sensing layers. Hence, the properties of CPs can be tuned in many
different ways. Polypyrrole among many other conducting polymers is the most frequently
used in the design of MIP-based sensors and due to easy synthesis from water-based
solutions and easily achievable overoxidation, therefore, Ppy has a great potential for
the development or cheap, sensitive and robust sensors based on artificial receptor-like
structures. Electrochemical deposition of conducting polymer-based layers enables us to
design sensing coatings that are having very different physical properties. Therefore, arrays
of such electrochemical sensors can be developed, in these arrays individual sensors will
differently respond towards similar mixtures of analytes, and registered response patterns
can be analyzed using multivariate analysis of variance (MANOVA) algorithms. Some
CPs are showing good biocompatibility, therefore, they have great potential to be applied
in the design of implantable sensors and other biomedical devices.
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