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The amount of nitrogen (N) deposition onto forests has globally increased and is
expected to double by 2050, mostly because of fertilizer production and fossil fuel
burning. Several studies have already investigated the effects of N depositions in forest
soils, highlighting negative consequences on plant biodiversity and the associated biota.
Nevertheless, the impact of N aerial inputs deposited directly on the tree canopy is still
unexplored. This study aimed to investigate the influence of increased N deposition on
the leaf-associated fungal and bacterial communities in a temperate forest dominated by
Sessile oak [Quercus petraea (Matt.) Liebl.]. The study area was located in the Monticolo
forest (South Tyrol, Italy), where an ecosystem experiment simulating an increased N
deposition has been established. The results highlighted that N deposition affected the
fungal beta-diversity and bacterial alpha-diversity without affecting leaf total N and C
contents. We found several indicator genera of both fertilized and natural conditions
within bacteria and fungi, suggesting a highly specific response to altered N inputs.
Moreover, we found an increase of symbiotrophic fungi in N-treated, samples which are
commonly represented by lichen-forming mycobionts. Overall, our results indicated that
N-deposition, by increasing the level of bioavailable nutrients in leaves, could directly
influence the bacterial and fungal community diversity.

Keywords: microbial communities, Quercus petraea, temperate forest, Alps, forest ecology

INTRODUCTION

In the last decades, human activity has dramatically altered the nitrogen (N) cycle on Earth,
doubling the annual global production of reactive nitrogen (Galloway et al., 2004). In Europe and
the United States, N deposition increased from 5 to 50 times more than in the pre-industrial era
(Kamble et al., 2013). This trend is foreseen to continue in temperate regions, primarily due to
animal-production systems and fuel combustion (Erisman et al., 2014). Nitrogen emissions impact
the air quality, increasing tropospheric ozone, smog and particulate matter (Erisman et al., 2014).
Further, freshwater systems can be affected negatively in terms of water quality, promoting the
increase of eutrophication levels and acidity (Vitousek et al., 1997). With regards to the terrestrial
ecosystems, acidification is a common consequence of N deposition along with soil deterioration
due to the loss of nutrients, including calcium and potassium (Bergström and Jansson, 2006;
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Erisman et al., 2014). Besides, it has been hypothesized that the
alteration of natural N concentrations can affect biogeochemical
cycles, mainly of carbon (C) (Fornara and Tilman, 2012).
Previous studies carried out in urban, agricultural (Ramirez
et al., 2010; Zeng et al., 2016; Zhou et al., 2016) and natural
environments, including forests (Entwistle et al., 2013) and alpine
tundra (Bowman et al., 2008), have shown that N changes can
affect the microbial diversity and inhibit the microbial biomass
growth (Ramirez et al., 2010; Zeng et al., 2016).

Different studies, including field-scale N-manipulating
experiments, have explored N deposition effects on the microbial
communities in soil or other environmental matrices (Ramirez
et al., 2010; Zhou et al., 2016). However, only a few of these
studies have used above-canopy N fertilization to simulate an
increased N deposition (Zhang et al., 2015; Shi et al., 2016).
Specifically, these studies considered only specific groups of
prokaryotes (soil ammonia-oxidizing archaea and bacteria) or
evaluated the bacterial biomass changes (Zhang et al., 2015;
Shi et al., 2016). The authors found a decline of ammonia-
oxidizers and the microbial biomass in the phyllosphere of
treated samples after N application. Nevertheless, both studies
did not consider the effects on the leaf-associated fungal and
bacterial communities.

With this regard, we intended to analyze the short-
term effects of the direct canopy N-deposition on the leaf-
associated microbial communities. In detail, we wanted to
answer to two experimental questions: (i) Do the N-depositions
modify the leaf chemical features? (ii) Are leaf-associated
microbial communities, namely bacteria and fungi, resistant
when subjected to the N-deposition?

MATERIALS AND METHODS

Experimental Design and Sampling
The experiment has been conducted in a sessile oak [Quercus
petraea (Matt.) Liebl.] stand located in the Monticolo forest
(Autonomous Province of Bolzano, Italy) (46◦25′35′N;
11◦17′55′E). A more detailed description of the forest site
can be found in Giammarchi et al. (2020). Six circular plots (12
m radius) were settled in the forest in 2014, where no other
manipulative experiment had been previously performed. The
plots were established on a relatively small area (about 200
m of length), so that the conditions were homogeneous in
terms of vegetation, aspect, and soil. Three plots received aerial
fertilization above the canopies (N-treated), while other three
plots received only sterile water (Control). Plots were arranged
in a completely randomized design in the experimental site.
Plots were separated by at least 9 m of buffer distance and their
topographical location was chosen to avoid contamination from
the treated to the control ones. Treatments were performed in
days without wind to avoid any drifting effect. The fertilization
treatments delivered a total of 20 kg N ha−1 y−1, which is more
than three times higher than background atmospheric bulk N
deposition (Marchetti et al., 2003). Nitrogen was provided as
a NH4NO3 solution (4.3 g l−1), with 5 monthly applications
from May 2015 until September 2015. The water provided with

the treatments amounted to 210 l H2O plot−1 yr−1 in total,
equivalent to a precipitation of 0.46 mm, which is negligible
compared to the average annual precipitation for the region
(around 800 mm) (Marchetti et al., 2003).

Aerial treatments were applied above the canopy, at 15–
18 m height, depending on trees height in each single plot,
using rotating sprinklers (Rain Bird SNC, Aix-en-Provence,
France) mounted on telescopic masts (Fireco S.R.L., Gussago,
Brescia, Italy) installed in the center of the plots, and one
portable motor pump (Officine Carpi S.R.L., Poviglio, Reggio
Emilia, Italy). The sprinkle provided a uniform spray diameter
of ∼12 meters on the canopy tops, covering the whole plot area.
A different irrigation system (tubing and sprinkler) was used for
the treatment of each plot. Irrigation systems were left in the
field between the treatment events to avoid contamination with
exogenous bacteria.

In each of the six plots, 15 days after the last fertilization,
leaves from three trees were sampled. For each of the 18 trees,
20 leaves were randomly collected (five leaves from each cardinal
point within each sampled tree), at a height of about 8 m. Leaves
were placed in sterile bags. Leaves were processed within 4 h of
sampling and subsampled as follows: 10 leaves from each tree
were ground to a fine powder under liquid nitrogen using a sterile
mortar and pestle and stored at –20◦C; the others (n. 10) were
used for the Leaf Mass Area analysis.

Leaves Characterization
Samples for the Leaf Mass Area analysis were oven-dried for 72 h
at 60◦C. Total Carbon C and Nitrogen N were determined using
an elemental analyzer (Flash 2000, Thermo Fisher Scientific).
Weight and leaf area were measured considering 10 leaves
for each sample using a LI-3000 leaf area meter (LI-COR,
Lincoln, Nebraska, United States). Leaf mass per area (LMA) was
calculated as the weight of leaves divided by the total leaf area.

DNA Extraction
DNA was extracted from ∼0.25 g of powder using the
PowerPlant R© Pro DNA Isolation Kit according to the user’s
manual (Qiagen, Arcore, Italy). Extracted DNA was stored at –
20◦C. DNA concentration was evaluated via fluorimetry using the
PicoGreen quantification.

Next Generation Sequencing and
Bioinformatics Analysis of Bacterial 16S
rRNA Genes and Fungal ITS Regions
A nested PCR approach was used to avoid co-amplification
of chloroplast and mitochondrial ribosomal genes, as reported
in Mitter et al. (2017). The first amplification was done with
primers 799F (5′-AACMGGATTAGATACCCKG-3′) and 1392R
(5′-AGGGCGGTGTGTRC-3′) (Chelius and Triplett, 2001). This
primer pair allows exclusion of the chloroplast 16S rRNA.
The amplification results in co-amplification of bacterial and
mitochondrial ribosomal genes. The band containing the PCR-
product of bacterial 16S rRNA was excised. The second
amplification was performed on the purified DNA using
primers 799F and 1175R modified with the required Illumina
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sequencing adaptors. Fungal ITS region was amplified using
primers ITS31_NeXTf 5′-CATCGATGAAGAACGCAG-3′ and
ITS4_NeXTr 5′-TCCTCCGCTTATTGATATGC-3′ (Tedersoo
et al., 2015), with the required Illumina sequencing adaptors,
according to the protocol of Borruso et al. (2018). The PCR
products were analyzed using the Illumina MiSeq platforms
(2 × 300 bp) paired-end sequencing technology, following the
standard protocols of the company STAB Vida Lda. (Caparica,
Portugal). Raw data derived from the 16S rRNA gene and
fungal ITS region Illumina runs were processed independently
according to the following pipeline. Raw data quality was checked
in FastQC and reads were screened for PhiX contamination
using Bowtie 2.2.6 (Langmead and Salzberg, 2012). A Bayesian
clustering for error correction was applied (Nikolenko and
Alekseyev, 2011) before merging the PE reads using PEAR 0.9.6
(p < 0.001) (Zhang et al., 2014). Forward and reverse primers
were then stripped from merged reads employing Cutadapt 1.8.3
(Martin, 2013) and quality filtering performed in USEARCH v8.0
(maximum expected error = 0.5) (Rognes et al., 2016). METAXA2
v2.2 was used to check SSU ribosomal reads and to verify the
16S rRNA V5-V7 region of bacterial sequences. ITS reads were
processed with ITSx v1.1 to verify and to target the presence of
fungal ITS2 sequences (Bengtsson-Palme et al., 2013). Targeted
reads were labeled according to the sample name of origin and
combined in QIIME 1.9.1 (Caporaso et al., 2010). Sequences
were dereplicated, sorted and clustered at 97% of similarity
using VSEARCH 1.1.1 (Rognes et al., 2016). Chimeras were
removed, adopting a de-novo-based approach, as routine of the
above-mentioned tool. An optimal global alignment was applied
afterward in VSEARCH and a BIOM table generated. Taxonomy
assignment was performed employing the naïve Bayesian RDP
classifier v2.10 in QIIME using SILVA release 132 (Quast et al.,
2013) and UNITE 8.0 (Abarenkov et al., 2010) as reference
databases for bacterial and fungal sequences, respectively.

Alpha and beta diversity analyses were conducted on data
rarefied to 29,688 and 99,904 sequences for fungi and bacteria,
respectively. Fungal data were parsed against the FunGuild (v1.0)
database to assign putative functional guilds to Operational
Taxonomic Units (OTU) groups (Nguyen et al., 2015). All
sequences have been submitted to the EMBL/NCBI/DDBJ under
accession numbers from ERS3396975 to ERS3397010.

Statistical Analysis
Statistical analyses were performed using multi packages of R
software (R Core Team, 2017). Alpha diversity was investigated
via Observed OTUs and Simpson indices. The data normality
was tested via Shapiro-Wilk. The Observed OTUs and Simpson
indices were tested for statistical difference between N-treated
and control samples through the Welch Two Sample t-test
for bacteria, while for fungi Wilcoxon Rank Sum test has
been applied since the data were not normally distributed.
Beta dispersion was tested for fungal and bacterial using the
“vegan::betadisper” function. Beta dispersion was calculated to
test if the groups had the same centroids and heterogeneity.
PERMANOVA was applied both on OTU level and on the genus
level to test the treatment’s effect. Ordination plots were created
applying Constrained Analysis of Principal Coordinates (CAP)

based on Bray Curtis distance at the genus level for both bacteria
and fungi (“capscale” function). Finally, to test the significance of
the correlation between the fungal and bacterial CAP analysis, a
Procrustes was applied.

Indicator taxa analysis was conducted by fitting taxa,
summarized at genus level, in a Poisson-based generalized
linear model followed by Bayesian analysis with Markov chain
Monte Carlo (MCMC.OTU package at https://cran.r-project.
org/web/packages/MCMC.OTU/index.html for more details).
Genera showing p < 0.05 after FDR were selected and displayed
in the boxplots.

Further, Generalized Linear Models (GLMs) were created and
then tested with ANOVA analysis with the mvabund package
library in R to analyze if the putative functionality guilds of fungi
were statically influenced by the treatment (Wang et al., 2012).

RESULTS

Leaf Functional Traits and Microbial
Community Composition of the
N-Treated and Untreated Leaves
The C/N ratio, N concentration, C concentration, and LMA
were not significantly different between N-treated and control
samples (Table 1).

After bioinformatics pipelines and quality filtering, a total
of 3,045,338 bacterial reads and 1,960,578 fungal reads were
found (Supplementary Tables 1, 2). The number of OTUs
assigned as bacteria and fungi had an average of 3,290 and
488, respectively (Supplementary Tables 1, 2). No taxonomically
unassigned OTUs were detected in the filtered bacterial data;
differently unassigned fungal OTUs represented 22% of the total
number of fungal OTUs but only accounting for 7% of the
whole fungal reads.

Sequences were taxonomically assigned to 19 bacterial
phyla, 38 classes, 68 orders, 146 families, 270 genera, while
for fungi: 3 phyla, 19 classes, 65 orders, 148 families, and
352 genera. Concerning Bacteria, the most abundant Phyla
in both treated and control samples were Proteobacteria,
Bacteroidetes, Actinobacteria, Acidobacteria, and Firmicutes
(Supplementary Figure 1A).

At the genus level, control samples were characterized by the
following bacterial indicator taxa: Bifidobacterium, Gilliamella,
Lactobacillus, and Streptococcus (Supplementary Figure 2A and
Supplementary Table 3). Conversely, Leuconostoc, Zymobacter,

TABLE 1 | Average ± standard deviation, t-value, and p-value for the leaf
functional traits of control and N-treated samples.

Control N-treated t-value p-value

N (%) 1.85 ± 0.07 1.9 ± 0.3 0.53 0.29

C (%) 46.0 ± 1.0 46.7 ± 0.4 1.34 0.10

C/N 25 ± 1.00 25 ± 4 0.05 0.48

(#) LMA (g m−2) 84 ± 18 83 ± 9 -0.10 0.46

(#) Leaf Mass Area.
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and Candidatus Carsonella were the genera that better reflected
the nitrogen-treated samples (Supplementary Figure 2B and
Supplementary Table 3).

The fungal community across all samples was dominated by
members affiliated with the phylum Ascomycota, followed
by Basidiomycota (Supplementary Figure 1B). Fungal
indicator genera characterizing control samples were:
Curreya, Endomelanconiopsis, Hypotrachyna, Naevala,
Rhinocladiella, Roussoella, and Saccharomyces (Supplementary
Figure 2B and Supplementary Table 4). On the contrary,
Microcera and Polyscytalum were the fungal indicators for
nitrogen-treated samples (Supplementary Figure 2B and
Supplementary Table 4).

Alpha and Beta Diversity
For the bacterial community, Observed OTUs (t = –2.17,
d.f. = 14.73, p = 0.04) and OTU Simpson’s diversity (t = –2.38,
d.f. = 14.66, p = 0.03) were higher in N-treated samples than
control samples (Figure 1A). Contrarily, fungal Observed OTUs

and Simpson’s diversity were not different between N-treated
and control samples (Figure 1B). Beta dispersion of bacterial
and fungal communities revealed that N-treated samples and
control samples had the same centroid (bacterial PERMDISP:
p = 0.82, F = 0.07; fungal PERMDISP: p = 0.64, F = 0.24). Pairwise
comparison showed that the groups do not have statistically
different dispersion (bacterial p-value: below diagonal = 0.82,
above diagonal = 0.81; fungal p-value: below diagonal = 0.63,
above diagonal = 0.63), confirming that there was no difference
in community heterogeneity across treatments. PERMANOVA
test applied to bacterial OTU 97% and on genus level revealed
no statistical differences between treated and control samples
(PERMANOVA: OTU 97%, R2 = 0.7, p = 0.21; OTUs at genus
level R2 = 0.1, p = 0.07). At genus level, the canonical analysis
of principal coordinates (CAP; Anderson and Willis, 2003) of
bacterial data discriminated between treated and control samples
(F = 1.84, p = 0.04) (Figure 2A). Fungal samples were clearly
differentiated according to treatment (PERMANOVA: OTU 97%,
R2 = 0.11, p = 0.01; OTUs at genus level R2 = 0.13, p = 0.003). CAP

FIGURE 1 | Box plots representing the average and standard deviation of observed operational taxonomic units (OTUs) and Simpson indices of bacterial (A) and
fungal (B) communities.

FIGURE 2 | Constrained Analysis of Principal Coordinates (CAP) ordination plot on bacterial (A) and fungal genera (B). In blue the control samples, in red the
N-treated samples.
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on fungal genera validated these results grouping the treated and
control samples into two clusters (Figure 2B), with significant
differences among experiments (F = 1.63, p = 0.008) (Figure 2B).
A large degree of congruence between the bacterial and fungal
genus distribution pattern based on a matrix comparison using
Procrustes analysis was found (m2: 0.64, R2: 0.60, p: 0.001).

Fungal Predictive Functional Analysis
Predictive functional and ecological features of fungal
populations were investigated using the FunGuild analysis
applied to the overall fungal OTUs. The most abundant
ecological guild was “Plant-Pathogen,” while the “Fungal-
Parasite,” “Lichenized,” and “Endophyte” were less represented.
Concerning the fungal growth morphology, the facultative
yeast-like and microfungal were the most frequent, followed
by “Thallus” and “Yeasts.” Further, the “Pathotrophy”
trophic mode was more abundant than “Saprotrophs” and
“Symbiotrophs.” Regarding the differences between treatments,
fungi characterized by “Symbiotrophic” behavior, associated with
lichens and characterized by a thallus-like growth, increased in
N-treated samples (Table 2).

DISCUSSION

The first research question asked whether N-depositions were
able to modify leaf functional traits, while the second question
investigated if leaf-associated microbial communities had been
affected in their alpha or beta-diversity. Leaf functional traits
(i.e., LMA, C/N ratio, N and C concentration) did not show
differences between controls and N-treated samples. This could
be due to the short experimental duration and the slow
physiological tree response and adaptation. Giammarchi et al.

TABLE 2 | Fungal Guild, Growth Morphology and Trophic Mode information
described in accordance with the FunGuild software.

Fungal guild Control N-treated p-value

Endophyte 157 ± 58 126 ± 37 0.70

Fungal-parasite 536 ± 290 699 ± 401 0.66

Lichenized 263 ± 67 515 ± 225 0.02*

Plant-pathogen 4,490 ± 2,600 4,950 ± 1,850 0.69

Growth morphology Control N-treated p-value

Facultative-yeast 1,110 ± 410 1,150 ± 519 0.85

Microfungus 2,610 ± 2,180 2,650 ± 1,240 0.93

Thallus 263 ± 67 367 ± 225 0.02*

Yeasts 203 ± 188 207 ± 86 0.98

Trophic mode Control N-treated p-value

Pathotroph 4,500 ± 2,600 4,960 ± 1,840 0.96

Saprotroph 1,590 ± 966 1,100 ± 375 0.39

Symbiotroph 423 ± 93 645 ± 229 0.04*

Values represent the mean of reads (considering the rarefied OTU table) of all the
samples in each treatment with standard deviation. The p-values are calculated
with mvabund package. The asterisk (*) indicates the significant difference between
Control and N-treated samples.

(2020), on the same site, did not find significant differences,
caused by the treatment in some leaf functional traits in the
successive 3 years. To this extent it has been shown that
prolonged N-deposition could be associated to an increase of
N foliar concentration over time (Hobbie, 2015). On the other
hand, we found a significant influence of the N-deposition
on the microbial community diversity and ecological features,
confirming that bacteria are more sensitive to an environmental
disturbance (Borruso et al., 2015; Cong et al., 2015). Specifically,
the N-deposition increased bacterial alpha-diversity and slightly
affected bacterial beta-diversity. These findings are coherent with
what found in forest soils subjected to prolonged N-depositions
(Zhou et al., 2017).

The increase in bacterial alpha-diversity is somewhat
unexpected as other studies found a general decrease in leaf
and soil bacterial diversity after N fertilization (Manching et al.,
2014; Li et al., 2016). However, differently from soil, leaves are an
oligotrophic environment for microorganisms, with limitations
both for carbon and nitrogen availability (Kim et al., 2011).
Thus, the supplying of N could have promoted an increased
bacterial diversity (Brankatschk et al., 2011) as evidenced by
an increment of the abundance of some indicator species,
such as the Leuconostoc, which is associated to copiotrophic
environments (McEniry et al., 2008).

Nevertheless, the increase in N availability did not have strong
effects on beta-diversity bacterial communities, indicating that a
more extended treatment period or higher amount of applied N
may be necessary for a clear biological response (as also reported
for the leaf traits).

Alternatively, it is possible that highly diverse microbial
communities are more likely to contain taxa with complementary
response traits, increasing the chance to answer to changing
environmental conditions (Bringel and Couée, 2015). With these
regards, bacterial communities could rapidly recover after a
disturbance, such as N addition (Shade et al., 2012).

According to the indicator species analysis, several taxa
were related to undisturbed environmental conditions. We
reported Gilliamella genus to be an indicator of untreated
plots. This genus includes honeybee gut symbiont species,
such as G. apis that can provide beneficial functions for the
host insect like nutrient synthesis, digestion and provision of
disease resistance (Kwong and Moran, 2013). The preference
of Gilliamella for undisturbed conditions may have relevant
implications for maintaining key ecosystem processes. Therefore,
further studies on pollinator insects are required to unveil the
relationships between host insects and their gut biota in response
to N fertilization.

On the other hand, other bacterial genera were found to
be significantly related to fertilized conditions. For instance,
“Ca. Carsonella” is a widespread obligate phytopathogenic
symbiont of psyllids (Katsir et al., 2018), initially discovered
in association with Celtis occidentalis L. The reason
why oak tree leaf tissues host Carsonella is an open
question. Possibly, it could have a different behavior than
phytopathogens. In fact, Raddadi et al. (2010) discovered a
new bacterial species named “Ca. Liberibacter europaeus,” in

Frontiers in Microbiology | www.frontiersin.org 5 April 2021 | Volume 12 | Article 633535

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-633535 April 12, 2021 Time: 19:22 # 6

Borruso et al. Nitrogen Depositions Affecting Leaf Microbiota

pear tissues, belonging to a recognized group of phytopathogenic
bacteria. They also found that it apparently did not cause any
disease to plants, probably dwelling as an endophyte (Raddadi
et al., 2010). According to their findings, we hypothesize that
aerial N-fertilization could induce primary insect symbionts
surveillance over the plant leaf surface, with unexplored
ecological and, most likely, phytopathological consequences.

Unlike what we have observed for bacteria, N deposition
did not affect fungal alpha diversity but influenced its beta-
diversity. Fungal communities in fertilized samples clustered
differently from control samples. In detail, we found an
increase of symbiotrophic fungi in N-treated samples. This
group of fungi is not correlated with plant pathogeny and
receives nutrients by exchanging resources with the host cells
(Petrini, 1991; Nguyen et al., 2015). It has been reported that
symbiotic relationships let microorganisms to better tolerate
environmental changes (Denton and Karlén, 1973). Taxa with
a lichen-forming mycobiont strategy characterized the majority
of symbiotrophic. Fungi associated with lichen symbiosis are
usually combined with green algal species and a smaller
number of Cyanobacteria (Grube and Wedin, 2016). A possible
explanation of the increase of lichen-associated fungi could be
related to a direct increase of algae cells on the leaf surface
due to the increased N availability. Since C and N are the
main limiting factors for the growth of microorganisms in
leaves and considering that fungi and most bacteria are not
photosynthetic organisms, algae could be more facilitated in
leaf colonization due to their autotrophic metabolism (Lindow
and Brandl, 2003; Vorholt, 2012). Consequently, N deposition
could have directly promoted an increase of algal cell number
and, indirectly, an increase of fungal cell number with a lichen-
forming strategy.

CONCLUSION

In conclusion, we found that N-deposition could directly
influence the bacterial community alpha-diversity, increasing
the level of nutrients bioavailable for microorganisms in
leaves, considered so far as an oligotrophic environment.
Moreover, we found that N-deposition could indirectly
affect fungal beta-diversity, maybe due to the increase of
available organisms capable of the symbiontic behavior.
Further investigations are needed to shed new light on the
potential functional modification of the leaf-associated microbial
communities, especially related to carbon sequestration due to
autotrophic cell growth.
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