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Drug-drug interaction prediction plays an important role in pharmacology and

clinical applications. Most traditional methods predict drug interactions based on

drug attributes or network structure. They usually have three limitations: 1) failing

to integrate drug features and network structures well, resulting in less informative

drug embeddings; 2) being restricted to a single view of drug interaction

relationships; 3) ignoring the importance of different neighbors. To tackle these

challenges, this paper proposed a multiview fusion based on dual-level attention

to predict drug interactions (called MFDA). The MFDA first constructed multiple

views for the drug interaction relationship, and then adopted a cross-fusion

strategy to deeply fuse drug features with the drug interaction network under

each view. To distinguish the importance of different neighbors and views, MFDA

adopted a dual-level attentionmechanism (node level and view level) to obtain the

unified drug embedding for drug interaction prediction. Extensive experiments

were conducted on real datasets, and the MFDA demonstrated superior

performance compared to state-of-the-art baselines. In the multitask analysis

of new drug reactions, MFDA obtained higher scores on multiple metrics. In

addition, its prediction results corresponded to specific drug reaction events,

which achieved more accurate predictions.
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Introduction

Drug combination therapy is widely used in clinical practice and has been recognized

as a safe and effective treatment for serious diseases (Sun et al., 2016). However, multiple

medications can also lead to harmful drug-drug interactions (DDIs), which can be life-

threatening in severe cases and lead to the withdrawal of drugs from the market. The
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methods currently available to detect DDIs are primarily through

long-term in vivo and in vitro clinical trials, which are costly and

tedious. Therefore, it is critical to propose an efficient method for

DDI identification.

Nowadays, AI-based computational methods have been

widely used in biomedical fields (Dong et al., 2022; Meng

et al., 2022), such as drug repositioning (Pan et al., 2022),

protein interactions (Song et al., 2022), and DDI predictions

(Deng et al., 2020). For DDI prediction, feature or topological

similarity-based approaches are the most common. Many

methods have been developed based on these methods

in different ways, including aggregating multiple types of

drug features (Gottlieb et al., 2012), predicting multi-class

drug reaction events (Ryu et al., 2018), and integrating drug

attribute features with drug interaction relationship (Kang et al.,

2022). These optimized methods are effective and make the DDI

predictions more complete. However, most of those methods

ignore the importance of multiview learning (Blum and Mitchell,

1998) and do not take it into consideration. In recent years,

multiview learning has been successfully applied to many tasks.

As illustrated in Figure 1 for the classification task, integrating

multiple views can capture more discriminative features and

thus enhance difference. It means that integrating multiple

views facilitates to capture of more comprehensive

relationships. The situation also applies to drug interaction

networks, as the reactions between drugs are complex and

diverse. The adjacency view (graph), which is often used in

experiments, reflects only one aspect of direct similarity

between interacting drugs. Indeed, similarities between nodes

that do not directly interact have proven to be very useful in

biological networks (Huang et al., 2020), including genetic

interactions and protein-protein interaction networks

(Costanzo et al., 2016; Kovács et al., 2018). Therefore, we

propose a novel multiview fusion approach (MFDA) to

predict DDI in this paper. In addition to the adjacency view

that provides local topological relations, we add a diffusion view

providing beyond first-order topological relationships and the

nearest neighbor view constructed from feature similarities to

capture a more comprehensive and accurate DDI pattern.

Moreover, for the integration of drug features and network

structures under each view, we employed cross-fusion to

flexibly exchange and fuse the two sources of information.

Our contributions are summarized as follows:

1) This study presents a novel MFDA method to predict drug

interactions. It constructs multiple relational views of drug

interactions and employs a cross-fusion strategy to handle the

fusion of drug features and topological information under

each view. The experiment results prove the effectiveness of

the proposed method.

2) MFDA proposes a dual-level attention mechanism to

distinguish the importance of drug nodes and different

views for effective fusion. Furthermore, the attention

score can also provide interpretable predictions for drug

reactions.

3) Most traditional methods usually focus on binary prediction

results, and MFDA can predict multiple drug reaction events,

which is more useful for investigating the mechanism hidden

behind the drug reactions.

Related work

Many computation-based methods have been proposed for

DDI prediction, and they can be mainly divided into the

following four groups.

Feature similarity-based methods assume that drugs with

similar features share similar reaction patterns. In early DDI

studies, researchers focused on the calculation of drug feature

similarities for DDI prediction, such as side effects (Tatonetti

et al., 2011), chemical structure (Vilar et al., 2012), and

phenotype (Peng et al., 2015). Later, multiple features were

combined to improve the model performance (Gottlieb et al.,

2012; Cheng and Zhao, 2014; Yan et al., 2020). For example,

Kastrin et al. (2018) considered semantic and topological

similarities and adopted five classifiers to build a prediction

model. Yan et al. (2019) proposed IDNDDI, which used

cosine similarity to calculate information about chemical

structure, biological and phenotypic features of drugs to infer

drug reactions. Rohani and Eslahchi. (2019) calculated multiple

drug similarities and used a heuristic similarity selection method

to select features that are informative and less redundant for

combination. These methods are natural and straightforward,

but they ignore structural information. In addition, the selection

of features relies on expert experience.

Graph embedding-based methods automatically learn low-

dimensional node embeddings from relational networks and use

FIGURE 1
Two different views. Cl and C2 denote two categories in
two different colors. V1 and V2 represent two views, in
view V1, the two categories can be easily distinguished
by the classifier, while in view V2, the data of these two
categories are mixed and difficult to separate.
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them as node features. For example, Yue et al. (2020) proposed a

common graph representation learning framework for predicting

drug reactions. It utilized three common types of graph

embedding methods (factorization, random walk, and neural

networks) to obtain drug embeddings that were used to infer

potential drug reactions. The above approaches follow an

unsupervised general framework that leads to suboptimal

model performance. Subsequent efforts were made to improve

it for specific DDI tasks. For example, to obtain high-order drug

topological relations, SkipGNN (Huang et al., 2020) aggregated

neighboring topological information within two hops for DDI

prediction. To introduce multiple drug-related entities, Yan et al.

(2021) constructed five drug-related heterogeneous networks and

implemented random wander with restart algorithms and

positive point mutual information to obtain unified

topological embeddings for prediction. The above optimized

methods are promising, but they fail to take feature

information into consideration, which can also provide

discriminative information for prediction tasks.

Attribute-based network methods combine both network

topology and attribute information to obtain more

comprehensive information. They are usually optimized by

incorporating drug feature information into previous graph

embedding methods. For example, among the factorization-

based approaches (Xiao et al., 2017; Yu et al., 2018; Zhu et al.,

2020), Zhu et al. (2020) proposed an attribute supervised

learning model that incorporated two drug attributes,

molecular structure and side effects, and their correlation

to infer adverse interactions among drugs. In graph neural

network approaches (Zitnik et al., 2018; Kip F and Welling,

2017), where propagation-based methods usually incorporate

the feature information into the relational network. For

instance, Zitnik et al. (2018) proposed Decagon, which

constructed a multimodal network and adopted

convolutional operators to propagate and transform feature

vectors across the multirelational network. As a result, the

final obtained embedding vector learned both the drug

attribute information and the structure information.

Decagon has achieved favorable results by encoding feature

information of multiple entities. To easily integrate multiple

entities and handle multiple relationships flexibly, knowledge

graph (KG)-based methods have received more attention

(Zeng et al., 2022). Many excellent models have been

proposed, such as the relation-aware network embedding

model for DDI prediction (RANEDDI) (Hui et al., 2021),

multimodal deep neural network (MDNN) (Lyu et al., 2021),

and knowledge summarization GNN (Sum-GNN) (Yu et al.,

2021), which can better capture the structure and semantic

information of the network.

The above attribute-based network methods have made

considerable improvements over pure structure-based

methods, but they do not integrate the information about

attributes and structures well. For example, factorization-based

methods are shallow models that cannot capture the nonlinear

relationship between the two information sources. Propagation-

based methods prefer network structures to drug attributes and

may result in oversmoothing problems. More importantly, these

methods mainly focus on a single view of drug reaction

relationships and ignore the importance of multiple views. As

a result, the model’s results are highly dependent on the quality of

the selected view, resulting in poor robustness.

Multiview-based methods construct multiple views of the

same target and learn by exploiting the complementarity

complementary between views. Many multiview learning

methods have been proposed. For example, Wang et al.

(2020) proposed AM-GCN, which constructed two views from

network structure and node features, respectively, and then used

an attention mechanism to automatically learn the weights of the

views. Yuan et al. (2021) designed three complementary views

and adopted convolutional operations to learn view embeddings.

Finally, an attention mechanism was also used to fuse node

representations for the classification task. Wang et al. (2021)

proposed to capture inter-viewmolecule structure and intra-view

interactions between drugs, and then used an unsupervised

contrast learning component to balance and integrate

multiview information. Although the above methods are

effective, there is room for improvement. For instance, AM-

GCN only constructed two views, and Yuan et al. (2021) used

convolution operations to simply aggregate node features and

topological information, which limits the model to capture

important information. Therefore, we constructed three views

to learn the comprehensive drug interaction relationships. Unlike

before, we propose a cross-fusion strategy to fuse drug features

and topologies under each view. Specifically, it utilizes dual

channels to encode drug features and network structures

separately and then exchanges information flexibly with

convey operations. Through extensive experiments, the

experimental results show that our model outperforms other

optimal methods.

Methodology

Overview

The framework of the model MFDA is shown in Figure 2. It

consists of four main parts: multiple-view construction, dual-

level attention mechanism, cross-fusion strategy, and model

optimization. The model first constructed three graphs Aadj,

Adiff, andAknn from different views. Under each view, the type-

specific graph Ay and feature matrix X were input into

corresponding networks. To effectively combine the two

sources of information, a cross-fusion strategy was employed

in this paper. Specifically, the autoencoder (AE) was used on the

drug feature matrix to extract feature information, while the

graph attention network (GAT) was applied to capture structural
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information from the adjacency matrix. Then, we adopted

convey operations to fuse the two types of information

between each layer. After multiple iterations, three graph

representations Zadj, Zdiff, and Zknnare available. Then they

are fused using the attention mechanism module to obtain a

unified drug representation Z. Finally, multiple drug pair vectors

were constructed and fed into the loss function for training and

optimization.

Problem definition

In this section, we use the relevant notation in Table 1 to state

the problem definition. Given a multirelational DDI network

G � {V, E,X}, where the vertices V denote the drug nodes, the

edges E denote the types of drug reactions. We also have feature

matrix X = [X1, X2 . . .Xi]T ∈ RN, where N denotes the

dimensions of the feature vector, and each row in the matrix

corresponds to a drug feature vector. The main task of the MFDA

model is to predict the specific type of reaction between drugs,

which is essentially defined as a multiclassification problem. The

prediction results represent the probability distribution over

multiple DDI types, and the highest score is used as the final

prediction type.

Multiple view construction

Given a graph G, we constructed three widely-studied graphs

from different views, which represent different structures

extracted from the drug relationship network.

1) Adjacency graph (denoted Aadj), which reflects the local

structure. If two drugs interact, the corresponding position

FIGURE 2
Illustration of the MFDA framework.

TABLE 1 The main notation and definition.

Notation Definition and description Notation Definition and description

G The input network Z The unified embedding

V The node set Zy The graph embedding learned in view y

E The edge set Z(l)
y

The embedding learned by GAT in view y at layer l

X The final attributes feature of all nodes H(l) The embedding learned by AE at layer l

Xi The final attribute feature of drug i εy The attention coefficients in view y

αij The weight coefficient of neighbor j on i Ay The adjacency matrix constructed in yview

Xx The similarity feature matrix on feature x sij The feature similarity of drug i, j vectors
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in the Aadj matrix is replaced with a “1”; otherwise, it is

replaced with a “0”.

2) Diffusion graph (denoted Adiff), which provides a global view

of the drug interaction relationship. It can capture information

beyond first-order neighbors to predict DDI. We use the

Personalized PageRank (PPR) by Eq. 1 to obtain the

diffusion graph.

Adif f � α(I − (1 − α)D−1
2AD−1

2)−1 (1)

where α ∈(0, one) denotes the transition probability in a random

walk, I is an identity matrix, and D is the degree matrix of A.

3) K-nearest neighbors graph (denoted Aknn), reflects the similarity

of the feature space. First, for each drug, we select its top-K similar

neighbors by computing the cosine similarity using Eq. 2, and here

set the neighbor sampling size K = 2.

sij � Xdi · Xdj

‖ Xdi ‖‖ Xdj ‖ (2)

whereXdi andXdj denote the feature vectors of drug i andj. The

symbol ‖ indicates the Euclidean norm operation.sij indicates the

similarity between two vectors i and j. After that, we connect an

edge between nodes and their first ten neighbors, so the KNN

graph is constructed.

Cross fusion strategy

To effectively fuse the network structure and node attribute

information of each view, this study adopts a cross-fusion

strategy.

First, we need to process the three raw features given in this

study (substructure, target, enzyme). Since each feature

corresponds to a set of feature descriptors, and each drug can

be represented by a binary vector, we calculate the pairwise

similarity by performing the Jaccard similarity using Eq. 3.

J(di, dj) �
∣∣∣∣di ∩ dj

∣∣∣∣∣∣∣∣di ∪ dj
∣∣∣∣ �

∣∣∣∣di ∩ dj
∣∣∣∣

|di| + ∣∣∣∣dj∣∣∣∣ − ∣∣∣∣di ∩ dj
∣∣∣∣ (3)

where di and dj represent bit vectors drugsi and j, respectively;

di ∩ dj is the intersection and di ∪ dj is the union. After the

Jaccard calculation, we can obtain the similarity matrix of

substructure, target, and enzyme features, which are

represented as Xs,Xt, Xe respectively. Then, they are

concatenated as the unified feature matrix X, where the

feature vector of drug i is defined as Eq. 4.

Xi � Xi
s ⊕ Xi

t ⊕ Xi
e (4)

We use dual channels to encode drug features and network

structures separately. For clarity, we take drug feature X and the

adjacency graph Aadj as an example.

For drug features, we adopt the widely used AE to learn

feature embeddings.H(l) denotes the feature embedding learned

at the lth layer, as defined in Eq. 5.

H(l ) � ∅(W(l)
e H( l−1) + b(l)e ) (5)

where ∅ is the ReLU activation function, andW and b are the

weight matrix and bias matrix at the lth layer, respectively.

H(0)denotes the feature matrix X.

For the network structures, different neighbors play various

roles for the central node. Therefore, we use a node-level

attention mechanism to assign associated weights to

neighbors, which is essentially implemented through GAT.

The topological embedding learned at each layer is denoted

Z(1)
adj,Z

(2)
adj,. . ., and Z(l)

adj. We set up convey operations to allow

the two channels to exchange and fuse information flexibly. That

is, the feature embedding captured by AE is conveyed to the GAT

with a certain ratio ε. The formal formulation is shown in Eq. 6.

~Z
(l−1)
adj � (1 − ε)Z(l−1)

adj + εH(l−1) (6)

ε is the fusion coefficient, which balances the importance of two

learned vectors from the GAT and the AE. Then, ~Z
(l−1)
adj is fed into

the next GAT layer to obtain the fused representation, as shown

in Eq. 7.

Z(l)
adj � ∅(~D−1

2 ~A~D
−1
2 ~Z

(l−1)
adj W(l−1)) (7)

where∅ represents the ReLU activation function and Z(l)
adj is the

fused embedding of the GAT channel at the lth layer. To

maximize the use of information from both channels, the two

learned embeddings are finally fused via an attention mechanism

module, which is similar to the view-level attention mechanism

(refer to View-level attention mechanism). As a result, three view-

level embedding vectors Zadj,Zdiff, and Zdiff can be obtained.

The three embeddings are informative as they accommodate

information about drug features and topological relationships of

the first l layers. The high-level embedding representation lays a

strong foundation for downstream tasks.

Dual-level attention mechanism

The influence of different neighbors on the central node is

distinct, as are the different views. As an analogy, it seems that

when evaluating a person, his or her parents, friends, classmates,

and teachers (regarded as the node level) do not have the same

opinions about him. Notably, parents and friends have better

familiarity, and their judgment should be more comprehensive.

Considering other aspects, such as learning and sociability

(regarded as the view level), the impact of their evaluation

should also be distinguished. This phenomenon may also

apply to the prediction of drug reactions. Therefore, we use a
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dual-level attention mechanism to assign learnable weights to

different nodes and views.

Node-level attention mechanism
Considering that the importance of different

neighbor nodes is varied, we adopt a self-attention

mechanism to adaptively learn the weights. Taking drug i

as an example, the impact of neighbor j on i can be calculated

by Eq. 8.

αij � softmax(eij) � exp (eij)
Σk∈Ni exp (eik) (8)

Nindicates the neighbors of node i. The attention coefficient αij is

obtained from eij normalized by the softmax function, and eij can

be calculated using Eq. 9.

eij � LeakyReLU(wT[Whi ‖ Whj]) (9)

where ‖ indicates the concatenation operation, T means

transpose, and W denotes the parameter matrix. hi, and hj
indicate drugiand j feature vectors, respectively. Similarly, we

can obtain the attention score of other neighboring nodes on it.

Finally, we weigh the average to update the node representation,

which is formulated as Eq. 10.

hi � σ⎛⎝ ∑
j∈Ni

αijWhj⎞⎠ (10)

View-level attention mechanism
We use view-level attention to assign the appropriate weights

based on their contribution to the prediction task, which can help

to reduce noise and achieve more efficient integration.

We first calculate the attention coefficients of three graph

embeddings. For simplicity, we denote them by εa, εk, and εd,

whose subscripts indicate the first letter of the related view, as

shown in Eq. 11.

(εa, εd , εk) � att(Zadj ,Zdif f ,Zknn ) (11)

Taking the calculation process of εa as an example, drug i in

adjacency graph embeddingZadj can be denoted asZi
adj. We first

apply a nonlinear transformation and multiply by the shared

attention vector q to obtain its attention value wi
adj, as shown in

Eq. 12.

wi
adj � qT · tanh (w · (Zi

adj)T + b) (12)

where w is the trainable weight matrix and b is the bias vector.

After the same operation, the attention values wi
dif f and wi

knn of

the drug i in embedding Zdiff and Zknn can be obtained. Then,

we use the softmax function to regularize the attention values to

obtain its final weight coefficients, as shown in Eq. 13.

εia � softmax(wi
adj) � exp (wi

adj)
exp(wi

adj) + exp(wi
diff) + exp (wi

knn)
(13)

Similarly, we can obtain the attention scores εid, and εik for the

other two views. For all drugs, the attention scores can be collected

together and expressed as εa � [εa], εd � [εd], and εk � [εk], which
are formally denoted as εa � diag(εa), εd � diag(εd), and εk �
diag(εk) after diagonalization. Finally, the unified drug

embedding representations Zwere obtained as shown in Eq. 14.

Z � εa · Zadj + εd · Zdif f + εk · Zknn (14)

Loss optimization

The candidate drug pairs i, and jin the unified embeddingZare

denoted by V(di) and V(dj), respectively. We combine them in

four different ways to represent the drug pair vector, as shown in

Table 2. The symbol ⊙ indicates the element-wise product, while the

symbol ⊕ indicates the concatenation operation.

For the prediction task of drug reactions, this paper combines

cross-entropy loss lce with reconstruction loss lre to constrain the

model. We decode from the learned embedding to obtain the

reconstruction loss, which is formulated as Eq. 15.

lre � ∑N
i�1
‖ Xi − X̂i ‖ (15)

where N is the number of drugs, and Xi and X̂i denote the raw

and reconstructed features of drug i, respectively. For the

multiclass classification task, we use the cross-entropy loss

function, which is defined as Eq. 16.

lce � ∑
l∈L
∑c
i�1
Y li lnŶ li (16)

where L denotes the drug pair training set and c is the set of drug

reaction types. Ŷ∈ RL×c and Y ∈ RL×c denote the predicted label

set and the true label set, respectively.

Experiments

Experimental setup

Dataset
The experimental data in this paper come from DDIMDL

(Deng et al., 2020), which contains 572 drugs with four different

types of features: chemical substructures, targets, enzymes, and

pathways. There are also 37,264 drug pairs with 65 types of

reaction events. According to the DDIMDL experiment, we used

the three most effective features, i.e., chemical substructure,

target, and enzyme for experiments.
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Baselines
The following state-of-the-art methods were used to evaluate

the performance of MFDA.

• Classic classifier: These methods are traditional supervised

learning methods. The unified feature vector X is directly

treated as drug features and input into the logistic

regression (LR) (DeStefano, 1990), and random forest

(RF) (Breiman, 2001) for training.

• DNN: We reproduced Lee’s idea (Lee et al., 2019) with a

deep neural network (DNN). The drug pair vectors of the

three features are concatenated and fed into the DNN

classifier.

• DeepDDI1: DeepDDI (Ryu et al., 2018) is the first model to

apply deep learning to drug reaction events. It uses the

chemical substructure similarity of the drugs as the input

and predicts the interaction type through a deep learning

model. In this work, we adjusted the output to 65 classes to

accommodate multitype DDI prediction.

• DDIMDL2: DDIMDL (Deng et al., 2020) optimizes the

DeepDDI (Ryu et al., 2018) model and inputs three drug-

related features of chemical substructure, target, and

enzyme into the three constructed sub-models for training.

• LINE: LINE (Tang et al., 2015) considers the first-order

similarity and second-order similarity between nodes.

• HOPE: HOPE (Ou et al., 2016) is a factorization method

that maintains high-order proximity by reconstructing the

adjacency matrix.

• Node2Vec: Node2vec (Grover and Leskovec, 2016)

employs a biased random walking strategy to obtain a

sequence of neighbor nodes and then inputs them into

the skip-gram model to get the embedding of nodes

• SDNE: SDNE (Wang et al., 2016) improves the LINE

method. It utilizes deep AE models to optimize both

first- and second-order similarities instead of optimizing

them separately.

• GAE: GAE (Kipf and Welling, 2016) adopts an encoder-

decoder structure to learn embedding representations and

train the model by minimizing the reconstruction loss.

• SkipGNN3: SkipGNN (Huang et al., 2020) aggregates

messages from two-hop neighbors and immediate

neighbors in the interaction network.

• RANEDDI4: RANEDDI (Hui et al., 2021) considers

multiple relationships between drugs. It uses the

knowledge graph-based approach RotatE (Sun et al.,

2019) to learn initial drug embeddings, which are fed

into the relationship-aware network to predict multiple

DDI reactions.

• DPDDI5: To be fair, this experiment incorporates attribute

feature information based on the original DPDDI (Feng

et al., 2020) and then uses graph convolutional networks

(GCNs) to learn the drug representation for prediction.

• DANE6: DANE (Gao and Huang, 2018) not only captures

potential high nonlinearity in topology and attributes but

also maintains first-order and high-order the proximities in

the original network.

• AM-GCN7: AM-GCN (Wang et al., 2020) constructs KNN

graphs from the node feature space; and network topology

graphs from the interaction relationship of nodes. Then, the

attention mechanism is used to adaptively integrate deep

correlation information between topological structures and

node features.

• MGCCN: MGCCN (Wang et al., 2022) builds three graphs

from drug relationships and uses multiple parallel

convolutional layers for each graph to learn topological

representation. Finally, the multigraph attention module is

used to obtain a unified node representation.

Reimplement details: the above comparison methods can be

classified into four groups, and the detailed settings refer to

Table 3. To ensure fairness, the embedding results learned by the

model are saved and uniformly classified by using a DNN

classifier. Note that the embedding learning methods (LINE,

HOPE, Node2vec, SDNE, GAE) can be re-implemented in the

BioNEV framework (Yue et al., 2020).

TABLE 2 Four different combinations of drug pairs.

Combination method Dimensionality Description

Average d V(di, dj) � 1
2 [V(di) +V(dj)]

Hadamard d V(di, dj) � V(di) ⊙ V(dj)
L1 norm d V(di, dj) � |V(di) −V(dj) |
Concatenation 2d V(di, dj) � V(di) ⊕ V(dj)

1 https://bitbucket.org/kaistsystemsbiology/deepddi

2 https://github.com/YifanDengWHU/DDIMDL

3 https://github.com/kexinhuang12345/SkipGNN

4 https://github.com/DongWenMin/RANEDDI

5 https://github.com/NWPU-903PR/DPDDI

6 https://github.com/gaoghc/DANE

7 https://github.com/zhumeiqiBUPT/AM-GCN
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Evaluation metrics
To comprehensively evaluate the performance of MFDA, we

used six evaluation metrics, including the accuracy (ACC), area

under the precision-recall curve (AUPR), area under the receiver

operating characteristic (ROC) curve (AUC), F1, Precision (Pre),

and Recall. We use micro metrics for AUPR and AUC and macro

metrics for the other metrics (Pre_macro, F1_macro,

Recall_macro).

Parameter and evaluation settings
The maximum iteration number is set to 1,000, and we selected

the Adam optimizer with a learning rate of 0.003 to optimize MFDA.

Meanwhile, we applied fivefold cross-validation in our

experiments and randomly divided all DDI pairs into five

subsets. The final score was calculated by taking the average of

the five rounds of output. To avoid overfitting, we used the

early-stopping strategy, which automatically terminated

TABLE 3 Baseline method settings.

Type Method X Aadj Adif f Aknn

Feature-based LR,RF,DNN,DeepDDI,DDIMDL ✓
Network-based LINE,HOPE,Node2vec,SDNE,GAE, SkipGNN, RANEDDI ✓
Feature and Network based DPDDI, DANE ✓ ✓

Multiview-based
AM-GCN ✓ ✓
MGCCN ✓ ✓ ✓

Proposed MFDA ✓ ✓ ✓ ✓

X: feature matrix Aadj: adjacency graph Adif f : diffusion graph Aknn: knn graph.

TABLE 4 Performance of our model against competitive approaches.

Type Method ACC AUC_PR_micro AUC_ micro F1_macro Pre_macro Recall_macro

Feature-based LR 0.721 0.785 0.993 0.306 0.504 0.254

RF 0.772 0.846 0.995 0.481 0.713 0.408

DNN 0.880 0.913 0.996 0.722 0.805 0.703

DeepDDI 0.837 0.890 0.996 0.685 0.728 0.661

DDIMDL 0.885 0.921 0.998 0.759 0.847 0.718

Network-based LINE 0.883 0.949 0.999 0.750 0.774 0.746

HOPE 0.902 0.962 0.999 0.762 0.794 0.749

Node2vec 0.907 0.966 0.999 0.780 0.806 0.770

SDNE 0.777 0.848 0.995 0.466 0.579 0.441

GAE 0.784 0.860 0.996 0.491 0.587 0.454

SkipGNN (2020) 0.758 0.863 0.855 0.755 0.773 0.759

RANEDDI (2021) 0.967 0.952 0.999 0.724 0.759 0.713

Feature and
Network based

DPDDI (2020) 0.825 0.900 0.997 0.655 0.723 0.643

DANE (2019) 0.871 0.937 0.998 0.705 0.759 0.679

Multiview-based AM-GCN(2020) 0.877 0.945 0.998 0.745 0.783 0.726

MGCCN (2022) 0.899 0.961 0.999 0.802 0.820 0.796

Proposed MFDA (GAT) 0.901 0.961 0.999 0.807 0.826 0.797

MFDA
(GAT&KNN)

0.905 0.964 0.999 0.822 0.833 0.820

MFDA (ours) 0.902 0.963 0.999 0.851 0.857 0.853

The best results are shown in bold.
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training after 20 epochs if no improvement was observed.

Regarding the settings of the comparison method parameters,

they all follow the original paper. The experiment was

conducted on Windows Server 2016 Datacenter, which was

configured with Intel Xeon Processor (Skylake, IBRS),

2.3 GHz, 32 CPUs. It was running on python 3.8 and the

total running time was about 1551.76 s.

Results and analysis

The results of the comparison experiments in Table 4

show that RANEDDI has the highest score on ACC, which

may be due to the KG-based approach used. The KG-based

approach can capture the relationships between multiple

entities and obtain rich structural and semantic

information. And Node2Vec scored highest on

AUC_micro, which was due to its biased sampling that

integrated structural features obtained by depth and

breadth search. However, MFDA performed best overall,

outperforming RANEDDI by 12.68, 9.71, and 13.97% in

F1_macro, Pre_macro, and Recall_macro metrics,

respectively, and by 7.13, 5.09, and 8.23% over Node2vec.

Compared to the multiview-based methods, we can see

that MFDA is better than the best MGCCN, the difference is

that in each view, we use a cross-fusion strategy to deeply

fuse drug features and topological information, rather than

simply fusing with the GCN. Besides, the proposed MFDA

has the best results compared to other view ablation variants,

which demonstrated that integrating multiple views is

beneficial to improve model performance. In addition, we

observed that DDIMDL performed better in feature-based

methods. A plausible explanation was that DDIMDL used

three types of drug features and captured different heterogeneous

information from them. However, the GAE, and SDNE performed

poorly in the network-basedmethods. This can be attributed to the

unbalanced distribution of multiple DDI events. For verification,

we counted the DDI events involved in the experiment, as shown

in Figure 3. The results showed that there was a sharp decline over

65 DDI class distributions, and the data were unevenly distributed.

This could directly affect the overall performance of the model

using GCN as the encoder.

Ablation study

To explore the influence of each module in the model, we set

five ablation variants, as detailed in Table 5 and the results of the

ablation experiments are shown in Figure 4.

• MFDAw/o AE: This variant has no AE component. The

fusion coefficient alpha was set to 0, so the MFDA

degenerated into a multilayer GAT model, capturing

only the information of the network structure.

• MFDAw/o GAT: This variant has no GAT module. It

inputs the embedding representation obtained by AE

into the model for end-to-end training and uses only the

feature information of the drug.

• MFDAw/o Convey: There is no convey operation

to exchange information between layers. It combined the

embeddings learned from two independent networks

through an attention mechanism to obtain a unified

embedding vector. This variant was designed to verify

the importance of the convey operation.

• MFDAw/o NodeAtt: This variant does not use the node-

level attention mechanism. It replaced GAT with GCN,

which uniformly aggregated neighboring nodes. The rest of

the settings are the same as MFDA.

• MFDAw/o LayerAtt: This variant does not use a view-level

attention mechanism. When fusing three view embeddings,

the final drug embedding is obtained by averaging method.

FIGURE 3
Statistics of DDI events.

TABLE 5 Ablation variants settings.

_AE _GAT _Convey _ NodeAtt _ LayerAtt

MFDA w/o AE ✓
MFDAw/o GAT ✓
MFDA w/o Convey ✓ ✓ ✓ ✓
MFDA w/o NodeAtt ✓ ✓ ✓
MFDAw/o LayerAtt ✓ ✓ ✓ ✓
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FIGURE 4
Results of ablation experiments.

FIGURE 5
Results of ablation experiments. (A) Effect of fusion coefficient. (B) Effects of drug combination methods. (C) Effect of the number of fusion layers.
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The results in Figure 4 show that the ablation variants scored

lower on all metrics compared to MFDA, indicating that each

component of the model is functional. In addition, we note that

the MFDAw/o AE variant, which does not have the AE model to

capture feature information, decreases significantly across all

metrics, suggesting that feature information contributes the

most to the prediction task, followed by the attention

mechanism.

Parameter sensitivity analysis

In this section, we investigate the effects of the fusion

coefficient ε, the method of combining drug pairs, and the

number of fusion layers on the experiment to find the best

parameters. The results of the experiment are shown in Figure 5.

The fusion coefficient ε, which controls the weight of

embeddings learned from the two types of networks. First, we

fixed the other two parameters and observed the experimental

results by varying ε in the range of {0.1, 0.3, 0.5, 0.7, 0.9}. The

results from Figure 5A showed that when the fusion coefficient ε

was set to 0.5, that is, when the GAT embedding was equally

fused with the AE embedding, the best results were obtained.

Different methods of drug combination affect the meaning of

the constructed drug-pair vectors. Here, we explore the effect of

different combinations on the experimental results. The results in

Figure 5B show that when the average method is applied, almost

all metrics achieved the highest value.

To evaluate the fusion layer parameters, we varied layers

one to five and the number of hidden layer nodes was

empirically set to (2000, 512, 512, 256, 65). We fixed the

number of neurons in the last hidden layer to 65, as there are

65 types of DDI events. Then, the number of layers was

gradually increased to evaluate how the number of layers

affects the experimental results. The results are shown in

FIGURE 6
The relationship between the three tasks.

TABLE 6 Results of the three types of tasks.

Method ACC AUPR_micro AUC_micro F1_macro Pre_macro Recall_macro

Task A DeepDDI 0.837 0.890 0.996 0.685 0.728 0.661

DPDDI 0.784 0.860 0.996 0.491 0.587 0.454

DDIMDL 0.885 0.921 0.998 0.759 0.847 0.718

MFDA 0.902 0.963 0.999 0.851 0.857 0.853

Task B DeepDDI 0.577 0.559 0.978 0.342 0.363 0.389

DPDDI 0.520 0.518 0.965 0.214 0.259 0.227

DDIMDL 0.642 0.656 0.971 0.446 0.561 0.432

MFDA 0.875 0.837 0.995 0.664 0.704 0.650

Task C DeepDDI 0.360 0.278 0.906 0.137 0.159 0.145

DPDDI 0.311 0.259 0.925 0.045 0.051 0.048

DDIMDL 0.408 0.364 0.951 0.159 0.248 0.145

MFDA 0.759 0.714 0.991 0.446 0.469 0.350

The best results are shown in bold.
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TABLE 7 Predicted results for the top 10 types of reaction events.

Drug1 Drug2 Predict
label

Evidence Description

Abemaciclib Astemizole 1 Drugbank The metabolism of abemaciclib can be decreased when combined with astemizole

Amiodarone Morniflumate 2 Drugbank The risk or severity of hyperkalemia can be increased when amiodarone is combined with morniflumate

Imatinib Epinephrine 3 Drugbank The serum concentration of epinephrine can be increased when it is combined with imatinib

Apalutamide Azacitidine 4 Drugbank Azacitidine may decrease the excretion rate of apalutamide which could result in a higher serum level

Conivaptan Levosalbutamol 5 Drugbank Conivaptan may increase the excretion rate of levosalbutamol which could result in a lower serum level
and potentially a reduction in efficacy

Nabilone Mepyramine 6 Drugbank Nabilone may increase the central nervous system depressant (CNS depressant) activities of mepyramine

Atomoxetine Methsuximide 7 N.A. The risk or severity of QTc prolongation can be increased when atomoxetine is combined with
methsuximide

Bosentan Carisoprodol 8 N.A. Bosentan may increase the hypotensive activities of carisoprodol

Aprepitant Bivalirudin 9 N.A. The metabolism of aprepitant can be increased when combined with bivalirudin

Diltiazem Droxidopa 10 Drugbank Droxidopa may decrease the antihypertensive activities of diltiazem

FIGURE 7
Validation of the predicted results for the top 100 drug pairs.
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Figure 5C, where the model performance showed an increasing trend

until it reached three levels, indicating that it incorporatedmore useful

information. When the layer number is 3, all metrics reached the

highest point. After that, all of them had a decreasing trend, indicating

that too many layers may also incorporate noisy information, which

instead reduced the model effect. Finally, we set the number of layers

to 3 as a trade-off.

Multitask analysis

In general, we are more interested in the ability to predict

reactions to new drugs. The previous experiment is

equivalent to Task A in Figure 6, which evaluates the

model’s ability to predict known drugs. While Task B and

Task C were designed to assess the predictive ability of the

new drug reactions. For clarity, the relationship between the

three tasks is shown in Figure 6.

• Task A: We applied fivefold cross-validation and randomly

split all drug pair vectors into five subsets. We trained

models based on DDIs in the training set and then made

predictions for DDIs in the test set. The evaluation score

was the average of the output of the five rounds.

• Task B: Without using previous drug pairs, 572 drugs were

randomly divided into five subsets. We used one of them as a

test set to simulate drugs with no known interactions. The

model was constructed on the training drugs and tested

between the training drugs and testing drugs.

• Task C: This design is similar to Task B. The difference is

that the model is tested between the testing drugs, which is

equal to predicting two completely new drugs.

We selected multiple drug reaction methods (DeepDDI,

DPDDI, DDIMDL) for comparison experiments on three tasks,

and the experimental results are shown in Table 6.

We observed a significant decrease in the scores of all

models when predicted with new drugs. In particular, the

AUPR_micro and F1_macro scores of DDIMDL in Task B

dropped from 0.656 to 0.446, respectively, to 0.364, and

0.159 in Task C, respectively. However, the MFDA did not

decrease drastically and always achieved optimal results. A

possible explanation is that MFDA had a stable network

structure, which constructed three views and was able to

capture deep interaction information of drug features with

the network topology under each view.

FIGURE 8
View-level attention distribution.

FIGURE 9
Node-level attention distribution and interpretation.
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Case study

In this section, we conduct case studies to validate the predictive

ability ofMFDA in practice.We performed experiments on 572 drugs

that had 37,264 DDIs and 65 types of reaction events. The

experimental goal is to predict the reaction events between the

remaining drug-drug pairs. We pay attention to the top ten most

common drug reaction events and recorded drug pair reactions with

the highest scores in each reaction type. We used the interactions

checker tool provided by DrugBank8 for verification. The

experimental results are shown in Table 7. Seven DDI events can

be identified out of the top ten events, which achieved good prediction

accuracy. In addition, the predicted results were well-readable. For

example, the predicted reaction of abemaciclib with astemizole was

type “1″, which suggested that the metabolism of abemaciclib would

be weaker when combined with astemizole. This specific type of

predictive result could provide additional insight into the underlying

mechanisms behind the drug reactions.

Furthermore, we selected the top 100 drug pairs with the highest

scores and then checked up evidence in DrugBank. The results were

organized into a relational graph (Figure 7) for presentation, where

confirmed reactions were represented by red edges, otherwise by

gray edges, and node size was related to the number of reactions

involved. Statistically, 62% of the interactions have been confirmed.

This case shows that MFDA is promising for predicting unknown

reactions between drugs.

Analysis of attention mechanism

To overcome the lack of interpretability of graph neural networks,

we predicted specific reaction events, which made the results more

readable. Furthermore, we used a dual-level attention mechanism

to provide interpretability for DDI. We first output three view-

level attention scores as shown in Figure 8. From the attention

distribution, we found that the KNN graph contributed more

to drug prediction. The KNN graph revealed similarities in the

drug feature space, which was in line with the conclusion

drawn from the previous ablation experiments that drug

feature information would be important.

For further analysis, we chose to investigate node-level

attention under the KNN view with a high importance score.

Specifically, we saved the last layer of node-level attention scores

under the KNN view and plotted it as a heatmap, as shown in

Figure 9. We randomly selected a drug node 452 (Calcidiol) and

found that it has a large correlation score with node 565

(Calcipotriol). They did not belong to the same type of drug,

but we found six common neighbors between drug nodes

452 and 565 by analysing their relationships in known drug

pair reactions. To make it clear, we used Echart9 for display. The

two nodes shared many common neighbors, so there was a

strong connection between the two nodes. To sum up, the

dual-level attention mechanism allows us to know what view

is the most important, and the relationship between neighbors.

This can facilitate the understanding of drug reaction prediction.

Conclusion

We proposed a novel method MFDA for the prediction of

multiple drug reaction events. MFDA integrated information

from multiple views, which reduced the dependence on a single

view and greatly improved the stability of the model. In addition,

under each view, convey operations were applied to flexibly

exchange feature information with topology information,

which helped to fully capture interaction information and

therefore obtained high-quality drug representations. Through

extensive comparative experiments as well as prediction

experiments for new drugs, MFDA achieved satisfactory

performance compared to optimal baselines. In addition, the

dual-level attention mechanism could also provide an

interpretable prediction for drug reactions. In the future, we

may extend MFDA to heterogeneous graphs and explore

capturing high-level embedding representations using

knowledge graph-based approaches.
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