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Abstract

Peanut skin is a by-product rich in bioactive compounds with high nutritional and pharmaceutical values. The phenolic frac-
tion, rich in proanthocyanidins/procyanidins, is a relevant class of bioactive compounds, which has been increasingly applied
as functional ingredients for food and pharmaceutical applications and is mostly recovered from peanut skins through low-
pressure extraction methods. Therefore, the use of green high-pressure extractions is an interesting alternative to value this
peanut by-product. This review addresses the benefits of the phenolic fraction recovered from peanut skin, with a focus on
proanthocyanin/procyanidin compounds, and discusses the improvement of their activity, bioavailability, and protection, by
methods such as encapsulation. Different applications for the proanthocyanidins, in the food and pharmaceutical industries,
are also explored. Additionally, high-pressure green extraction methods, combined with micro/nanoencapsulation, using
wall material derived from peanut industrial processing, may represent a promising biorefinery strategy to improve the bio-

availability of proanthocyanidins recovered from underutilized peanut skins.
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Introduction

Food industries are redesigning their production chains to
address the emerging consumer demand for high-nutritional
foods, products with enhanced functional and physical
properties, and enriched with health-promoting constitu-
ents (Galanakis, 2021). With population growth, emphasis
is directed towards the reprocessing of agro-industrial by-
products, as a contribution to circular economy, valuing the
biorefinery concept by means of green processes applica-
tions (Benvenutti et al., 2021).
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Peanut (Arachis hypogaea L.) is an important oilseed culti-
vated and appreciated worldwide. The processing of peanut
oilseeds provides various popular peanut goods, generating
large amounts of by-products (Sorita et al., 2022). Among
them, peanut meal (derived from oil production), skins, and
shells are the main by-products of peanut processing, which
are mostly used for animal feed (Sorita et al., 2020). Par-
ticularly, peanut skins are valuable by-products from pea-
nut processing operations, with more than one million tons
produced worldwide every year and presenting considerably
high contents of proanthocyanidins and their isomers (Xu
et al., 2022).

The phenolic-rich fraction recovered from peanut skins is
becoming increasingly popular due to the growing demand
for functional foods, beyond the interest from pharmaceutical
industries. The use of the peanut-phenolic fraction (rich in pro-
cyanidins) in food and pharmaceutical formulations can pro-
mote several health benefits, such as antioxidant (Constanza
et al., 2012), anti-cancer (Liu et al., 2020), cardioprotective
(Rauf et al., 2019), anti-diabetic and anti-obesity (Unusan,
2020), antimicrobial (Camargo et al., 2017b), neuroprotective
(Singh et al., 2017), antiviral (Makau et al., 2018), and anti-
asthmatic (Kandhare et al., 2013).
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In connection to that, this review evaluates possible uses
for the phenolic-rich fraction from peanut skin, mainly com-
posed by proanthocyanidins/procyanidins components, in
food and pharmaceutical formulations, adding value to this
underestimated by-product. For this purpose, a fast search
at SCOPUS Database (up to June, 2022) shows that 2538
studies are relate to peanut and its by-products (“peanut”)
AND (“by-products” OR “waste”” OR “residue”). Refining
the search, 86 works were founded related to peanut skin
and phenolic compounds (“phenolic” AND “peanut skin”),
showing the growing interest from the scientific commu-
nity about phenolic compounds from food by-products,
particularly peanut skin. Specifically, in the last 10 years
(2012-2021), 61 works were published (71% of total stud-
ies), and 5 studies were published up to June 2022. The cri-
teria used for article selection were within the title, abstract,
and keywords. The USA, with 27 works, was the first in
publication ranking, followed by Brazil (22 studies) and
Argentina (9 studies). Additionally, among the 86 studies,
62 are related to agricultural and biological sciences; 32 to
chemistry; 19 to biochemistry, genetic, and molecular biol-
ogy; and 15 are related to chemical engineering, showing the
multidisciplinary enrolled in this subject, rising the applica-
tion possibilities.

To identify alternative sources of phenolic compounds
and the efficient methods for their recovery is of utmost
scientific and industrial interest. Then, within the viable
sources of this relevant fraction, peanut skin emerges with
high potential due to the relevant content of these compo-
nents that can promote several health benefits. Because the
recovery of phenolics from peanut skin can be achieved by
several methods, this review provides an update about the
extraction techniques, focusing on green methods with non-
toxic solvents, such as supercritical fluid extractions (SFE),
pressurized liquid extraction (PLE), subcritical water extrac-
tion (SFE), ultrasound-assisted extraction, and microwave-
assisted extractions (MAE) and its combination, in a biore-
finery concept.

Although some phenolic characteristics, such as fast
delivery and degradation, combined with low solubility and
bioavailability, may restrict its direct use in pharmaceutical
and food formulations (Xu et al., 2022), nevertheless, encap-
sulation processes are exciting alternatives to overcome the
restrictions for its applications, and these options are also
compiled in this review.

Association of sustainable extraction methods (for selec-
tive extractions), health benefit characteristics, and encap-
sulation strategies can be an interesting way to value food
by-products, allowing further applications of the recovered
fractions in food and pharmaceutical products.

Therefore, the present review provides the connection of
two strategies for the valorization of peanut by-product, the
innovative and sustainable extraction methods and green
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encapsulation procedures. This approach can stimulate the
circular economy, integrating the industry 4.0 design by
means of developing green process and products.

Peanut: Increase in By-product Generation

The world population growth connected to the increasing
use of oilseed commodities as input for biofuel production
had led to higher demand for oil production, affecting con-
sequently the oil prices (Shokoohi & Saghaian, 2022). For
that reason, the oilseed production and market are growing
fast, and the 5 main world producers of peanut in 2021 are
shown in Fig. 1 (USDA, 2022).

China, India, Nigeria, the USA, and Sudan, the main
peanut producers in 2021, were responsible for 69% of the
world production, where China contributed most, with 36%
of word production (18.2 K MT). India and Nigeria were the
second and third highest peanut producers, being responsible
for 14% (6.8 K MT) and 8% (4.22 K MT), respectively, fol-
lowed by the USA and Sudan (6 and 5% of world produc-
tion), providing 2.9 and 2.3 K MT, respectively.

The projection for 2022, related to peanut meal, destined
for industrial uses, and oil consumption, indicates near his-
toric levels, reaching the peanut production in the USA,
while the Brazilian production is estimated to increase by
60% of the production compared to 2018/2019. Still for
2022, it is projected a peanut production rise in 17% related
to whole seed, oils, and food uses (USDA, 2022).

Considering that most peanut-based products do not
contain the red skin layer, the amount of this by-product
is increasing. Besides, taking into account the circular
economy context, the transformation of agro-industrial
residues (like peanut skin), as sources of valuable prod-
ucts, contributes to sustainable industrial processes, and can
be of relevance to contribute to peanut industrial process-
ing. Then, because peanut skin represents about 3% of the
peanut weight (Lorenzo et al., 2018; Sorita et al., 2020),
and the world peanut production in 2021 was 50.22 K MT
(USDA, 2022), it is estimated that approximately 1.50 K
MT of peanut skin were generated in 2021. Also, consider-
ing the representative amount of phenolic compounds from
peanut skin, this by-product can be considered an emerg-
ing and promising feedstock for the recovery of bioactive
ingredients.

Therefore, with the increase in peanut skin generation,
worldwide studies (mainly from the USA, Brazil, and
Argentina, as reported in the “Introduction” section) have
been focusing on the extraction of the phenolic-rich frac-
tion from this valuable by-product, rising food and pharma-
ceutical applications, as substitute of synthetic additives, as
discussed in the next sections.
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Fig. 1 The five most peanut producers worldwide in the 2021 year. Source: USDA (2022)

Phenolic Compounds in Peanut By-products

Peanut skin contains several compounds (mainly phenolic
components) with diverse potential biological activities.
In nature, the phenolic compounds from plants (generally
concentrated at the skins or peels) are responsible for color,
taste, and flavor attributes, indicating the plant maturity.
These compounds have two main functions: (i) protect
against insects, pathogens, and herbivorous animals, and
(ii) attract insects for flower pollination.

Phenolic compounds can be classified in four subgroups
(categories): phenolic acids, flavonoids (including flavonols,
flavones, flavanols, anthocyanidins, and isoflavones), tan-
nins, and stilbenes (An et al., 2021; Neuenfeldt et al., 2022;
Singh et al., 2017). Figure 2 illustrates the phenolic com-
pounds identified in peanut by-products.

Phenolic acids are a minor phenolic group from peanut
skins, mainly composed by coumaric, caffeic, and ferulic
acids, and this class of components are represented by the
phenolic compounds with one carboxylic acid group. Pro-
tocatechuic, ferulic, caffeic, and p-coumaric are the main
compounds identified and quantified in peanut skin. Chlo-
rogenic acids (and their monomers, quinic acid) can also
be founded in peanut skin, although rarely, but their pres-
ence can be associated to peanut cultivars and industrial

processing (Dean, 2020; Lan et al., 2020; Ma et al., 2013;
Sarnoski et al., 2012a).

Stilbenes, also identified from peanut skin, are exten-
sively recovered from numerous food by-products due to
their valuable biological activities. Resveratrol is the main
stilbene from peanut skin, among other derivatives such as
isopentadienylresveratrol, piceatannol, piceid, and some pre-
nylated resveratrol analogs. The resveratrol content varies
with peanut cultivar and processing; for instance, Spanish
skins (15.04 pug g~") have higher content than Runner and
Virginia types (4.30 and 3.66 pg g~!, respectively) (Francisco
& Resurreccion, 2009).

Flavonoid components (monomeric and condensed) are
the main fraction of phenolic compounds from peanut skin,
such as catechin, epicatechin, epigallocatechin, catechin gal-
late, epicatechin gallate, epigallocatechin gallate, quercetin,
and proanthocyanidins and a complex series of procyanidins
oligomers, which have been already identified and quantified
from this by-product. Then, because procyanidin (A-type
procyanidin dimer, trimers, and tetramers) can achieve a
remarkable value of 85.7% of the total phenolic components
from peanut skin (Xu et al., 2022), the present study focuses
on the flavonoid group (specifically, in proanthocyanidins/
procyanidins oligomers), which is presented in terms struc-
tures and the biological activities associated.
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Fig.2 Phenolic groups identified in peanut skin
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Proanthocyanidins and Its Structures

Proanthocyanidins are high molecular weight polyphenolic
compounds, which, for peanut skin, are originated from the
polymerization of flan-3-ol by saturated linkage between
two carbon molecules (C—C), and occasionally by C-O-C
bonds, as shown in Fig. 3.

In Fig. 3(I), a general molecular structure of common
monomeric anthocyanins (subclasses), such as procyanidins,
prodelphinidins, propelargonidins, profisetinidins, prorobi-
netinidins, and proguibourtinidins, is shown (Xie & Dixon,
2005). These subgroups are obtained from depolymerization
and/or decomposition at high temperature in acid medium.
The most common subgroups from proanthocyanidins are
the procyanidins, oligomers of (epi)catechin units, and their
galloyl derivatives (Bansode et al., 2014), widely present in
peanut skin.

The proanthocyanidin molecular structures, considering
linkage types, are presented at Fig. 3(II, III), which show
A-type (C,—C; and C,—0O5) and B-type (C,—Cq and C,—Cy)
proanthocyanidins, respectively. The linkage of monomeric
units (Fig. 3(I)) occurs mostly between C, from the “upper”
monomeric unit and Cg or C¢ from the “lower” monomeric
unit (B-type, Fig. 3(III)), called B-type because the linkage
is based on the lower unit, the B-ring. The most common
B-type proanthocyanidin dimers are found in nature, fre-
quently from plant tissues, the B, B,, B;, and B,, which are
related to C,—Cq bonding (Fig. 3(IV)). Types Bs, B¢, B4, and
Bg are less frequent and related to C,—C4 bonds. Sometimes,
an extra ether group is found between C, and Os or O, and
the structure is called A-type due to linkage based on A-ring;

Anhoepeie | R | R | s
Procyanidin | OH| H | OH
Prodelphinidin | OH | OH | OH
Propelargonidin |OH| H | H
Profisctinidin | H | H | OH
Prorobinetinidin | H | OH | OH
Proguibourtinidin | H | H | H

more specifically, the C-ring of the “upper” monomeric
unit is linked with the A-ring of the “lower” monomeric
unit (Fig. 3(I)) (Neto et al., 2020; Rauf et al., 2019), with
A, and A, as the most common A-type proanthocyanidins
(Fig. 3(1V)). The synthesis of proanthocyanidins from the
chemical, biochemical, and molecular genetic perspectives
is presented in detail by Xie and Dixon (2005).

The structure, the monomeric composition, the degree
of polymerization, and the specific linkages of the proan-
thocyanidins affect their bioactivities (Dong et al., 2013).
For instance, according to Andersen-Civil et al. (2021), the
bioavailability, stability, and activity of polyphenolic com-
pounds, such as proanthocyanidins, may be correlated with
the amount of hydroxyl groups, mean polymerization, and/
or bond type and position between the monomers. Besides,
Vazquez-Flores et al. (2018) suggested that proanthocya-
nidins with low degree of polymerization are more apt to
inhibit digestive enzymes, such as intestinal lipase, amylase,
and proteases, due to their capacity to bind with specific
cavities from the enzymes, better than polymer or oligomer
molecules.

Proanthocyanidins/Procyanidins from Peanut
By-products

Proanthocyanidins/procyanidins derived from plant and food
by-products emerged as functional ingredients, attracting
attention from the food industry and health organizations
due to their well-being beneficial properties, such as the
protective effect against diabetic retinopathy (Sun et al.,
2016), complementary and alternative strategy to prevent
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Fig.3 (I) General molecular structure of common monomeric antho-
cyanins, (II) molecular linkage structure for A-type proanthocyani-
dins (C,—Cq and C,—O;), (II) molecular linkage structure for B-type

proanthocyanidins (C,—Cg and C,—Cy), and (IV) procyanidins Al,
A2, B1, B2, B3, and B4 types. Source: Adapted from Neto et al.
(2020), Xie and Dixon (2005) and He et al. (2008)
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skin cancer by attenuating the adverse UV radiation effects
(Katiyar et al., 2017), and also atherosclerosis prevention,
cardiovascular protection, and reduction of total cholesterol
from blood plasm (Blade et al., 2010). Besides that, proan-
thocyanidins are related to maintaining vascular elasticity
and normal blood pressure (Odai et al., 2019), among other
health-promoting characteristics.

The linkage types from A- and B-proanthocyanidins
affect their activities; for instance, A-type (peanut skin)
has higher trypsin inhibitor activity and higher affinity for
a-casein (useful for wall material attributes, facilitating
encapsulation) and strongly inhibits a-amylase, compared
to B-type (Le Bourvellec & Renard, 2018). Besides, A-type
proanthocyanidins help prevent recurrent urinary tract infec-
tions, a property not observed from B-type proanthocyani-
dins (Liu et al., 2012). A comprehensive approach of the
benefits of A- and B-type proanthocyanidins is discussed
below.

Recently, several researchers have shown that peanut
skins are excellent sources of phenolic compounds, particu-
larly proanthocyanidins/procyanidins, present in high con-
centration (~86%) (Xu et al., 2022) with innumerous biologi-
cal activities (Appeldoorn et al., 2009; Bodoira et al., 2019;
Munekata et al., 2016; Oldoni et al., 2016). Then, Table 1
summarizes the scientific works related to the recovery of
proanthocyanidins from peanut skin, associating with extrac-
tion methods, processing conditions applied, and the main
results detected.

It is important to point that the content of proanthocyani-
dins from peanut skin by-products varies with the source, as
well as the recovery and quantification procedures (Table 1
data). Besides, the proanthocyanidin content can be affected
by several factors, such as (i) peanut cultivation, for instance,
specie or variety, climate, and soil conditions; (ii) peanut
processing, like mechanical peeling and roasting; and (iii)
extraction conditions.

Chukwumah et al. (2012) compared the total proantho-
cyanidin content (in cyanidin chloride equivalent (CCE)) of
twenty-seven cultivars from different regions, with results
ranging from 0.101 to 1.030 mg CCE g~! of peanut skins,
where the lower value was from Valencia variety while the
higher content was from Runner variety. Yu et al. (2006)
showed that peanut processing (oilseed roasting) affected
the procyanidin content from the skin, compared with non-
roasted peanut skin. For instance, the content of trimer
and tetramer proanthocyanidins reduced with temperature
increase, from 0.221 and 0.296 mg g_' (non-roasted skin) to
0.157 and 0.204 mg g~! (roasted skin), respectively. Other-
wise, the dimers’ content increases, from 0.111 (non-roasted
skin) to 0.143 mg g~! (roasted skin), due to degradation of
larger proanthocyanidins into lower ones (dimers).

Most studies for the recovery of proanthocyanidins
from peanut skins apply conventional extraction methods
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(maceration and Soxhlet extraction), which are generally
highly time- and solvent-consuming. Mostly, these meth-
ods have low selectivity, resulting in less pure extracts, with
residual solvent, that compromises its use for food indus-
tries (Belwal et al., 2020). In addition, the long extraction
time that is normally required can cause proanthocyanidin
degradation, reducing their antioxidant and antimicrobial
properties (Bodoira et al., 2017).

Usually, conventional extraction of proanthocyanidins
from peanut skin requires two steps: lipid extraction by
nonpolar solvents that act as a barrier for proanthocyani-
dins extraction, followed by polar solvent extraction, from
defatted peanut skin, to obtain the polyphenol fraction (e.g.,
proanthocyanidins) (Tamkuté et al., 2020).

Larrauri et al. (2016) recovered proanthocyanidins from
peanut skin by conventional three-step extraction: (1) lipid
extraction by Soxhlet with n-hexane for 6 h, followed by
(2) polyphenol extraction by maceration with ethanol/water
(70:30 v/v) at room temperature for 24 h, and (3) purifi-
cation with ethyl acetate in a column (Sephadex LH-20)
eluted with ethanol. Fractions (2) and (3) were analyzed by
HPLC-ESI-MS/MS, detecting phenolic acids (quinic, gal-
lic, and cumaric acids), flavonoids (catechin, epicatechin,
quercetin, isoquercetin, genistein, isorhamnetin, apigenin,
chrysin, procyanidins, and proanthocyanidins), and stilbenes
(resveratrol). The main proanthocyanidins from fraction (3)
were as follows: procyanidin dimer A-type (31.49%), proan-
thocyanidin dimer (24.33%), and procyanidin dimer B-type
(14.15%). Using four-step extraction, Munekata et al. (2016)
recovered proanthocyanidins from peanut skin by (1) stirring
maceration (ethanol/water 80:20 v/v) at 60 °C for 50 min,
(2) 15-min sonication, (3) centrifugation (6000 rpm for 15
min), and (4) filtration.

The number of extraction steps, process conditions,
recovery efficiency, and quality of the recovered fractions
can be modified by the extraction method and solvent used.
Alternative high-pressure methods and environmentally
friendly solvents may contribute to green processes, stimu-
lating the sustainable development (Benvenutti et al., 2021).

Innovative Extraction of Proanthocyanidins/
Procyanidins

Recently, with the increasing demand of natural products,
additives, or bioactive extracts for foods, cosmetics, and
pharmaceutical applications, the extraction specialists have
focused on improving the processes efficiency, reducing
extraction time, number of operations, energy consump-
tion, and amount of solvent, which reduce environmental
impact, economical costs, and generated waste, but simul-
taneously keeping attention on the extract’s quality (Chemat
et al., 2019).
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Muioz-Arrieta et al. (2021)

Reference

proanthocyanidins oligomers

presented in the extracts
contain one or more A-type

indicating that 95% of the
bonds

Monomers of “A-type”
interflavan bonds were
predominant in the extracts,

Quantification/identification Highlight results

MALDI-TOF MS

Extraction conditions
Ethanol (100%) for 15 min

Conventional extraction

method
Ultrasound

profiles of peanut skins from
three varieties of peanuts
(Virginia, Spanish, and

Determine proanthocyanidins
Valencia)

Table 1 (continued)
Study objective

Green extractions, besides reducing energy consumption,
also allow the use of generally recognized as safe (GRAS)
solvents and are applied for renewable natural products or
underused by-products from industrial processes (Chemat
et al., 2019; Moro et al., 2021; Wang et al., 2022). High-
pressure methods such as supercritical fluid extraction (SFE)
and pressurized liquid extraction (PLE) are within the prom-
ising techniques for the recovery of proanthocyanidins from
peanut skin because they are fast processes with low solvent
consumption, generally green solvents, such carbon dioxide,
ethanol, water, or their mixtures (Mazzutti et al., 2017; Rifna
et al., 2021).

High-pressure methods and other alternative techniques
(like MAE and ultrasound) are established procedures,
with well-known properties and advantages. Ameer et al.
(2017) presented a comprehensive review about these green
methods for polyphenol extraction, comparing efficiencies,
applications, and characteristics. Also, several works pro-
posed sequential high-pressure extractions to value differ-
ent biomasses, such as peanut (Sorita et al., 2020), cacao
(Mazzutti et al., 2018), and tamarind (Martins et al., 2020)
by-products.

Porto and Natolino (2017) applied SFE with CO,, com-
bined with ethanol or water as co-solvents, to recover proan-
thocyanidins from grape seeds. The process optimization
consisted of following a Box-Behnken design to study the
effects of pressure, co-solvent amount, and CO, flow rate
on polyphenol and proanthocyanidins extraction. The best
condition (80 bar, CO, flow rate of 6 kg h~! and 20% (v/v)
of ethanol as co-solvent) provided more than 10 mg g~! of
dry biomass of monomeric proanthocyanidins and above 8
mg g~! of dry biomass of oligomeric proanthocyanidins.

PLE, a promising green method, was recently used by
Rossi et al. (2020) to obtain proanthocyanidins from peanut
skin at 7 MPa, 220 °C,and 7 g min~! of ethanol/water (60:40
v/v) as solvent. The recovered extract had 24 compounds
identified by HPLC-ESI-MS/MS, represented by procyani-
din dimers (about 75%), monomeric flavonoids (4.31%), and
proanthocyanidin dimmers (about 5%). The extract quality
suggests the high-pressure PLE method as an alternative to
value industrial peanut skin.

Other non-conventional promising techniques, such
as MAE (Chen et al., 2016), sub-critical water extraction
(SWE) (Bodoira et al., 2017), and ionic liquid extraction
(Liu et al., 2012), have also been applied for the recovery of
proanthocyanidins from different feedstocks. Table 2 shows
different raw materials used as source of proanthocyani-
dins, recovered by green extraction techniques. Table 2 data
also list the solvents used, extraction parameters, content of
recovered proanthocyanidins, and suggested applications.

Chen et al. (2020a) used MAE and conventional macera-
tion with ethanol/water (94:6 v/v) to recover proanthocyani-
dins from grape seeds. Higher content of proanthocyanidins,
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Table 2 (continued)

&

Reference

Application
content

Parameters of extractions Proanthocyanidins

Solvent

“Green” recovery

Feedstock

Springer

198.5+23 mg g~! of

extract

Tamkuté et al. (2020)

Food application

10.3 MPa; 83 °C;

Ethanol

Pressurized liquid

Cranberry pomace

dynamic extraction (3

extraction

cycles 15 min cycle™)

10.3 MPa; 130 °C;

532.2+18.0mg g~! of

extract

Water

dynamic extraction (3

cycles 10 min cycle™)

10.3 MPa; 50-90 °C;

Kitryté et al. (2020)

289.59+12.91 mg/1 gof Functional foods

biomass

Ethanol

Lingonberry (Vaccinium  Pressurized liquid

dynamic extraction
(3 cycles 5-15 min

cycle™)
10.3 MPa; 130 °C;

extraction

vitis-idaea L.) pomace

806.44 +64.17 mg g~ of

biomass

Water

dynamic extraction (3

cycles 10 min cycle™")

in terms of catechin equivalent (CE), was provided by MAE
at 170 °C for 55 min (56.37 mg CE g~! dry peanut skin)
compared to maceration (9.70 mg CE g~! dry peanut skin).
This behavior is justified by microwaves that increase
solvent penetration into the solid material, improving the
extraction yield.

The use of high-pressure green methods to obtain proan-
thocyanidins from different sources is still very limited, par-
ticularly from peanut skin. Some proanthocyanidins sources,
listed at Table 2, are lingonberry pomace, peanut skin, and
cranberry pomace, which provided the highest proanthocya-
nidins content by PLE recovery. For instance, Kitryté et al.
(2020) and Tamkuté et al. (2020) used SWE at 10.3 MPa and
130 °C to recover proanthocyanidins from cranberry (806.44
mg g~! of biomass) and from lingonberry pomace (289.59
mg g~ ! of biomass), respectively. Rossi et al. (2020) used
ethanol/ water (60:40 v/v) at 7 MPa and 220 °C to recover
proanthocyanidins from peanut skin, reaching yield of 75%
and 0.05% (w/w) for procyanidin and proanthocyanidin
dimers, respectively. These results show that high-pressure
methods are sustainable for proanthocyanidin recovery.

Food and Pharmaceutical Uses
of Proanthocyanidin/Procyanidin-Rich
Extracts from Peanut Skin

Considering the numerous health benefits from proanthocy-
anidins (the “Proanthocyanidins/Procyanidins from Peanut
By-products” section), useful for food and pharmaceutical
formulations, it is relevant to develop green strategies that
can be industrially used for their successful recovery and
quality application. Therefore, it is relevant to know the
properties of these components in order to provide success-
ful applications. Table 3 summarizes studies related to food
and pharmaceutical uses of proanthocyanidins from peanut
by-products, listing applications, bioactivities associated,
and most relevant results.

Pharmaceutical Applications Proanthocyanidins show
potential benefits for different pharmaceutical applications
(Table 3). Tatsuno et al. (2012) show that proanthocyani-
din extracts from peanut skin, obtained by water macera-
tion, have beneficial effects on human skins. The use of 200
ug mL~! of extract decreased melanogenesis in cultured
human melanoma (HMV-II co-stimulated with phorbol-
12-myristate-13-acetate), reducing production of inflamma-
tory cytokines (at 100 ug mL™"), tumor necrosis factor-a,
and interleukin-6, in cultured human monocytic THP-1 cell.
Proanthocyanidin dimers and trimers had stronger inhibi-
tory activity, related to melanogenesis and inflammatory
cytokine production, than the monomer or the tetramers.
These promising results inspire the use of SWE or PLE with
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water as solvent due to the high pressure and temperature
conditions, which can reduce the solvent’s surface tension
and viscosity, increasing the proanthocyanidin recovery.

The procyanidins isolated from peanut skins, obtained
by deionized boiling water (7.55 mg g~! of peanut skin),
also inhibited the degranulation of RBL-2H3 (rat basophilic
leukemia cells), suggesting that peanut skin procyanidins are
therapeutic effective against allergic diseases (Tomochika
etal., 2011).

Liu et al. (2020) shows that procyanidin type B2
(Fig. 3(IV)) suppressed tumor cell proliferation and metabo-
lism at in vitro (docking) and in vivo (xenograft and diethyl-
nitrosamine-induced hepatocellular carcinoma mouse mod-
els) assays. They indicate that procyanidin type B2 appears
to bind the catalytically active kinase domain of AKT (pro-
tein kinase B) and regulatory pleckstrin homology domain
(protein domain), associated with liver cancer pathogenesis,
and locking the protein in closed conformation, avoiding
cancer cell multiplication. Also, A-type proanthocyanidin
dimers from peanut skin have a protective effect against
oxidative stress damage in prostate cancer (DU145 cells)
induced by H,0,, maintaining normal cell cycle, inhibiting
apoptosis, increasing the levels of antioxidants (catalase,
total super oxide dismutase, and restored glutathione), and
reducing the content of intracellular reactive oxygen species
(Yan et al., 2021).

Camargo et al. (2017a) evaluated the inhibition of alpha-
glucosidase and lipase activity by proanthocyanidin-rich
extracts from peanut skin (pure and fractionated), obtained
by shaker maceration with acetone solution (70%). The frac-
tionated extract reached 76% inhibition of alpha-glucosidase
activity, while the pure extract provided up to 94% inhibi-
tion of lipase activity. These results highlight the biological
activities of peanut skin extracts, helping the control of the
absorption of glucose and triglycerides by the inhibition of
these enzymes.

Ho et al. (2019) evaluated the alpha-glucosidase inhibi-
tion by proanthocyanidins from peanut skin through in silico
docking assays. The results show good inhibitory activity
performance from A-type proanthocyanidins, with IC,
(concentration required to reduce 50% the enzyme activity)
of 9.72 uM against alpha-glucosidase, revealing hypoglyce-
mic ability of proanthocyanidins.

Peanut skin extract, obtained by PLE with ethanol/water
(60:40 v/v), containing 75% procyanidin dimers and 5%
proanthocyanidin dimers, was tested by Rossi et al. (2020)
in rat ileal epithelial cells (IEC-18), monkey kidney epithe-
lial cells (Vero), and human peripheral blood mononuclear
cells (PBMCs), for toxicity evaluations. Concentrations up
to 300 pg mL~" for IEC-18 and Vero, and up to 250 pg
mL~! for PBMCs, show no cytotoxic effects. These are very
high concentrations compared to IC;, between 3 and 12.5
pg mL~!, representing the antioxidant activity by ABTS

and DPPH methods. These promising results show that
proanthocyanidin-rich extracts from peanut skin have high
antioxidant activity, at safe concentrations for normal cells,
suggesting its use as excellent and accessible alternative for
therapeutic formulations.

Verstraeten et al. (2005) highlighted the ability of types
A and B procyanidins (dimers and trimers) from peanut
skin to interact with phosphatidyl choline liposomes (spe-
cifically the polar headgroup), avoiding membrane cell
damages (maintaining bilayer integrity) by oxidants and
other molecules. Also, trimer absorption from the stomach
was extremely limited, while monomers and dimers were
readily detected from blood plasma. As addressed before,
high-pressure extractions increase the monomer and dimer
fractions from proanthocyanidins, improving food and phar-
maceutical applications.

The effect of proanthocyanidin-rich extracts from peanut
skin on gastrointestinal absorption of vegetable oil in rats
(male Wistar rats) was investigated by Bansode et al. (2015).
Rats administered with the extracts showed reduced plasma
triglycerides and lower plasma very-low-density-lipoprotein
levels compared to rats without peanut skin extract adminis-
tration, suggesting hypolipidemic properties of the extract.

Neagu et al. (2015) showed that ethanolic extracts from
the plants Alchemilla vulgaris and Filipendula ulmaria, rich
in proanthocyanidins (77.66 and 130.00 pg mL~!, respec-
tively), have acetylcholinesterase inhibitory activity (77.03—
98.39% at 3 mg mL_l), useful for the treatment of Alzhei-
mer’s and degenerative diseases. In addition, Unusan (2020)
indicated that proanthocyanidins from grape seed extracts
are therapeutic agents for neuroinflammatory diseases such
as Alzheimer’s. Therefore, considering the high proanthocy-
anidins content from peanut skins of 4.959 mg g~! founded
by Camargo et al. (2017a), it may be of relevance to evaluate
the acetylcholinesterase inhibitory activity, an attribute still
not associated with peanut skin extracts.

The ethanolic extract from peanut skin exhibited antiviral
in vitro activity against influenza types A and B (ICs, of
1.3 ug mL™1). The extract exhibited potent activity against
the clinically isolate HIN1 virus from 2009 pandemic, with
synergistic effect when combined with the approved anti-
influenza drugs, oseltamivir and amantadine, implying that
peanut skin extracts may have potential application in the
development of new therapeutic approaches for influenza
management (Makau et al., 2018).

Recent studies of dynamic molecular simulation (in sil-
ico, molecular docking) suggested the proanthocyanidins’
potential to inhibit the coronavirus disease (COVID-19
global pandemic), caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) (Maroli et al., 2020;
Zhu & Xie, 2020). The coronavirus infective cycle and the
main virus structure are presented in Fig. 4 (adapted from
Maroli et al., 2020; Zhu & Xie, 2020). Briefly, from Fig. 4A
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Fig.4 Life cycle and the main structural features of coronavirus, SARS-CoV2 (A) schematic mechanism of action against SARS-CoV2 of
proanthocyanidins (B). Source: Adapted from Maroli et al. (2020) and Zhu and Xie (2020)
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(infective life cycle), the virus spike protein (S) binds to
ACE2 enzyme receptor (angiotensin-converting enzyme),
the lungs’ major binding receptor to SARS-CoV-2, which is
activated by proteolytic cleavage with human type 2 trans-
membrane serine (TMPRSS2), allowing the virus entry
into human cells (Fig. 4(A.1)). Then, the uncoated virus
delivers RNA into the cytoplasm by translation and replica-
tion (Fig. 4(A.2, A.3)). Finally, the replicated RNA virus
is coated, and new virus is expelled of the cell (Fig. 4(A.4,
A.5)).

The inhibition mechanism of SARS-CoV-2, by thera-
peutic medicines such as proanthocyanidins/procyanidins,
is still poorly elucidated, although molecular docking simu-
lation strategies may justify the therapeutic use of proantho-
cyanidins/procyanidins (PA) against the COVID-19 virus,
with action mechanism suggested at Fig. 4B (Adapted from
Maroli et al., 2020; Zhu & Xie, 2020). This mechanism con-
sists in the PA ability to bind with enzymes and proteins
involved in the virus replication cycle (Fig. 4B), the SARS-
CoV-2 spike protein (S), ACE2 receptor, and the transmem-
brane serine protein (TMPRSS?2), destabilizing the binding
between virus and human cell and preventing virus replica-
tion (Maroli et al., 2020; Zhu & Xie, 2020). Then, PA activ-
ity may alleviate the severity of COVID-19 symptoms and
modulate the immune response.

Food Applications Proanthocyanidins have astringency,
bitterness, sourness, and sweetness, and contribute to sali-
vary viscosity, aroma, and color formation of food products.
Therefore, these components are used as additives in food
formulations, enhancing microbial stability, foamability,
oxidative, and heat stability (Okino et al., 2021; Rauf et al.,
2019). Table 3 also presents the studies related to food appli-
cations of proanthocyanidins recovered from peanut skin.

The use of proanthocyanidins from peanut skins suc-
cessfully inhibited retrogradation properties of maize
starch for 21-day storage (Wang et al., 2020). This power-
ful effect improves quality and extends shelf-life of starch-
based food products, suggesting that proanthocyanidin-
rich extracts from peanut skin can increase the quality of
starch-based foods providing effects such as antioxidant and
hypolipidemic.

Peanut skin extracts (methanol maceration), rich in proan-
thocyanidins, reduced 60% oxidation of ground beef storage
for 14 days, reducing cooking loss and microbial growth,
without an aroma effect (O’Keefe & Wang, 2006). Munekata
et al. (2016) observed redness loss reduction, prevention of
lipid and protein oxidation, and decreasing sensory attributes
changes (red color intensity, superficial discoloration, and
off-odor) in sheep patties added with peanut skin extract
(proanthocyanidins rich in pentamers, tetramers, trimers,
and oligomers), for 20 days of storage at 2 °C. These results

suggest the extract potential as natural antioxidant, replac-
ing synthetic ones such as butylated hydroxytoluene (BHT).

Camargo et al. (2014) shows that peanut skin improved
the total phenolic content, fiber, antioxidant capacities, and
moisture of cookies (at concentrations from 1.3 to 2.5%),
while carbohydrate concentration was decreased. The cook-
ies fortified by peanut skin were well accepted by sensorial
analysis. In addition, procyanidin trimers and tetramers were
identified by HPLC-DAD-ESI-MS from the phenolic frac-
tion (extracted with acetone water solution 70:30 v/v) of
the cookies.

Gamma irradiation of food products has been used to
reduce and/or eliminate microorganisms, improving food
safety, although it may affect sensory attributes by induc-
ing oxidation. Then, Camargo et al. (2017a) compared
antioxidant activity of peanut skin extracts, obtained
by acetone:water solution (70:30 v/v), with 4.959 mg of
proanthocyanidins g~! dry peanut skin, with that from
BHA, a synthetic antioxidant. Then, the extract was added
to salmon and submitted to gamma irradiation (3.0 kGy
at 3.75 kGy h™'). The results show the extract prevented
oxidation up to 63% of non-irradiated salmon samples,
and 37% of gamma-irradiated samples. No difference was
found comparing the antioxidant activity from BHA and the
extract, showing that natural proanthocyanidins can prevent
gamma irradiation—induced oxidation. The same extract
also inhibited the growth of gram-positive bacteria (Bacil-
lus cereus, Staphylococcus aureus, Listeria monocytogenes,
and Geobacillus stearothermophilus) and gram-negative
bacteria (Pseudomonas aeruginosa, Pseudomonas fluores-
cens, Salmonella enteritidis, Salmonella typhimurium, and
Escherichia coli) (Camargo et al., 2017b). Also, Levy et al.
(2017) demonstrated the antimicrobial effect of peanut skin
extracts, rich in proanthocyanidins, obtained by ultrasound
with acetone, water, and acetic acid (70:28:2, v/v/v) from
defatted sample, against the pathogens L. monocytogenes,
E. coli, and S. typhimurium.

Undesirable non-enzymatic reaction, namely glycation
(reaction of free amino groups from proteins with free car-
bonyl groups of reducing sugar), can occur in foods dur-
ing processing, producing glycation end products (AGEs).
Accumulation of AGEs in human tissues are directly related
to diabetic complications, Alzheimer’s and cardiovascular
disease, and kidney dysfunction. Then, Zhao et al. (2021)
showed that peanut skin extracts (with proanthocyanidins
content of 85.69%) strongly inhibited the AGE formation,
serving as anti-glycation agent for food products. Then,
considering the pharmaceutical and food applications of
proanthocyanidins, their functions must be preserved for
adequate use, for instance by encapsulation strategies (next
section) that may avoid structural and functional changes
during processing.
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Encapsulation Strategies to Improve
Proanthocyanidin/Procyanidin
Bioavailability

Proanthocyanidin/procyanidin bioavailability affects their
bio-accessibility and bioactivity (biological activities).
Bio-accessibility makes proanthocyanidins bioavailable for
absorption during gastrointestinal digestion (or assimilation
through intestinal epithelium), and intestinal and hepatic
metabolism. The bioactivity happens after epithelium assimi-
lation and transport to specific tissue, generating the corre-
spondent physiological responses, such as anti-inflammatory,
antimicrobial, antioxidant, and others (Galanakis, 2021;
Okino et al., 2021).

The in vivo biotransformation of proanthocyanidins, such
as pH gastrointestinal degradation, rapid catabolism at upper
gastrointestinal tract and liver (or monomer and dimer degra-
dation during transport), fast urinary excretion, and bacterial
gastrointestinal metabolism, affects potential bioactivity of
proanthocyanidins. Also, they tend to interact with proteins,
forming a complex, and with mucus and other intestine com-
ponents (starches and digestive enzymes), reducing its avail-
ability and efficacy with progressing time (Ge et al., 2015).

The direct application of proanthocyanidins in foodstuff
and pharmaceutical products can be hindered by their astrin-
gent taste and susceptibility to changes induced by tempera-
ture, oxygen, extreme pH values, or light exposure (Okino
et al., 2021; Xu et al., 2015). Also, the direct application can
reduce storage stability, with progressive presence of brown
color from oxidation and condensation reactions, affecting
appearance and taste (Liu et al., 2017). Furthermore, proan-
thocyanidins have high water solubility, inhibiting their pen-
etration into food oily systems (Chen et al., 2020b) and also
into the cell membrane, since it mainly composed by lipids
(specifically phospholipids).

To overcome these limitations and improve the proantho-
cyanidins’ functional properties for food and pharmaceutical
applications, encapsulation strategies, by different techniques,
have produced micro- or nanoparticles of peanut skin proan-
thocyanidins (Unusan, 2020). An efficient encapsulation pro-
cess requires a careful selection of the wall material, followed
by the appropriate encapsulation method and a proper charac-
terization of the produced particles. Then, the incorporation of
the loaded particles into the food or pharmaceutical matrices
and kinetics of biocomponents released from the particles are
also relevant to define the adequate strategy.

GRAS Materials Derived From By-products-New
Wall Barrier Tendency

Appropriate wall materials should have the ability to isolate
and protect the core product, such as proanthocyanidin-rich

@ Springer

extracts, from external environmental conditions. It can con-
tribute to incorporate the encapsulated particles (core + wall
material) in different food systems, improving solubilization,
reducing degradation (oxidation or hydrolysis), and, conse-
quently, protecting its biological activity. The type of wall
material also affects the particles’ stability and the encap-
sulation efficiency of loaded compounds, and, ultimately,
controls the core release (Geranpour et al., 2020).

For proanthocyanidins, adequate wall materials should
suppress the first-pass metabolism alterations, avoiding
molecular changes, and allowing circulation to exert their
bioactivity (Bora et al., 2018). The most common materi-
als used to encapsulate proanthocyanidins are maltodextrin
(Calomeni et al., 2017) vegetable fat (Holkem & Favaro-
Trindade, 2020), gum arabic, pectin, cashew gum, carboxy-
methylcellulose, and k-carrageenan (Souza et al., 2018).

Besides, GRAS products are the preferential wall materi-
als for food applications, but they also should be inexpen-
sive, tasteless, soluble in typical solvents, biodegradable,
and nonreactive with the target compound (Bora et al., 2018;
Geranpour et al., 2020).

Recent sustainable policies have encouraged the use of
biopolymers, derived from industrial co-products, which stim-
ulate the circular economy, as green alternatives for wall mate-
rials (Geranpour et al., 2020). Sorita et al. (2020) suggested the
recovery, by green methods, of proteins, carbohydrates, and
fibers from peanut meal, a by-product from peanut oil produc-
tion. Then, these recovered products (proteins, carbohydrates,
and fibers) can be applied as wall materials to encapsulate
proanthocyanidins from peanut skin, a strategy that contributes
to the biorefinery concept, and industrial “zero waste.”

Trends and Recent Advancements in Encapsulation
Methods

The literature reports three classes of methods that have been
used for micro- or nanoparticle formulations. The method
used to produce the particles affects the encapsulation effi-
ciency and can be classified as (i) physical methods: spray-
drying and freeze-drying (Geranpour et al., 2020; Okino
etal., 2021; Sorita et al., 2021; Waterhouse et al., 2017); (ii)
physical-chemical methods: coacervation, emulsification,
and supercritical fluid micronization (Mendonga et al., 2019;
Rudke et al., 2019); and (iii) chemical methods: interfacial
polymerization and complexation by molecular inclusion
(Vakilinezhad et al., 2019).

Spray-drying is the most common physical method used
for the encapsulation of peanut skin extracts rich in proantho-
cyanidins (or procyanidins), probably due to its feasibility, easy
operation, and scale-up, with no organic solvent needed, and
good benefit—cost ratio (Geranpour et al., 2020). Calomeni et al.
(2017) used a spray-dryer to encapsulate procyanidin-rich extract
from peanut skin using maltodextrin as encapsulating agent. The
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resulting particles (proanthocyanidin powder) show remarkable
120-day stability, suggesting its use as a natural additive (color-
ant) in food formulation. A solubility increase, compared to non-
encapsulated power, was observed by Constanza et al. (2012)
for procyanidin-rich extract, from peanut skin, encapsulated in
maltodextrin by spray-dryer.

Complex coacervation was also applied to protect
proanthocyanidins and/or procyanidins from peanut skin
by Razola-Diaz et al. (2021), with high load capacity and
low temperature, avoiding component degradation. Solid-
lipid microparticles, composed of proanthocyanidins and
probiotics (Lactobacillus paracasei and Bifidobacterium
animali subsp. Lactis), were produced by Holkem and
Favaro-Trindade (2020) to improve proanthocyanidin sol-
ubility in oil systems. These studies show the benefits of
encapsulation to improve the use of procyanidin- and/or
proanthocyanidin-rich extracts as natural additive for food
industries, although complementary data about digestibility,
bioavailability, and release from the particles are necessary
for specific applications.

Future Perspectives
for Proanthocyanidin-Based Products
from Peanut Skin

Food by-products are gaining increasing attention as alter-
native biomasses, within the new biorefinery approach,
because they can be converted into high-value chemical
components, besides reducing industrial residues. Then,
extraction and encapsulation strategies can enable adequate
uses of the recovered products in food and pharmaceutical
industries. Therefore, green extraction techniques, which
have been stimulated by the environmental politics, can pro-
vide proanthocyanidin-rich extracts from peanut skin, with
high quality and functionalities, as discussed in the “Encap-
sulation Strategies to Improve Proanthocyanidin/Procyanidin
Bioavailability” section. Then, the viability evaluation of
extraction and encapsulation methods, based on bioeconomy
strategies, is necessary to innovate the peanut industry.
The production of high-value and innovative chemicals
from agro-food by-products is an urgent objective, within
the Sustainable Development Goals from United Nations
(SDG-UN), although the polices are mainly focused on the
use of biomasses to obtain bioenergy. Also, the use of by-
products in conventional industries presents some resistance,
and requires new procedures and equipment, complicating
the implementation. To overcome these inconveniences,
innovative and long-term wide polices are necessary, such
as tax reduction and subsidies for recycling, and increase
in research investments to promote the circular economy
and by-product industrial use. Additionally, the creation
of regional companies or cooperatives for by-product pro-
cessing would be a promising strategy, reducing initial

investments and increasing profitability, adding value to
underused by-products (Langen et al., 2021). These strate-
gies for peanut industry may help the circular economy, with
the production of proanthocyanidin-rich extracts and other
chemical from peanut skin, with several applications.

Conclusions

Phenolic fractions (rich in proanthocyanidins/procyanidins)
are health-benefit molecules, valuable for food and phar-
maceutical industries, due to effects as antioxidant, anti-
inflammation, neuroprotective, anticancer, lipid-lowering,
bacteriostatic, and hypotensive. The valorization of peanut
skin is relevant for circular economy due to their high proan-
thocyanidin content, which can be recovered from the bio-
mass, that otherwise would be underused, and reintegrated in
the processing chain. Unconventional extractions techniques
such as SFE, PLE, MAE, and SWE can overcome the cur-
rent drawbacks of conventional methods, leading to a greener
process. Also, incorporating proanthocyanidins in micro/
nanocapsules can improve their bioavailability and solubil-
ity in different systems. Then, the use of proanthocyanidins,
in micro- or nanoparticles, in foods or medicines, must be
validated by large double-blind clinical trials, to attest the
nontoxic effect of proanthocyanidins from peanut skin.
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