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3e brain has the most complex structures and functions in living organisms, and brain networks can provide us an effective way
for brain function analysis and brain disease detection. In brain networks, there exist some important neural unit modules, which
contain many meaningful biological insights. It is appealing to find the neural unit modules and obtain their affiliations. In this
study, we present a novel method by integrating the uniform design into the particle swarm optimization to find community
modules of brain networks, abbreviated as UPSO. 3e difference between UPSO and the existing ones lies in that UPSO is
presented first for detecting community modules. Several brain networks generated from functional MRI for studying autism are
used to verify the proposed algorithm. Experimental results obtained on these brain networks demonstrate that UPSO can find
community modules efficiently and outperforms the other competing methods in terms of modularity and conductance. Ad-
ditionally, the comparison of UPSO and PSO also shows that the uniform design plays an important role in improving the
performance of UPSO.

1. Introduction

Graph theory is a very helpful mathematical tool in the field
of brain network analysis [1–3]. A brain can be represented
as a modular network [4, 5], which is composed of some
important neural unit modules.3ey can provide us rich and
useful information and exhibit small-world properties of
brain networks [6].3ese modules are known as community
modules. In brain networks, each vertex denotes a region of
interest (ROI) [7], and each edge and its weight represent the
connectivity and its strength, respectively [8–10].

Community detection methods are frequently used to
find community modules. Girvan and Newman proposed
the concept of modularity [11–13], which is the widely used
and best known metric. A larger modularity represents
a better community partition. Modularity-based community
detection methods find the best community modules by

seeking the maximum modularity. Namely, when the
modularity is maximal, the methods terminate. 3erefore,
community detectionmethods can be addressed bymeans of
optimization methods. 3e FastQ [14] community detection
method uses a greedy optimization to maximize modularity.
It repeatedly joins communities together in pairs by
choosing the join that results in the maximum alteration of
modularity in each step. Danon et al.’s [15] community
detection method is a modification of FastQ, in which the
communities of different sizes are treated equally. 3e
Louvain [16, 17] community detection method firstly cal-
culates the gain of modularity by exchanging a node to its
neighbor nodes. 3en, the neighbor node obtaining the
maximum gain replaces the node.

Particle swarm optimization (PSO) [18–20], as one of the
swarm intelligent optimization algorithms, was first put
forward by Eberhart and Kennedy [21, 22]. It simulates the
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foraging process of birds. Each bird (particle) may search the
feasible solution space individually and share its individual
optimal information to the other bird (particle). 3e swarm
can obtain the global optimal solution by comparing the best
solutions of all birds (particles) in the swarm. PSO can
obtain the optimal solution quickly. However, it has the
drawback of premature convergence [23].

3e uniform design belongs to the category of the
pseudo-Monte Carlo method. It can generate the solutions
scattered uniformly over the vector space, and the solutions
are independent of each other [24–26]. 3e uniform design
can be applied to many problems, including bio-inspired
intelligent optimizations. Zhang et al. [27] combined the
uniform design and artificial bee colony to find the com-
munity of brain networks. Zhang et al. [26] introduced the
uniform design into association rule mining and presented
a multiobjective association rule mining algorithm based on
the attribute index and the uniform design. Leung andWang
[24] integrated the uniform design and the multiobjective
genetic algorithm to obtain the Pareto optimal solutions
uniformly over the Pareto frontier. Zhu et al. [28] combined
the uniform design and PAM to find the Pareto optimal
solutions of the multiobjective particle swarm optimization.
Dai and Wang [29] presented a new decomposition-based
evolutionary algorithmwith the uniform design. Liu et al. [30]
proposed a hybrid genetic algorithm based on the variable
grouping and the uniform design for global optimization
problems. Tan et al. [31] adopted the uniform design to set the
aggregation coefficient vectors of the subproblems and
proposed the uniform design multiobjective evolutionary
algorithm based on decomposition. Feng et al. [32] presented
a uniform dynamic programming to alleviate the di-
mensionality problem of dynamic programming by means of
introducing a uniform dynamic to dynamic programming.

3ere are only a few reports on community detection in
brain networks in the literature. Liao et al. [33] utilized U-
Net-based deep convolutional networks to identify and
segment the brain tumor. Williams et al. [34] utilized both
Louvain [16] and Infomap [35] community detection al-
gorithms to identify modules in noisy or incomplete brain
networks. Zhang et al. [27] utilized the artificial bee colony
with the uniform design to detect community modules of
brain networks. Wang et al. [36] used the multiview non-
negative matrix factorization to detect modules in multiple
biological networks.

3is study presents a novel method to find community
modules of brain networks by integrating PSO with the
uniform design. PSO is used to maximize modularity, while
the uniform design is used to alleviate premature conver-
gence of PSO by generating sampled points scattered evenly
over the vector space.

3e rest of this study is organized as follows: Section 2
describes the preliminaries of UPSO. Section 3 introduces
two evaluation metrics. 3e dataset and the preprocessing
method to be used are described in Section 4. 3e details of
UPSO are shown in Section 5. 3e comparison between
UPSO and several competing algorithms is illustrated in
Section 6. 3e conclusion and future work are described in
Section 7.

2. Preliminaries

In this section, we describe PSO and the uniform design.

2.1. Particle SwarmOptimization. In a d-dimensional search
space, the position and velocity of the i-th particle are, re-
spectively, represented as xi � [xi,1, xi,2, . . . , xi,d] and
si � [si,1, si,2, . . . , si,d], where i � 1, 2, . . . , Npop, in which
Npop denotes the population size. 3e optimal solution of
the i-th particle is called the individual optimum, while the
optimal solution of the whole swarm is called the global
optimum. 3ey, respectively, are denoted as Pbesti � [pi,1,

pi,2, . . . , pi,d] and Gbest � [pg,1, pg,2, . . . , pg,d]. 3e following
formulas are utilized to update the velocity and position of
each particle in the swarm [21, 22], respectively:

si(t + 1) � ω · si(t) + c1 · r1 Pbesti(t) − xi(t) 

+ c2 · r2 Gbest(t) − xi(t)( ,
(1)

xi(t + 1) � xi(t) + si(t + 1), (2)

where i � 1, 2, . . . , Npop; ω is called the inertia weight co-
efficient reflecting the ability to track the previous speed; c1
and c2 are called the acceleration coefficients of the indi-
vidual and the global optimum, respectively, and are
commonly set as 2; and r1 and r2 are two random numbers
distributed uniformly in (0, 1).

From the theoretical analysis of a PSO algorithm, the
trajectory of a particle xi converges to the mean of Pbesti and
Gbest. Whenever the particle converges, it “flies” to the in-
dividual best position and the global best position [37].
According to formulas (1) and (2), the individual optimum
position of each particle gradually moves closer to the global
optimum position. 3erefore, all the particles may converge
to the global optimum position.

2.2. UniformDesign. 3e uniform design is an experimental
design method. Its main objective is to sample a small set of
points from a given set of points such that the sampled
points are uniformly scattered.

Let n be the number of factors and q be the number of
levels per factor. When n and q are given, the uniform design
selects q combination from all qn possible combinations such
that these combinations are scattered uniformly over the
space of all possible combinations. 3e selected q combi-
nations are expressed in a uniform array U(n, q) � [Ul1 ,l2

]q×n,
where Ul1 ,l2

is the level of the l2-th factor in the l1-th
combination and can be calculated by the following formula
[24–26, 28, 29, 38]:

Ul1 ,l2
� l1 · σl2− 1modq  + 1, (3)

where σ is a parameter given in Table 1.
Based on the uniform design, a crossover operator is as

follows [24]. It quantizes the solution space defined by two
parents into a finite number of points and then applies the
uniform design to select a small sample of uniformly
scattered points as the potential offspring.
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Consider two parents x1 � (x1,1, x1,2, . . . , x1,d) and
x2 � (x2,1, x2,2, . . . , x2,d). 3e minimal and maximal values
of each dimension for x1 andx2 can generate a novel so-
lution space [lparent, uparent], denoted as follows:

lparent � min x1,1, x2,1 , min x1,2, x2,2 , . . . , min x1,d, x2,d  ,

uparent � max x1,1, x2,1 , max x1,2, x2,2 , . . . , max x1,d, x2,d  .

⎧⎪⎨

⎪⎩

(4)

Each domain of [lparent, uparent] is quantized into Q1
levels βi,1, βi,2, . . . , βi,Q1

, where Q1 is a predefined prime
number and βi,j is given as follows:

βi,j �

min x1,i, x2,i , j � 1,

min x1,i, x2,i  +(j − 1)
x1,i − x2,i




Q1 − 1
 , 2≤ j≤Q1 − 1,

max x1,i, x2,i , j � Q1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

3en, the uniform design is applied to select a sample
point as the potential offspring. 3e crossover operator of
two parents x1 and x2 can acquire Q1 offsprings, which are
scattered evenly over the vector space spanned by x1 and x2.
More details of the algorithm can be obtained from refer-
ences [24, 25].

3. Evaluation Metrics

3ere exist many evaluation metrics for community mod-
ules of complex brain networks. In this study, we adopt the
following metrics.

3.1. Modularity [27]. 3e modularity metric is a statistic
that quantifies the degree to which the network may be
divided into such clearly delineated groups [39, 40].
Newman et al. introduced the modularity function and
modularity matrix to avoid the influences of random
factors so as to obtain the better divisions of the com-
munity structure [12, 13, 41]. 3e modularity Q is the
number portion of edges falling within communities
minus the expected number portion in an equivalent
network with edges placed at random. 3e modularity Q

can be expressed as follows [42, 43]:

Q �
1
2m


ij

aij −
kikj

2m
 δ(i, j), (6)

where δ(i, j) � 1 if vertices i and j belong to the same
community or δ(i, j) � 0 otherwise. m � (iki)/2 denotes
the number of edges in the network, ki is the degree of the
vertex i, and aij is the weight in the adjacent matrix A. Let
B � aij − (kikj/2m), which is called the modularity matrix.
Formula (6) can be rewritten in the matrix format as follows:

Q �
1
2m

Trace X
T
BX , (7)

where the assignment matrix X � (xih), in which xih � 1 if
vertex i belongs to the community h or xih � 0 otherwise.
3e function Trace( ) denotes the sum of diagonal elements
of a matrix.

A high modularity indicates a better partitioning of the
graph. 3e search for optimal modularity Q is an NP-hard
problem [44, 45] because the space of possible partitions
grows faster than any power of system size.

3.2. Conductance [27]. 3e conductance of a cut is a metric
that compares the size of a cut (i.e., the number of edges cut)
and the number of edges in either of the two subgraphs
induced by that cut. 3e conductance ϕ(G) of a graph is the
minimum conductance value between all its clusters.

Consider a cut that divides G into k nonoverlapping
clusters C1, C2, . . ., Ck. 3e conductance of any given cluster
ϕ(Ci) is given by the following formula [43, 46]:

conductance �
1
K



K

k�1
ϕ Ci(  �

1
K



K

k�1

i∈Ck,j ∉ Ck
aij

min a Ci( , a Ci( ( 

�
1
K



K

k�1

i∈Ck,j ∉ Ck
aij

min i∈Ck


N
j�1aij, i∉Ck


N
j�1aij 

,

(8)

where K denotes the number of clusters, aij is the weight in
the adjacent matrix, Ck represents the k-th cluster
(k � 1, 2, . . . , K), and a(Ci) is the number of edges with at
least one endpoint in Ci. 3is ϕ(Ci) represents the cost of
one cut that bisects G into two vertex sets Ci and Ci (the
complement of Ci). Since we want to find a number k of
clusters, we will need k− 1 cuts to achieve that number. 3e
conductance for the whole clustering is the average value of
those k− 1ϕ cuts.

Table 1: Values of the parameter σ for different numbers of factors
and different numbers of levels per factor [24, 25].

Number of levels per factor Number of factors σ
5 2∼4 2
7 2∼6 3
11 2∼10 7

13
2 5
3 4

4∼12 6
17 2∼16 10

19 2∼3 8
4∼18 14

23
2, 13∼14, 20∼22 7

8∼12 15
3∼7, 15∼19 17

29

2 12
3 9

4∼7 16
8∼12, 16∼24 8

13∼15 14
25∼28 18

31 2, 5∼12, 20∼30 12
3∼4, 13∼19 22
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3e conductance metric can evaluate how difficultly
a random walk is that leaves a cluster [40]. 3e more dif-
ficultly a random walk leaves a cluster is, the more compact
cluster is. A low conductance indicates a better partitioning
of the graph. 3e conductance metric usually ranges from
0 to 1, while 0 is the optimal score, which means that each
cluster corresponds to a maximal strongly connected
component of the network.

4. Dataset and Preprocessing

4.1. Dataset. A network is a mathematical representation of
a real-world complex system and is determined by a col-
lection of nodes (vertices) and links (edges) between pairs of
nodes. Brain connectivity datasets comprise networks of
brain regions connected by anatomical tracts or by func-
tional associations. Nodes in brain networks usually rep-
resent ROIs, while links represent anatomical, functional, or
effective connection [40]. A connectivity matrix (CM) is
used to store the connectivity strength between all pairs of
ROIs in a brain network [47].

3e Autism dataset [6] collected 175 individuals with
autism spectrum disorder (ASD) and typically developing
(TD) ones, which were acquired from 79 resting-state
functional MRI (rsfMRI: 42 ASD and 37 TD) brain networks
and 94 diffusion tensor imaging (DTI: 51 ASD and 43 TD)
brain networks. 3e dataset can be obtained from the UCLA
multimodal connectivity database (http://umcd.
humanconnectomeproject.org) [47]. Each rsfMRI imaging
is composed of a 264× 264 connectivity matrix (CM), in
which each value denotes the z-transformed Pearson cor-
relation coefficient (PCC) [6].

In this study, 79 rsfMRI brain networks (42 ASD and 37
TD) are utilized to test the proposed algorithm.

4.2. Data Preprocessing. In this study, we conduct the fol-
lowing preprocessing steps for the above dataset:

(1) Reverse z-transformation is performed on the
original CM to acquire the PCC connectivity matrix
(PCM) according to the following formula:

x′ �
e2x − 1
e2x + 1

� 1 −
2

e2x + 1
, (9)

where x ∈ CM and x′ ∈ PCM denote the original
and new values, respectively.

(2) 3e negative data in the PCM signify that the cor-
relation among the vertices is negative correlation. In
this study, these negative elements are taken as 0 to
get rid of negative correlation.
After conducting the above two steps, all data in the
PCM are in [0, 1], and the PCM turns into a sym-
metric and nonnegative matrix.

(3) To eliminate data noise, this study adopts the
thresholding method to remove all edges with the
weight less than a specific value θ. Namely, if x< θ,
then x � 0. In the later numerical experiment,
θ� 0.2.

5. The Proposed Algorithm

In this study, we propose a novel algorithm for finding
community modules of brain networks by integrating PSO
with the uniform design (abbreviated as UPSO). Its coding
and detailed steps are described as follows.

5.1. Coding. A brain network G can be represented as
G � (VG, EG), where VG � v1, v2, . . . , vN  is a set of N �

|VG| vertices and EG � (vi, vj) ∣ vi, vj ∈ VG  is a set of M �

|EG| weighted edges (arcs) among N vertices. 3e adjacent
matrix of G is expressed as A � (aij)N×N, where aij denotes
the weight between vertices i and j. From the above-men-
tioned dataset and data processing, we can see that A is
a symmetric and nonnegative matrix. 3e number of
community modules and centroid of a community module
are denoted by K and CCk � (cck1, . . . , cckN), where k �

1, 2, . . . , K, respectively. In PSO, the position coding xi of
a particle is expressed as

xi � CC
i
1, CC

i
2, . . . , CC

i
K 

� cc
i
11, . . . , cc

i
1N, cc

i
21, . . . , cc

i
2N, . . . , cc

i
K1, . . . , c

i
KN ,

(10)

where xi is a K∗N-dimensional row vector and
i � 1, . . . , Npop (the population size in PSO).

5.2. Detailed Steps. 3e proposed algorithm UPSO utilizes
the uniform design to obtain the sampled points scattered
evenly over the solution space.3e initial method based on the
uniform design can generate a group of suitable initial particles
scattered evenly over the solution space. 3e crossover op-
erator based on the uniform design can acquire the offspring
scattered uniformly over the space spanned by two crossover
parents. UPSO iteratively tries to improve a candidate solution
in terms of modularity. It integrates the uniform design and
PSO to find community modules of brain networks. It can not
only obviate the shortcoming of premature convergence in
PSO but also acquire the solutions scattered evenly over the
solution space. It can find out community modules from brain
networks without knowing the number of community
modules. Its flow chart is illustrated in Figure 1.

3e detailed steps of the proposed algorithm UPSO are
described as follows.

Step 1. (generating a temporary initial swarm). 3e fol-
lowing operations are performed one after another:

(1) Let K�K+ 1, where K denotes the number of
community modules, and its minimal and maximal
values are, respectively, 1 and N (the number of
vertices). K� 1 toN is to acquire the fittest number of
community modules.

(2) According to the swarm size Npop, the number of
subintervals S and the swarm size of a subinterval Q0
are determined such that S × Q0 ≥Npop, where S can
be taken as 2, or 22, or 23, etc.; Q0 is one of the prime
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numbers in the first column of Table 1. Here,
any combination satisfying S × Q0 ≥Npop can be
chosen.

(3) 3e generation algorithm of initial population based
on the uniform design described in reference [28] is
implemented to generate a temporary initial swarm
Tmp_pop in terms of K, in which each element xi
contains K community centroids.

Step 2. (calculating the fitness of the temporary initial
swarm). For each particle pi in Tmp_pop, the following
operations are performed in sequence:

(1) K community centroids CCk are separated from xi.
For each element aij in the adjacent matrix A de-
scribed in Section 5.1, the distances are calculated
between aij and each CCk.

(2) Each vertex is assigned to the closest community Ck
to obtain its community affiliation IDXi and K
community modules.

(3) 3e modularity Q of K community modules is cal-
culated using formula (6) or (7) in terms of IDXi, and
it is taken as the fitness f(xi) of xi.

Step 3. (generating the initial swarm from the temporary
initial swarm). According to the acquired fitness of each
particle in the temporary initial swarm, the best Npop ones of
the Q0 ∗ S particles are selected as the initial swarm pop.

Step 4. (regulating each community module). For each
particle position xi in pop, the following operations are
performed in sequence.

3e centroid of the community Ck is updated according
to the following formula:

CCk �
1
nk


ai∈Ck

ai, (11)

where ai � (ai1, ai2, . . . , aiN), i � 1, 2, . . . , N and N is the
number of vertices; k � 1, 2, . . . , K; nk is the number of
vertices which belong to the community Ck; and CCk is the
new community centroid of Ck.

K new community centroids (CC1, CC2, . . . , CCK) form
a new position, marked as KCi, whose fitness and com-
munity affiliation are f(KCi) and KC_IDXi, respectively.

If f(KCi)>f(xi), then xi �KCi, f(xi) � f(KCi), and
IDXi �KC_IDXi.

Step 5. (initializing the velocity si, individual optimal Pbesti,
and global optimal Gbest). 3e velocity si and individual
optimal Pbesti of the particle pi are initialized as its position xi,
and the fitness of Pbesti is set as f(Pbesti) � f(xi). 3e
maximal value in all Pbesti is taken as the global optimal Gbest,
which stores the best xi and Q of the swarm.3e community
affiliation Gbest is stored into IDX.

Step 6. (increasing iterations and judging terminal condi-
tions). Let t� t+ 1, then judge whether terminal conditions
are satisfied or not, where t denotes the t-th iteration and its
initial value is 0. If K is known, and any of the terminal
conditions is satisfied, the algorithm terminates and outputs
the optimal solution and its community affiliation; other-
wise, the algorithmmoves to Step 7. Terminal conditions are
described in Section 6.1.

Step 7. (computing the weight coefficient w in PSO). 3e
weight coefficient w in PSO utilizes a linear decreasing
strategy [48, 49] indicated in the following formula:

w
(k)

�
wmax − t wmax − wmin( 

tmax
, (12)

where wmax andwmin are the maximal and minimal values of
w and tmax is the maximal number of iterations. In the later
numerical experiment, wmin � 0.1 andwmax � 1.

Step 8. (updating the velocity and position of each particle).
To guide the moving trajectory of a particle by KCi, formula
(1) is modified into the following formula:

si(t + 1) � ω · si(t) + c1 · r1 Pbesti(t) − xi(t) 

+ c2 · r2 Gbest(t) − xi(t)( 

+ c3 · r3 KCi(t) − xi(t)( .

(13)

N

Start

Generate the temporary initial swarm Tmp_pop whose size >Npop

Select the best Npop particles from Tmp_pop as the initial swarm pop

Calculate and regulate new community centroids

Initialize the velocity, individual optimal, and global optimal

Is terminal condition satisfied ?

Compute weight coefficient w in PSO

Update the velocity and position of each particle

Calculate and regulate new community centroids

Update the individual optimal and global optimal

Implement the crossover operator between particles and individual
optimal and between particles and global optimal

Increase iterations by t = t + 1

Output the optimal solution and community affiliations

Y

End

Figure 1: Flow chart of the proposed algorithm.
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3e velocity and position of each particle in the pop are
updated in terms of formulas (13) and (2), respectively.

Step 9. (calculating the fitness and regulating each com-
munity module). 3e fitness of each particle in the pop is
calculated according to the operations in Step 2, and Step 4 is
implemented to regulate each community module.

Step 10. (updating Pbesti, Gbest, and IDX). For each particle in
the pop, if f(xi)>f(Pbesti), then Pbesti � xi and f(Pbesti) �

f(xi).
If f(xi)>f(Gbest), then Gbest � xi, f(Gbest) � f(xi),

and IDX� IDXi.

Step 11. (implementing the crossover operator based on the
uniform design). For each particle in the pop, the following
operations are performed in sequence:

(1) 3e crossover operator based on the uniform design
is implemented on xi and Pbesti to acquire the Q1
offspring scattered uniformly over the space spanned
by them and also on xi and Gbest to acquire another
Q1 offspring.

(2) 3e fitness of the 2∗Q1 offspring is calculated, and
the best one of them is marked as Obest. 3e fitness
and community affiliation of Obest are expressed as
f(Obest) and I DXObest

, respectively.
(3) If f(Obest)>f(Pbesti), then xi �Obest, f(xi) �

f(Obest), Pbesti � Obest, and f(Pbesti) � f(Obest).
(4) If f(Obest)>f(Gbest), then f(Gbest) � f(Obest),

Gbest � Obest, and I DX � I DXObest
.

Step 12. 3e algorithm is returned to Step 6.

Step 13. If K<N, the best Q and community affiliation IDX
are saved and then the algorithm returns to Step 1; other-
wise, the algorithm outputs the optimal solution Gbest, the
community affiliation IDX, and the fittest K.

6. Numerical Results

In this study, we select four competing community detection
algorithms to compare the performances of UPSO. 3ey
include the spectral clustering [50], FastQ [14], Danon et al.
[15], and Louvain [16] algorithms. FastQ, Danon, and
Louvain algorithms are three commonly used community
detection methods. Among five algorithms, UPSO and the
spectral clustering are stochastic search algorithms, while
FastQ, Danon, and Louvain algorithms are deterministic
search algorithms.

3e parameter values of UPSO and the numerical results
obtained by UPSO and four competing algorithms are de-
scribed as follows.

6.1. Parameter Values. In this study, the parameters of
UPSO are described as follows.

6.1.1. Parameters for PSO. 3eminimal and maximal inertia
weight coefficients are wmin � 0.1 andwmax � 1 (the rec-
ommended values in PSO); the acceleration coefficients c1,
c2, and c3 are all equal to 2 (the recommended values in
PSO); the population size Npop� 100; the maximal number
of iterations tmax � 100.

6.1.2. Parameters for the Uniform Design. As the above-
mentioned each rsfMRI imaging is a 264× 264 CM, we set
the number of subintervals S as 4 (S can be 21, 22, 23, ......); the
number of sample points or the swarm size of each sub-
intervalQ0 is set as 31 becauseQ0 can be any values in Table 1
and the product of Q0 and S must be larger than the
population size Npop, namely, (Q0 ∗ S � 31∗ 4 � 124)
> (Npop � 100). 3e parameter Q1 is set as 5 in order to only
generate 5 offsprings in uniform cross to decrease time
consumption.

6.1.3. Terminal Conditions

(1) 3e number of iterations t> tmax

(2) 3e number of fitness remains unchanged, tno, and is
larger than or equal to 30% of tmax

When any of the above two terminal conditions is
satisfied, the algorithm terminates.

It is worth noting that the above parameter values are not
fixed and can be changed according to different datasets.3e
above parameter values are only one of the suitable values,
and they do not need to be fine tuned.

As the spectral clustering needs to preestimate the
number of community modules, it uses the identical number
of community modules to UPSO. FastQ, Danon, and
Louvain algorithms do not necessarily need to estimate the
number of community modules; therefore, they use their
default parameters.

6.2. Results

6.2.1. Comparisons of Evaluation Metrics. All the 79 rsfMRI
brain networks are utilized to test the performance of five
algorithms. Five algorithms independently performed 20
runs to compare their average values. For stochastic search
algorithms, UPSO and the spectral clustering, we also
compare their standard deviations (the values in parentheses
in Tables 2 and 3). Tables 2 and 3, respectively, show the
results of modularity and conductance metrics obtained by
five algorithms.

From Table 2, it can be obviously observed that, for all 79
rsfMRI brain networks, the modularity metrics obtained by
UPSO are all the best among five algorithms. 3is fully
demonstrates that the proposed algorithm outperforms
other four competing algorithms in terms of modularity.3e
main reasons for UPSO obtaining good results are explained
as follows: Firstly, UPSO is a heuristic optimization algo-
rithm, so it can search a good solution as much as possible.
Secondly, as UPSO is a swarm intelligent optimization al-
gorithm, it can use all the individuals in a swarm to search
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Table 2: Comparisons of the modularity metric.

Dataset UPSO Spectral clustering FastQ Danon Louvain
ASD67B 0.3127 (0.0003) 0.2981 (0.0000) 0.2937 0.2930 0.3092
ASD70B 0.3784 (0.0013) 0.3479 (0.0037) 0.3145 0.3341 0.3735
ASD73C 0.4261 (0.0010) 0.3943 (0.0031) 0.3561 0.3767 0.4213
ASD75B 0.4420 (0.0000) 0.3805 (0.0000) 0.4174 0.4011 0.4403
ASD76C 0.4201 (0.0011) 0.4112 (0.0000) 0.3135 0.3967 0.4192
ASD82 0.4300 (0.0000) 0.3888 (0.0023) 0.3688 0.3644 0.4281
ASD83B 0.3527 (0.0002) 0.3321 (0.0179) 0.3042 0.3243 0.3522
ASD87B 0.4551 (0.0001) 0.4432 (0.0003) 0.4295 0.4347 0.4536
ASD90B 0.3919 (0.0025) 0.3699 (0.0000) 0.3320 0.3555 0.3919
ASD91B 0.3522 (0.0020) 0.3152 (0.0040)0) 0.3402 0.2994 0.3468
ASD92 0.3987 (0.0000) 0.3663 (0.0198) 0.3657 0.3730 0.3954
ASD93B 0.4153 (0.0001) 0.3720 (0.0038) 0.3692 0.3818 0.4089
ASD95 0.3972 (0.0005) 0.3265 (0.0017) 0.3842 0.3765 0.3972
ASD96B 0.4523 (0.0000) 0.4092 (0.0381) 0.3550 0.4339 0.4510
ASD97 0.4233 (0.0017) 0.3909 (0.0048) 0.3703 0.3762 0.4187
ASD99 0.4336 (0.0001) 0.4195 (0.0258) 0.3735 0.4194 0.4332
ASD102 0.4428 (0.0000) 0.4325 (0.0015) 0.3523 0.3482 0.4358
ASD103 0.4443 (0.0000) 0.4259 (0.0185) 0.3768 0.4307 0.4439
ASD104 0.4362 (0.0000) 0.4241 (0.0000) 0.3868 0.3809 0.4355
ASD106 0.4194 (0.0003) 0.3513 (0.0197) 0.3989 0.4071 0.4192
ASD108 0.3997 (0.0003) 0.3782 (0.0095) 0.3516 0.3590 0.3885
ASD111 0.4169 (0.0000) 0.4109 (0.0004) 0.3742 0.3769 0.4141
ASD112 0.4515 (0.0001) 0.4112 (0.0031) 0.3964 0.3901 0.4477
ASD113 0.4104 (0.0016) 0.3764 (0.0003) 0.3806 0.3778 0.4039
ASD114 0.3960 (0.0010) 0.3590 (0.0045) 0.3765 0.3766 0.3914
ASD115 0.3903 (0.0010) 0.3311 (0.0025) 0.3624 0.3652 0.3861
ASD116 0.4095 (0.0008) 0.3835 (0.0007) 0.3446 0.3074 0.4031
ASD117 0.4018 (0.0034) 0.3684 (0.0043) 0.3613 0.3469 0.3955
ASD119 0.4386 (0.0009) 0.3638 (0.0190) 0.4262 0.4245 0.4368
ASD120 0.4214 (0.0001) 0.3900 (0.0014) 0.3499 0.3810 0.4199
ASD124 0.3926 (0.0020) 0.3574 (0.0085) 0.3021 0.3021 0.3893
ASD125 0.3935 (0.0008) 0.3774 (0.0116) 0.3347 0.3297 0.3916
ASD127 0.3955 (0.0012) 0.3766 (0.0013) 0.3591 0.3390 0.3903
ASD129 0.3930 (0.0003) 0.3425 (0.0017) 0.3579 0.3187 0.3878
ASD130 0.4208 (0.0006) 0.3975 (0.0156) 0.3877 0.3786 0.4115
ASD131 0.4232 (0.0021) 0.3855 (0.0171) 0.4028 0.3967 0.4191
ASD132 0.4473 (0.0005) 0.4195 (0.0026) 0.3516 0.3648 0.4445
ASD133 0.4249 (0.0003) 0.3841 (0.0205) 0.3818 0.3850 0.4221
ASD134 0.4018 (0.0006) 0.3555 (0.0050) 0.3894 0.3418 0.3988
ASD138 0.4040 (0.0001) 0.3972 (0.0085) 0.3853 0.3942 0.3979
ASD142 0.4349 (0.0004) 0.3867 (0.0011) 0.4060 0.4067 0.4337
ASD143 0.4027 (0.0001) 0.3735 (0.0201) 0.3201 0.3521 0.4014
TD86C 0.3837 (0.0035) 0.3710 (0.0005) 0.3387 0.3179 0.3836
TD100C 0.3910 (0.0001) 0.3843 (0.0046) 0.3208 0.3412 0.3864
TD101B 0.4257 (0.0002) 0.3961 (0.0073) 0.4069 0.3990 0.4239
TD102B 0.4253 (0.0001) 0.3715 (0.0001) 0.3741 0.3943 0.4221
TD103B 0.4369 (0.0005) 0.3687 (0.0155) 0.4304 0.4217 0.4363
TD105 0.4295 (0.0006) 0.4222 (0.0014) 0.3922 0.3681 0.4265
TD107B 0.4301 (0.0002) 0.3820 (0.0000) 0.4110 0.4042 0.4287
TD108B 0.4171 (0.0001) 0.3689 (0.0010) 0.3723 0.3768 0.4151
TD111B 0.3341 (0.0013) 0.3164 (0.0029) 0.2916 0.2617 0.3286
TD112B 0.4207 (0.0001) 0.3744 (0.0210) 0.3993 0.4128 0.4169
TD113B 0.4017 (0.0009) 0.3662 (0.0000) 0.3481 0.3413 0.3999
TD114 0.4068 (0.0010) 0.3895 (0.0000) 0.3757 0.3552 0.4065
TD118 0.4267 (0.0002) 0.4154 (0.0077) 0.3608 0.3449 0.4243
TD120 0.4189 (0.0014) 0.3724 (0.0008) 0.3699 0.3601 0.4187
TD121 0.4676 (0.0007) 0.4346 (0.0001) 0.4482 0.4337 0.4670
TD122 0.4738 (0.0003) 0.4367 (0.0010) 0.4589 0.4489 0.4733
TD123 0.4336 (0.0011) 0.3805 (0.0070) 0.4179 0.4004 0.4324
TD124 0.4498 (0.0001) 0.4114 (0.0000) 0.3207 0.4043 0.4495
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Table 2: Continued.

Dataset UPSO Spectral clustering FastQ Danon Louvain
TD125 0.4028 (0.0002) 0.3902 (0.0005) 0.3472 0.3506 0.3988
TD126 0.4174 (0.0007) 0.3623 (0.0012) 0.4051 0.3736 0.4121
TD128 0.4458 (0.0017) 0.4294 (0.0000) 0.3615 0.4038 0.4427
TD129 0.4396 (0.0002) 0.3975 (0.0029) 0.3745 0.3904 0.4375
TD130B 0.4074 (0.0003) 0.4010 (0.0001) 0.3917 0.3637 0.4022
TD131 0.4104 (0.0013) 0.3729 (0.0020) 0.3949 0.3759 0.4079
TD132 0.4439 (0.0002) 0.4356 (0.0005) 0.4068 0.4204 0.4407
TD133 0.3555 (0.0003) 0.3509 (0.0005) 0.3134 0.3154 0.3533
TD134 0.4317 (0.0012) 0.3649 (0.0309) 0.4124 0.3980 0.4285
TD135 0.4460 (0.0007) 0.3664 (0.0231) 0.4200 0.4178 0.4449
TD136 0.4434 (0.0001) 0.4069 (0.0005) 0.3764 0.3731 0.4432
TD137 0.4276 (0.0005) 0.3835 (0.0029) 0.4161 0.3726 0.4270
TD138B 0.3911 (0.0003) 0.3631 (0.0003) 0.3696 0.3547 0.3875
TD139 0.4377 (0.0000) 0.4277 (0.0000) 0.4230 0.4205 0.4353
TD140 0.4151 (0.0009) 0.3685 (0.0021) 0.3926 0.3791 0.4143
TD142 0.4373 (0.0000) 0.4216 (0.0042) 0.4114 0.3770 0.4295
TD143 0.4465 (0.0001) 0.4392 (0.0003) 0.4111 0.4107 0.4434
TD144 0.4073 (0.0002) 0.3411 (0.0061) 0.3686 0.3635 0.4082
TD145 0.4540 (0.0005) 0.3809 (0.0011) 0.4336 0.4306 0.4494

Table 3: Comparisons of the conductance metric.

Dataset UPSO Spectral clustering FastQ Danon Louvain
ASD67B 0.3479 (0.0057) 0.3642 (0.0001) 0.5629 0.5598 0.3793
ASD70B 0.3720 (0.0028) 0.4476 (0.0058) 0.5937 0.4961 0.4213
ASD75B 0.2210 (0.0000) 0.2585 (0.0000) 0.3912 0.4342 0.2220
ASD76C 0.2305 (0.0855) 0.2546 (0.0000) 0.6694 0.4284 0.3098
ASD82 0.3155 (0.0005) 0.3536 (0.0013) 0.5886 0.3870 0.3179
ASD83B 0.4531 (0.0006) 0.4640 (0.0194) 0.4942 0.4740 0.4547
ASD90B 0.3387 (0.0325) 0.4247 (0.0028) 0.6393 0.4577 0.4074
ASD91B 0.3461 (0.0354) 0.4360 (0.0029) 0.3510 0.6153 0.4206
ASD92 0.2726 (0.0000) 0.3851 (0.0223) 0.6138 0.2923 0.3628
ASD95 0.3407 (0.0477) 0.3967 (0.0011) 0.5686 0.4978 0.3723
ASD97 0.2773 (0.0471) 0.3541 (0.0067) 0.5375 0.3928 0.3382
ASD102 0.3095 (0.0001) 0.3184 (0.0015) 0.5280 0.5410 0.3169
ASD103 0.2831 (0.0003) 0.2995 (0.0424) 0.3565 0.3708 0.2832
ASD106 0.3569 (0.0074) 0.3912 (0.0251) 0.4396 0.4131 0.3577
ASD108 0.3510 (0.0019) 0.3644 (0.0107) 0.4666 0.4813 0.3876
ASD112 0.3104 (0.0001) 0.3501 (0.0024) 0.4750 0.4884 0.3159
ASD113 0.3505 (0.0298) 0.3725 (0.0002) 0.4801 0.5659 0.3703
ASD115 0.2821 (0.0009) 0.3292 (0.0012) 0.5690 0.3497 0.3770
ASD117 0.3444 (0.0624) 0.4642 (0.0036) 0.6117 0.4721 0.3812
ASD119 0.2305 (0.0442) 0.4344 (0.0238) 0.2436 0.2449 0.3521
ASD120 0.3495 (0.0010) 0.3642 (0.0012) 0.3721 0.4348 0.3534
ASD124 0.3445 (0.0435) 0.3835 (0.0104) 0.6241 0.6151 0.3821
ASD127 0.2640 (0.0004) 0.3739 (0.0006) 0.4904 0.3719 0.3395
ASD129 0.3648 (0.0000) 0.4552 (0.0012) 0.5646 0.3807 0.4096
ASD131 0.3936 (0.0200) 0.4379 (0.0268) 0.5357 0.4347 0.4118
ASD132 0.2245 (0.0005) 0.3295 (0.0020) 0.3921 0.3629 0.3633
ASD142 0.2243 (0.0011) 0.3665 (0.0011) 0.2653 0.3971 0.3116
ASD143 0.3914 (0.0054) 0.4562 (0.0267) 0.6157 0.4672 0.4204
TD86C 0.3516 (0.0570) 0.4259 (0.0003) 0.6306 0.5136 0.3625
TD101B 0.2422 (0.0004) 0.4026 (0.0073) 0.4243 0.4286 0.3870
TD103B 0.2280 (0.0030) 0.3739 (0.0223) 0.2292 0.2332 0.3158
TD105 0.2368 (0.0007) 0.2454 (0.0017) 0.4263 0.2948 0.3749
TD107B 0.3336 (0.0024) 0.3661 (0.0000) 0.4618 0.4732 0.3413
TD108B 0.3522 (0.0003) 0.3689 (0.0005) 0.4878 0.5875 0.3687
TD111B 0.3200 (0.0388) 0.4257 (0.0032) 0.6067 0.5787 0.4281
TD112B 0.2342 (0.0005) 0.4137 (0.0225) 0.3951 0.4047 0.3708
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the optimal solution, while the other four algorithms can use
only one individual. Last but not the least, UPSO can use the
uniform design to obtain the solutions scattered evenly over
the feasible solution space.

In five algorithms, the gaps of the results obtained by
UPSO and Louvain algorithm are much less than those by
UPSO and other three algorithms, and even UPSO and
Louvain algorithm obtain the identical results for ASD90B
and ASD95 brain networks. 3us, the Louvain algorithm is
the most competing in the other four algorithms.

We can also see from Table 2 that the standard deviations
obtained by UPSO and the spectral clustering are all very
small compared to the average values obtained by them.3is
demonstrates that UPSO and the spectral clustering are both
relatively stable in terms of modularity for 79 rsfMRI brain

networks. Meanwhile, we can also observe that, for 65 of 79
brain networks, the standard deviations obtained by UPSO
are less than or equal to those obtained by the spectral
clustering. 3is demonstrates that UPSO has higher stability
than the spectral clustering in terms of modularity.

From Table 3, we can clearly see that UPSO obtains the
best conductance metrics for most brain networks, but not
for all 79 brain networks. 3is is because that the evaluation
perspectives of two metrics are different. However, UPSO
obtains the best conductance metrics for 50 brain networks
and accounts for about 63% of 79 brain networks. 3is
manifests that UPSO is superior to other competing algo-
rithms in terms of conductance. Meanwhile, this also
demonstrates that UPSO can acquire better conductance
metrics while ensuring the best modularity metrics. 3e

Table 3: Continued.

Dataset UPSO Spectral clustering FastQ Danon Louvain
TD114 0.2541 (0.0521) 0.3611 (0.0000) 0.3000 0.4558 0.3848
TD118 0.3600 (0.0125) 0.3902 (0.0142) 0.4893 0.5571 0.3777
TD120 0.2535 (0.0508) 0.3719 (0.0007) 0.4958 0.4957 0.3676
TD121 0.2743 (0.0242) 0.3059 (0.0001) 0.3811 0.3871 0.2761
TD122 0.1898 (0.0007) 0.3160 (0.0006) 0.2052 0.3717 0.2880
TD126 0.2602 (0.0454) 0.3878 (0.0012) 0.3411 0.3774 0.3747
TD132 0.2231 (0.0006) 0.2261 (0.0002) 0.2465 0.2384 0.2243
TD133 0.4000 (0.0006) 0.4010 (0.0011) 0.5319 0.5189 0.4017
TD134 0.2502 (0.0526) 0.3739 (0.0370) 0.5126 0.4128 0.2649
TD135 0.2851 (0.0626) 0.4011 (0.0309) 0.4591 0.4843 0.3022
TD140 0.2708 (0.0017) 0.3939 (0.0017) 0.4986 0.5153 0.3833
TD142 0.2309 (0.0000) 0.2429 (0.0032) 0.5243 0.2889 0.2453
TD144 0.3574 (0.0041) 0.4481 (0.0102) 0.5736 0.3653 0.4091
TD145 0.2168 (0.0029) 0.3712 (0.0008) 0.4763 0.3503 0.3183
ASD93B 0.3384 (0.0001) 0.3761 (0.0023) 0.2957 0.2837 0.3544
ASD96B 0.2880 (0.0000) 0.3455 (0.0434) 0.5993 0.2223 0.2876
ASD99 0.3170 (0.0004) 0.3303 (0.0322) 0.2893 0.2439 0.3179
ASD104 0.3141 (0.0000) 0.3259 (0.0000) 0.2855 0.2854 0.3151
ASD111 0.3839 (0.0000) 0.3891 (0.0004) 0.2866 0.2853 0.3809
ASD114 0.3693 (0.0044) 0.3948 (0.0039) 0.3634 0.3576 0.3751
ASD116 0.3974 (0.0138) 0.4165 (0.0007) 0.4772 0.3825 0.3943
ASD125 0.3478 (0.0264) 0.4216 (0.0164) 0.5709 0.3181 0.4066
ASD130 0.3349 (0.0006) 0.3507 (0.0174) 0.4471 0.2749 0.3944
ASD133 0.3337 (0.0006) 0.3599 (0.0248) 0.5303 0.2722 0.3385
ASD134 0.3563 (0.0334) 0.4460 (0.0032) 0.5267 0.3155 0.4194
ASD138 0.3463 (0.0032) 0.3511 (0.0152) 0.4444 0.2719 0.3347
TD100C 0.3565 (0.0002) 0.3601 (0.0044) 0.5727 0.3244 0.3606
TD102B 0.3387 (0.0003) 0.3805 (0.0002) 0.4720 0.2715 0.3414
TD124 0.2949 (0.0003) 0.3319 (0.0000) 0.4469 0.2544 0.2959
TD125 0.3443 (0.0016) 0.3479 (0.0004) 0.5600 0.3071 0.4080
TD128 0.3055 (0.0183) 0.3264 (0.0000) 0.5013 0.2585 0.3645
TD129 0.3146 (0.0015) 0.3451 (0.0017) 0.3144 0.2690 0.3323
TD136 0.3175 (0.0002) 0.3432 (0.0005) 0.3995 0.2914 0.3177
TD138B 0.3241 (0.0407) 0.3734 (0.0002) 0.3291 0.1568 0.3231
TD139 0.3146 (0.0001) 0.3255 (0.0000) 0.2431 0.5279 0.3200
TD143 0.3040 (0.0002) 0.3080 (0.0003) 0.2403 0.2491 0.2990
ASD73C 0.3280 (0.0014) 0.3459 (0.0008) 0.3091 0.4343 0.3503
TD113B 0.2731 (0.0675) 0.3749 (0.0000) 0.1559 0.1613 0.3938
TD123 0.3128 (0.0004) 0.3480 (0.0137) 0.2448 0.4228 0.3687
TD130B 0.3272 (0.0011) 0.3301 (0.0002) 0.2646 0.4517 0.3145
ASD87B 0.3111 (0.0010) 0.2148 (0.0000) 0.2325 0.2359 0.2958
TD131 0.3509 (0.0242) 0.3776 (0.0010) 0.4897 0.5127 0.3437
TD137 0.3402 (0.0000) 0.3721 (0.0019) 0.4255 0.4057 0.3363
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number of brain networks in that the spectral clustering,
FastQ, Danon, and Louvain algorithms obtained the best
conductance metrics is 1, 6, 20, and 2, respectively. We can
also clearly observe that the best modularity metrics ob-
tained by UPSO and Louvain algorithm are relatively close,
but the number of brain networks in that the Louvain al-
gorithm obtained the best conductance metrics is just 2.3is
fully demonstrates that UPSO outperforms the Louvain
algorithm in terms of conductance.

From Table 3, we can also see that the standard de-
viations obtained by UPSO and the spectral clustering are all
very small compared to the average values obtained by them.
3is is also similar to data in Table 2. Namely, for 79 rsfMRI
brain networks, UPSO and the spectral clustering are rel-
atively stable in terms of both modularity and conductance
metrics. Meanwhile, we can also observe that, for 42 of 79
brain networks, the standard deviations obtained by UPSO
are less than or equal to those obtained by the spectral

clustering. 3is demonstrates that UPSO has higher stability
than the spectral clustering in terms of conductance. 3is
conclusion is also similar to that concluded from Table 2.

6.2.2. Comparisons of Other Perspectives. Besides the above-
mentioned comparisons, we also evaluate the performances
of UPSO from other perspectives, such as influences of the
uniform design, comparisons with other heuristic algo-
rithms, and complexity analysis.

To show the benefit of hybridizing the uniform design in
PSO, we modify UPSO by removing the uniform design
from UPSO. Namely, the initialization (Steps 1, 2, and 3)
uses the random initialization method instead of the gen-
eration algorithm of the initial population based on the
uniform design, and the crossover operator based on the
uniform design (Step 11) is not performed. For brevity, the
modified algorithm is called PSO. We compare the

Table 4: Comparisons of UPSO, PSO, and ABC.

Dataset UPSO PSO ABC Dataset UPSO PSO ABC
ASD67B 0.3127 0.3121 0.2996 ASD142 0.4349 0.4343 0.4281
ASD70B 0.3784 0.3759 0.3646 ASD143 0.4027 0.4027 0.3863
ASD73C 0.4261 0.4262 0.4102 TD86C 0.3837 0.3824 0.3743
ASD75B 0.4420 0.4416 0.4338 TD100C 0.3910 0.3909 0.3773
ASD76C 0.4201 0.4182 0.4118 TD101B 0.4257 0.4200 0.4136
ASD82 0.4300 0.4296 0.4192 TD102B 0.4253 0.4251 0.4132
ASD83B 0.3527 0.3555 0.3341 TD103B 0.4369 0.4342 0.4299
ASD87B 0.4551 0.4552 0.4475 TD105 0.4295 0.4291 0.4174
ASD90B 0.3919 0.3910 0.3796 TD107B 0.4301 0.4300 0.4199
ASD91B 0.3522 0.3506 0.3374 TD108B 0.4171 0.4139 0.4038
ASD92 0.3987 0.3987 0.3835 TD111B 0.3341 0.3333 0.3164
ASD93B 0.4153 0.4139 0.4036 TD112B 0.4207 0.4166 0.4124
ASD95 0.3972 0.3968 0.3877 TD113B 0.4017 0.4016 0.3898
ASD96B 0.4523 0.4523 0.4447 TD114 0.4068 0.4061 0.3917
ASD97 0.4233 0.4220 0.4151 TD118 0.4267 0.4267 0.4147
ASD99 0.4336 0.4335 0.4214 TD120 0.4189 0.4150 0.4072
ASD102 0.4428 0.4427 0.4324 TD121 0.4676 0.4677 0.4578
ASD103 0.4443 0.4443 0.4338 TD122 0.4738 0.4733 0.4689
ASD104 0.4362 0.4360 0.4253 TD123 0.4336 0.4284 0.4226
ASD106 0.4194 0.4183 0.4092 TD124 0.4498 0.4497 0.4403
ASD108 0.3997 0.3996 0.3842 TD125 0.4028 0.4026 0.3860
ASD111 0.4169 0.4096 0.4039 TD126 0.4174 0.4172 0.4064
ASD112 0.4515 0.4514 0.4392 TD128 0.4458 0.4398 0.4371
ASD113 0.4104 0.4102 0.3982 TD129 0.4396 0.4395 0.4275
ASD114 0.3960 0.3945 0.3836 TD130B 0.4074 0.4074 0.3950
ASD115 0.3903 0.3899 0.3789 TD131 0.4104 0.4071 0.4009
ASD116 0.4095 0.4098 0.3975 TD132 0.4439 0.4438 0.4378
ASD117 0.4018 0.4009 0.3907 TD133 0.3555 0.3553 0.3423
ASD119 0.4386 0.4355 0.4307 TD134 0.4317 0.4282 0.4244
ASD120 0.4214 0.4212 0.4093 TD135 0.4460 0.4426 0.4404
ASD124 0.3926 0.3893 0.3793 TD136 0.4434 0.4432 0.4304
ASD125 0.3935 0.3934 0.3765 TD137 0.4276 0.4276 0.4185
ASD127 0.3955 0.3939 0.3832 TD138B 0.3911 0.3903 0.3811
ASD129 0.3930 0.3920 0.3801 TD139 0.4377 0.4376 0.4254
ASD130 0.4208 0.4188 0.4039 TD140 0.4151 0.4128 0.4033
ASD131 0.4232 0.4227 0.4051 TD142 0.4373 0.4373 0.4296
ASD132 0.4473 0.4465 0.4407 TD143 0.4465 0.4464 0.4359
ASD133 0.4249 0.4248 0.4117 TD144 0.4073 0.4072 0.3937
ASD134 0.4018 0.3989 0.3839 TD145 0.4540 0.4496 0.4486
ASD138 0.4040 0.4038 0.3942
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modularity metrics obtained by UPSO and PSO. 3e results
are shown in Table 4.

To verify the performance of UPSO, we also compare it
with ABC (artificial bee colony). Similar to PSO, ABC is also
a heuristic algorithm. Table 4 also shows the results obtained
by ABC.

From Table 4, we can clearly see that, for 67 of 79 brain
networks, the modularity metrics obtained by UPSO are
larger than those obtained by PSO. In comparison, there are
just 4 brain networks for which the modularity metrics
obtained by UPSO are less than those obtained by PSO.3is
fully demonstrates that the influence of the uniform design
on improving the performance of UPSO is significant.
Figures 2 and 3 in the next section also obviously illustrate
the benefit of the uniform design.

By comparison of the modularity metrics obtained by
UPSO and those obtained by ABC, it can be clearly seen from
Table 4 that, for 79 brain networks, the modularity metrics of
UPSO are all larger than those of ABC.3is fully demonstrates
that UPSO significantly outperforms ABC in terms of mod-
ularity. A comparison of PSO and ABC is the same as the
comparison ofUPSOandABC.Namely, for 79 brain networks,
the modularity metrics of PSO are all larger than those of ABC.
It follows from the above that PSO is also superior to ABC for
79 rsfMRI brain networks even without the uniform design.

By a detailed analysis of the proposed algorithm UPSO, its
computational complexity is obtained as follows: if the number
of community modules K is pregiven or preestimated, the time
complexity of UPSO is O(tmax ∗Npop); otherwise, the time
complexity of UPSO is O(tmax ∗ Npop ∗N), where tmax, Npop,
and N, respectively, denote the maximal number of iterations,
the population size, and the number of vertices in brain
networks. 3us, unless it is absolutely necessary, UPSO often
uses the pregiven K or the same K as that of the other methods
to decrease its computational complexity.

6.2.3. Representative Brain Networks. According to different
cases of the modularity and conductance metrics in Tables 2
and 3, two representative brain networks are chosen to
demonstrate the performance of UPSO.

TD86C Brain Network. For the TD86C brain network, the
best modularity and conductance metrics are both obtained
by UPSO. Figure 4 illustrates the plot of the modularity
metrics obtained by UPSO and PSO.

3e community plot of the TD86C brain network is
illustrated in Figure 2.

From Figure 4, it can be seen that the modularity metrics
obtained by UPSO and PSO both converge to a stable state
when the number of iterations increases. Meanwhile, we can
also clearly see that the plot of UPSO is always above that of
PSO after the third iteration. 3is obviously illustrates that
the uniform design plays an important role in improving the
performance of UPSO.

ASD104 Brain Network. For the ASD104 brain network, the
best modularity is obtained by UPSO, while the best con-
ductance metric is obtained by the Danon algorithm.

Figure 3 illustrates the changing process of the modularity
metrics obtained by UPSO and PSO with the number of
iterations. Figure 5 illustrates the community plot of
ASD104 brain networks.

We can clearly observe from Figure 3 that the plots of
UPSO and PSO both go up when the number of iterations
increases, which show the processes of searching the optimal
solution. However, the plot of UPSO is above or overlapping
that of PSO in the whole iterating process.3is fully illuminates
that the influence of the uniform design is considerable.

7. Conclusions and Future Work

In this study, we design a particle swarm algorithm with the
uniform design (UPSO) for finding the community modules
in brain networks.We conduct UPSO and several competing
algorithms on 79 rsfMRI brain networks. 3e obtained
results demonstrate that UPSO can find community mod-
ules with maximal modularity and obviously outperforms
other competing methods in terms of modularity. 3e
comparison of UPSO and PSO shows that the uniform

Figure 2: Community plot of TD86C.
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design plays an important role in improving the perfor-
mance of UPSO. 3e comparison of PSO and ABC shows
that PSO is superior to ABC for 79 rsfMRI brain networks.

3e proposed algorithm UPSO does not apply to very
high-dimensional problems because it more likely needs
long execution time. To solve the limitations, UPSO can be
designed as a parallel algorithm and implemented in the
cloud computing platform. In addition, our proposed al-
gorithm is going on for further improvement, such as de-
signing more efficient coding to speed up its converging rate
and stability.
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