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Abstract

Purpose

HCM is the most common inherited cardiomyopathy. Historically, there has been poor corre-

lation between genotype and phenotype. However, CMR has the potential to more accu-

rately assess disease phenotype. We characterized phenotype with CMR in a cohort of

patients with confirmed HCM and high prevalence of genetic testing.

Methods

Patients with a diagnosis of HCM, who had undergone contrast-enhanced CMR were identi-

fied. Left ventricular mass index (LVMI) and volumes were measured from steady-state free

precession sequences. Late gadolinium enhancement (LGE) was quantified using the full

width, half maximum method. All patients were prospectively followed for the development

of septal reduction therapy, arrhythmia or death.

Results

We included 273 patients, mean age 51.2 ± 15.5, 62.9% male. Of those patients 202

(74.0%) underwent genetic testing with 90 pathogenic, likely pathogenic, or rare variants

and 13 variants of uncertain significance identified. Median follow-up was 1138 days. Mean

LVMI was 82.7 ± 30.6 and 145 patients had late gadolinium enhancement (LGE). Patients

with beta-myosin heavy chain (MYH7) mutations had higher LV ejection fraction (68.8 vs

59.1, p<0.001) than those with cardiac myosin binding protein C (MYBPC3) mutations.

Patients with MYBPC3 mutations were more likely to have LVEF < 55% (29.7% vs 4.9%,

p = 0.005) or receive a defibrillator than those with MYH7 mutations (54.1% vs 26.8%, p =

0.020).
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Conclusions

We found that patients with MYBPC3 mutations were more likely to have impaired ventricu-

lar function and may be more prone to arrhythmic events. Larger studies using CMR pheno-

typing may be capable of identifying additional characteristics associated with less frequent

genetic causes of HCM.

Introduction

Hypertrophic cardiomyopathy (HCM) is a common hereditary cardiac disorder with a preva-

lence of approximately 2 cases per 1000 persons.[1] It is caused by mutations in genes encod-

ing sarcomere proteins, [2,3] with more than two dozen putative disease-associated genes

identified. MYH7 encoding the β-myosin heavy chain and MYBPC3 encoding cardiac myosin-

binding protein C are the most common genes harboring causative mutations.[4–6] HCM is a

frequent cause of sudden cardiac death (SCD) in youth and a significant underlying pathology

for cardiac morbidity and mortality in adults.[5] It is believed that myocardial fibrosis, a hall-

mark of HCM, contributes to the development of SCD, ventricular tachyarrhythmias, and

congestive heart failure (CHF).[7–11]

Cardiovascular magnetic resonance imaging (CMR) has emerged as a valuable tool for

assessing HCM through quantification of ventricular volumes, mass, and identification of

myocardial fibrosis with late gadolinium enhancement (LGE) to assess SCD risk.[12–14] The

volume and morphology of LGE have been associated with worse cardiovascular outcome,

including higher incidence and recurrence of ventricular tachyarrhythmia, hospital admis-

sions due to progressive CHF, and an independent predictor of all cause and cardiac mortality.

[15–18] It has also been demonstrated that LGE is more common in patients with a positive

genetic test as compared to those with a negative genetic test; however, HCM is known for

marked pleiotropy for any specific phenotype. [19,20]

The purpose of this study was to determine whether CMR findings could identify specific

genotype-phenotype relationships in HCM through measurement of ventricular volumes,

mass and function or characterization of LGE. Furthermore, we assessed the associations

between CMR characteristics, genetic diagnosis and adverse cardiovascular events.

Methods

Patient population

This study was a retrospective analysis of data acquired in consecutive patients with HCM who

underwent contrast-enhanced CMR at Stanford Hospital and Clinics between December 2006

and December 2017. Patients were excluded if the diagnosis of HCM could not be confirmed

(n = 83) or if CMR studies were performed at an outside institution and images were not avail-

able for interpretation (n = 3). The diagnosis of HCM was based on standard clinical criteria

including all components of the history, physical examination, electrocardiography, echocardi-

ography, and CMR.[21] Alternate diagnoses including aortic stenosis and infiltrative cardio-

myopathies were excluded by experienced cardiologists with additional training in HCM.

Patients with a history of myectomy or alcohol septal ablation prior to CMR were excluded.

Patient demographics were collected from existing patient records.

Patients were offered genetic testing with patient consent through clinical care at the Stan-

ford Center for Inherited Cardiovascular Diseases. Genetic testing was performed in 202
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patients. Genetic testing was performed with exonic sequencing of at least 8 myofilament-

encoding, HCM-susceptibility genes as part of commercially available HCM genetic tests dur-

ing the period of study (Ambry Genetics, Aliso Viejo, CA; Correlagen Diagnostics, Inc., Wal-

tham, MA; GeneDX, Gaithersburg, MD; Invitae Corp, San Francisco, CA; Laboratory for

Molecular Medicine, Cambridge MA; PGx Testing, Garden Ridge, TX; Transgenomic Molecu-

lar Laboratory, Omaha, NE). Sequences were compared with the reference human genome

and variants detailed by the genetic testing company. All reported variants were independently

investigated by the multidisciplinary team which included dedicated genetic counsellors and

scored according to the confidence with which they could be called disease-causing.[22] This

was based on type of variant, position of variant, prior co-segregation data, and in the case of

novel variants, tools based on conservation and constraint as described previously.[23] S1

Table summarizes the classification of genetic variants. Patients were classified as having no

variant found or having either variant of uncertain significance (VUS) or disease-associated

variants meeting classification types ‘likely pathogenic’ or ‘pathogenic’. Gene variants which

occurred at a population frequency <1 in 10,000 were categorized as rare variants. Patients

with more than one variant were classified according to the disease causing-variant as

described above, if one was found. No patients had disease-causing variants identified in more

than one gene. Patients without a disease-associated variant, but with rare VUS in either

MYH7 or MYBPC3 were included with patients with disease-associated variants in the respec-

tive genes. Separate analyses were performed in which these patients were included with other

patients having a VUS as a sensitivity analysis, results in S2 and S3 Tables. Characteristics of

patients who did not undergo genetic testing are shown in S4 Table.

Image acquisition and analysis

CMRs were ordered as part of routine clinical care, and were typically performed to better

delineate anatomy or to determine extent of LGE. All CMR images were acquired on a

1.5-Tesla whole-body scanner (Signa, GE Healthcare, Milwaukee, WI) with the patient in a

supine position using an 8-element phased-array radiofrequency coil with breath-holding and

cardiac gating. Cine images of the LV in short and long axes were acquired using a steady-state

free precession sequence (SSFP, TR 2.4–3.9, TE 0.9–2.0, slice thickness 8 mm). LGE images

(segmented k-space inversion recovery sequence, TR 3.4–5.0, TE 1.1–1.5, TI 150–300, slice

thickness 8 mm) were acquired throughout the entire LV starting at 10 min, after administra-

tion of 0.1–0.2 mmol/kg of gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA, Mag-

nevist, Schering AG, Germany). The inversion time was set to null the signal of normal

myocardium after Gd-DTPA and was adjusted during the scan as necessary.

Cine images were analyzed using MASS analysis software (MASS Analysis Plus Version 6.0,

Leiden University). Semi-automated contours were manually adjusted to match the endocar-

dial and epicardial borders and exclude the papillary muscles from short-axis images at end-

diastole.[24] The same contours were used to calculate left ventricular (LV) and right ventricu-

lar (RV) end-diastolic volumes (LVEDV and RVEDV), LV and RV end-systolic volumes

(LVESV and RVESV), and LV and RV ejection fractions (LVEF and RVEF). Normal LV mass

was defined as< 81 g/m2 for males and< 62 g/m2 for females.[24] Septal morphology and

cavity contour was evaluated, in the long axis view and scored for 4 subtypes (sigmoid, reverse

curvature, apical or other) as previously described.(26) Analysis of LGE was performed visually

by defining the areas of hyperenhancement in all myocardial segments as seen on the long and

short-axis slices and quantified using a full width, half maximum (FWHM) method. The

FWHM method defines core scar as voxels that contain a signal intensity at least 50% of the

maximal signal intensity.[25] Grey zone scar is defined as areas with less than 50% of the
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maximal intensity but greater than the peak signal intensity in remote myocardium.[25] A

case example is shown in Fig 1. Two authors (RM and SH) performed image analysis. A subset

of 10 patients was read by both authors for ventricular mass, volume, morphology, presence of

LGE and scar quantification. Inter-rater reliability was good between readers (Pearson’s

r>0.95 for all variables).

Outcomes

Patients were followed prospectively for cardiovascular events including: alcohol septal abla-

tion, septal myectomy, sustained VT, appropriate implanted cardiac defibrillator (ICD) shock,

SCD, and all-cause death. SCD included patients with resuscitated cardiac arrest. Sustained

VT was defined as ventricular rhythms faster than 100 beats per minute and lasting for more

than 30 seconds or treated with anti-tachycardia pacing on review of ambulatory ECG moni-

toring or implanted cardiac device logs. Appropriate ICD shock was defined as a ventricular

rhythm greater than 100 beats per minute which resulted in ICD discharge (excluding anti-

tachycardia pacing). Follow up was obtained during scheduled clinic visits supplemented by

telephone contact with patients or their relatives to ensure more complete follow-up. All

patients had at least 90 days of clinical follow-up.

Statistical analysis

Continuous variables were summarized as mean (standard deviation [SD]) if normally distrib-

uted and compared using a Student’s t-test. Continuous variables which were not normally

distributed were summarized as median (interquartile range [IQR]) and compared using a

Wilcoxon rank-sum test. Categorical variables are summarized as number (proportion) and

compared using a Fisher’s Exact test.

We performed multivariable Cox regression analyses to assess for the association between

the presence of late gadolinium enhancement and clinical outcomes as well as between genetic

diagnoses and clinical outcomes. Due to low event numbers, events were combined as: septal

ablation or myectomy, sustained VT or appropriate ICD shock, and all-cause mortality.

Fig 1. Cardiac magnetic resonance characterization of a patient with a MYH7 variant. Panel A. Cine images at end systole showing apical hypertrophy with apical

aneurysm. Panel B. Delayed enhancement images showing extensive LGE in the distal myocardial segments including the apex.

https://doi.org/10.1371/journal.pone.0217612.g001
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Models were corrected for age and gender. All statistical tests were two-sided and a p-value

<0.05 was considered significant. A sensitivity analysis with rare variants included as VUS,

with results in S2 and S3 Tables. All analyses were performed using Stata/IC version 13.1 (Sta-

taCorp, College Station, Texas). The study protocol was approved by the Institutional Review

Board at Stanford University.

Results

Clinical characteristics

We included 273 patients with a diagnosis of HCM who underwent CMR imaging. Patient

characteristics are outlined in Table 1. The cohort was predominantly Caucasian (64.5%) men

Table 1. Baseline population characteristics.

Total

(n = 273)

No LGE

(n = 128)

LGE+

(n = 145)

p-value

Age at CMR 51.2 ± 15.5 50.6 ± 15.0 52.0 ± 16.1 0.474

Male (%) 173 (62.9) 73 (57.0) 100 (69.0) 0.045

BSA (m2) 1.94 ± 0.25 1.95 ± 0.24 1.94 ± 0.26 0.859

Proband 268 (98.2) 125 (97.7) 143 (98.6) 0.668

Maximal LV wall thickness (mm) 18 (16–21) 16 (15–19) 20 (16–24) <0.001

Ethnicity

Caucasian 176 (64.5) 93 (72.7) 83 (57.2) 0.011

Asian 41 (15.0) 17 (13.3) 24 (16.6) 0.500

Latino 24 (8.8) 12 (9.4) 12 (8.3) 0.832

African-American 9 (3.3) 2 (1.6) 7 (4.8) 0.180

Other 22 (8.1) 5 (3.9) 17 (11.7) 0.024

Congestive Heart Failure

NYHA I 163 (59.7) 68 (53.1) 95 (65.5) 0.048

NYHA II 73 (26.7) 37 (28.9) 36 (24.8) 0.494

NYHA III 34 (12.5) 21 (16.4) 13 (9.0) 0.069

NYHA IV 4 (1.5) 2 (1.6) 2 (1.4) 1.000

Resting LVOT gradient 2 (0–28) 4 (0–33) 1 (0–26) 0.574

Atrial Fibrillation 30 (11.0) 15 (11.7) 15 (10.3) 0.847

Dyslipidemia 84 (30.8) 37 (28.9) 47 (32.4) 0.600

Hypertension 108 (39.6) 57 (44.5) 51 (35.2) 0.137

Diabetes 19 (7.0) 6 (4.7) 13 (9.0) 0.233

Risk Factors for SCD

LV wall thickness > 30 mm 9 (3.3) 1 (0.8) 8 (5.5) 0.039

FH SCD 108 (39.6) 44 (34.4) 64 (44.1) 0.108

Unexplained syncope 65 (23.8) 31 (24.2) 34 (23.5) 0.888

h/o SCD or sustained VT 7 (2.6) 3 (2.3) 4 (2.8) 1.000

Hypotension on ETT 33 (12.1) 16 (12.5) 17 (11.7) 0.855

Rest gradient >30mmHg 68 (24.9) 34 (26.6) 34 (23.5) 0.577

History of NSVT 78 (28.6) 32 (25.0) 46 (31.7) 0.230

Medications

Beta-blocker 137 (50.2) 66 (51.6) 71 (49.0) 0.706

Anti-arrhythmic therapy 31 (11.3) 11 (8.6) 20 (13.8) 0.447

LV–left ventricle, LVOT–left ventricular outflow tract, NSVT–Non-sustained ventricular tachycardia, NYHA–New York Heart Association, SCD–Sudden Cardiac

Death, VT–ventricular tachycardia.

https://doi.org/10.1371/journal.pone.0217612.t001
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(62.9%) with a mean age 51.2 ± 15.5 (standard deviation). LGE was present in 145 (53.1%)

patients. Patients with pathogenic, likely pathogenic or rare MYH7 variants were a similar

mean age as those with MYBPC3 variants (45.7 vs. 45.9 years, p = 0.959). Patients with LGE

were also less likely to be Caucasian (57.2% vs 72.7%, p = 0.011) and were more likely to be in

New York Heart Association (NYHA) class I (65.5 vs 53.1%, p = 0.048).

Population phenotypes

CMR characteristics for patients with and without LGE are shown in Table 2. Patients with

LGE had a higher maximal wall thickness compared to patients without (median 20 vs 16,

p<0.001). Patients with LGE also had lower LVEF (median 61.1 vs 65.5, p<0.001). Lastly,

patients with LGE were less likely to have proximal septal hypertrophy (13.8% vs 39.8%,

p<0.001) and more likely to have reverse curvature (44.8% vs 27.3%, p = 0.004) morphology.

Genetic testing was performed in 202 patients. The CMR characteristics stratified by genetic

testing diagnosis are shown in Table 3. Patients with pathogenic, likely pathogenic or rare

MYH7 variants had higher LVEF than those with MYBPC3 variants (68.8 vs 59.1, p<0.001)

and higher RVEF (67.3 vs 60.8, p = 0.018). Additionally, patients with MYBPC3 variants were

more likely to have LVEF< 55% (29.7% vs 4.9%, p = 0.005). However, maximal wall thickness,

LV morphology, and presence of LGE were similar. Patients without an identifiable gene vari-

ant had higher LVMI (84.4 vs 72.2, p = 0.008). There was no difference in the proportion of

patients with LGE between patients with and without identified gene variants (55.3% vs 44.4%

p = 0.159). However, in those patients with LGE, scar volume was higher in patients with an

identified pathogenic, likely pathogenic or rare variant (total scar 9.14 g vs 4.40 g, p = 0.020)

and there was a higher proportion of LV mass replaced by scar (5.05% vs 2.28%, p = 0.002).

Correlation between variant position and phenotype is shown in Fig 2. MYBPC3 variant posi-

tion was associated with LVMI (p = 0.018), but with poor overall correlation (r2 = 0.15).

Clinical outcomes

Patients were followed clinically with median duration of follow-up of 1138 days (Interquartile

range 230–1971). Clinical events during follow-up are shown in Table 4. Patients with LGE

Table 2. CMR characteristics stratified by late gadolinium enhancement.

Total

(n = 273)

No LGE

(n = 128)

LGE+

(n = 145)

p-value

LV mass indexed (g/m2) 77.3 (62.5–96.9) 69.1 (55.9–85.2) 87.7 (69.6–106.8) <0.001

Maximal LV wall thickness (mm) 18 (16–21) 16 (15–19) 20 (16–24) <0.001

LVEF (%) 63.8 (57.1–70.0) 65.5 (61.2–72.2) 61.1 (56.6–68.0) <0.001

LVEDVI (ml/m2) 82.0 (72.0–94.3) 80.0 (69.1–91.4) 83.3 (72.2–95.0) 0.063

LVESVI (ml/m2) 29.3 (22.1–37.9) 26.9 (20.5–36.4) 31.9 (24.0–40.0) 0.002

RVEF (%) 62.0 (56.6–67.7) 61.1 (55.2–67.8) 62.6 (58.7–67.6) 0.062

RVEDV indexed (ml/m2) 76.5 (62.3–89.1) 79.4 (62.7–90.9) 75.4 (62.0–88.5) 0.246

RVESV indexed (ml/m2) 28.0 (20.8–36.9) 30.3 (21.5–39.1) 25.9 (20.5–35.2) 0.044

Morphology

Sigmoid 71 (26.0) 51 (39.8) 20 (13.8) <0.001

Reverse Curvature 100 (36.6) 35 (27.3) 65 (44.8) 0.004

Apical 46 (16.9) 18 (14.1) 28 (19.3) 0.262

Concentric or indeterminate 56 (20.5) 24 (18.8) 32 (22.1) 0.550

EF–Ejection Fraction, EDV–End diastolic volume index, ESVI–End systolic volume index, LV–left ventricle, RV–right ventricle, SVI–stroke volume.

https://doi.org/10.1371/journal.pone.0217612.t002
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were more likely to have an ICD implanted (34.5 vs 19.5%, p = 0.007). However, there was no

difference in the number of patients with an appropriate ICD shock (14% vs 16%, p = 1.000).

Patients with LGE were more likely to have sustained VT or appropriate ICD shock (31.0 vs

19.5%, p = 0.037). Summary of multivariable Cox proportional Hazards analyses for the pres-

ence of LGE, adjusted for age and gender, are shown in S1 Fig. Presence of LGE was associated

with increase in sustained VT or appropriate ICD shock (adjusted HR 1.94, 95% CI 1.16–

3.24). However, LGE was not associated with a need for septal reduction therapy (adjusted HR

Table 3. CMR characteristics stratified by genotype.

MYH7
(n = 41)

MYBPC3
(n = 37)

Other gene variants

(n = 12)

VUS

(n = 13)

No identified

mutation

(n = 99)

p Value (MYH7 vs

MYBPC3)

p-value

(No variant vs. any

variant)

LVMI (g/m2) 70.4 (58.6–

80.8)

77.2 (67.3–

103.3)

68.8 (55.4–96.9) 72.1 (61.5–

83.0)

84.4 (68.7–102.2) 0.066 0.008

Maximal LV thickness

(mm)

18 (15–21) 20 (16–24) 19 (16–23) 18 (15–23) 18 (16–22) 0.075 0.486

LVEF (%) 68.8 (63.0–

74.3)

59.1 (54.0–

67.1)

64.0 (61.1–70.3) 61.6 (58.4–

62.5)

66.4 (61.0–72.6) <0.001 0.076

LVEDVI (ml/m2) 79.4 (69.0–

94.0)

83.5 (76.4–

98.3)

76.9 (69.5–92.1) 82.9 (77.2–

99.5)

81.0 (70.6–94.7) 0.206 0.611

LVESVI (ml/m2) 23.9 (19.5–

33.3)

32.1 (25.2–

43.3)

25.9 (23.6–35.1) 32.3 (30.3–

36.9)

26.3 (20.5–36.4) 0.014 0.092

RVEF (%) 67.3 (58.7–

73.1)

60.8 (55.7–

65.2)

61.6 (59.3–67.5) 59.9 (54.8–

62.9

61.9 (55.9–69.2) 0.018 0.609

RVEDVI (ml/m2) 73.1 (57.2–

86.9)

78.3 (64.2–

91.4)

71.9 (62.5–96.9) 80.0 (67.1–

89.8)

74.2 (60.5–88.9) 0.240 0.677

RVESVI (ml/m2) 23.8 (18.2–

31.0)

31.4 (23.1–

38.6)

28.3 (19.4–37.5) 33.8 (19.9–

38.1)

27.8 (19.3–36.3) 0.022 0.973

Morphology

Sigmoid 11 (26.8) 10 (26.8) 3 (25.0) 3 (23.1) 31 (31.3) 1.000 0.441

Reverse Curvature 18 (43.9) 21 (56.8) 4 (33.3) 3 (23.1) 28 (28.3) 0.365 0.019

Apical 7(17.1) 3 (8.1) 2 (16.7) 3 (23.1) 24 (24.2) 0.317 0.108

Concentric or

Indeterminate

5 (12.2) 3 (8.1) 3 (25.0) 4 (30.8) 16 (16.2) 0.715 0.846

Any LGE 22 (53.7) 21 (56.8) 8 (66.7) 6 (46.2) 44 (44.4) 0.823 0.159

Any sub-endocardial 11 (26.8) 8 (21.6) 1 (8.3) 2 (15.4) 21 (21.2) 0.610 1.000

Any mid-myocardial 17 (41.5) 17 (46.0) 8 (66.7) 3 (23.1) 31 (31.3) 0.820 0.082

Any epicardial 6 (14.6) 7 (18.9) 2 (16.7) 1 (7.7) 8 (8.1) 0.763 0.129

LGE >50% wall

thickness

12 (29.3) 7 (18.9) 0 (0.0) 1 (7.7) 13 (13.1) 0.307 0.257

LGE Segments 1 (0–5) 2 (0–5) 2 (0–4) 0 (0–4) 0 (0–3) 0.725 0.0252

Core Scar (g) 1.77 (1.06–

5.03)

4.17 (1.92–

9.14)

2.82 (0.59–5.46) 2.24 (0.85–

7.52)

1.34 (0.33–4.59) 0.055 0.019

Gray Zone Scar (g) 6.40 (2.18–

8.70)

7.88 (4.85–

22.73)

3.08 (2.03–5.27) 5.46 (2.68–

7.74)

2.72 (1.48–6.69) 0.114 0.005

Total scar (g) 8.32 (3.00–

13.95)

11.49 (7.21–

25.31)

6.01 (2.61–11.05) 7.69 (3.53–

19.29)

4.40 (1.88–10.54) 0.099 0.020

Total Scar (%LV mass) 3.85 (2.37–

10.65)

5.80 (3.39–

13.20)

6.43 (2.08–8.90) 3.48 (1.70–

14.79)

2.28 (1.02–6.73) 0.308 0.002

Core scar and gray zone scar were determined using the full-width, half-maximum method. Scar quantification reflects values in patients with visual LGE. EF–Ejection

Fraction, EDVI–End diastolic volume index, ESVI–End systolic volume index, LGE–late gadolinium enhancement, LV–left ventricle, LVMI–left ventricular mass index,

RV–right ventricle, SV–stroke volume, VUS–variant of uncertain significance.

https://doi.org/10.1371/journal.pone.0217612.t003
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0.84, 95% CI 0.49–1.44, p = 0.53) or death (adjusted HR 1.12, 95% CI 0.33–3.86, p = 0.86). Sim-

ilarly total scar volume was associated with an increase in sustained VT or appropriate ICD

shock (adjusted HR 1.02 per g, 95% CI 1.00–1.03, p = 0.018), but not septal reduction therapy

(adjusted HR 0.99, 95% CI 0.97–1.02) or death (adjusted HR 1.01, 95% CI 0.99–1.04,

p = 0.343).

Clinical events stratified by genetic testing findings are shown in Table 5. Patients with

MYBPC3 variants were more likely to have an ICD implanted than those with MYH7 variants

(54.1% vs 26.8%, p = 0.020) without a difference in appropriate ICD shock (4/20 [20.0%] vs 2

of 11 [18.2%], p = 1.00). There was a trend towards an increase in sustained VT or appropriate

ICD shock in patients with MYBPC3 variants (27.0% vs 12.2%, p = 0.150) Summary of multi-

variable Cox proportional hazards analyses, adjusted for age and gender, are shown in Fig 3.

There was no difference in time to septal reduction therapy in patients with MYBPC3 (adjusted

HR 0.42, 95% CI 0.17–1.08, p = 0.071) or MYH7 variants (adjusted HR 1.10, 95% CI 0.57–2.15,

p = 0.768). Similarly, there was no difference in time to sustained VT or appropriate ICD

shock with MYBPC3 (adjusted HR 2.38, 95% CI 0.67–8.46, p = 0.1829) or MYH7 gene variants

(adjusted HR 0.73, 95% CI 0.14–3.58, p = 0.699). There was no increased risk of death with

MYBPC3 (1.48, 95% CI 0.29–7.47, p = 0.6329) or MYH7 variants (0.43, 95% CI 0.05–3.50,

p = 0.428).

Discussion

Classically HCM has been characterized by poor correlation between genotype and phenotype.

We sought to establish a correlation using CMR to characterize morphology which has poten-

tial benefits over echocardiography for this purpose. The high temporal and spatial resolution

of CMR with superior intrinsic contrast allows more precise evaluation of myocardial mor-

phology and reproducible quantitative assessment of ventricular volumes and function. [26–

29] We found that patients with MYBPC3 variants were more likely to have impaired ventricu-

lar function compared to patients with MYH7 variants and had a trend towards an increase in

arrhythmic events, with a higher proportion of patients receiving ICDs. Finally, we found that

LGE burden was higher in patients with identifiable gene variants. Our findings, in a small

population, suggest that there is correlation between genotype and phenotype, however the

impact on clinical outcomes is less clear.

Fig 2. Correlation between variant position and phenotype. Panel A shows the correlation between variant position and left ventricular mass index. Variant

position was associated with LVMI in MYBPC3 variants (p = 0.018). Panel B shows the lack of correlation between variant position of total late gadolinium

enhancement.

https://doi.org/10.1371/journal.pone.0217612.g002

Table 4. Clinical outcomes stratified by presence of LGE.

Total

(n = 273)

No LGE

(n = 128)

LGE+

(n = 145)

p-value

Myectomy/ Septal Ablation 56 (20.5) 31 (24.2) 25 (17.2) 0.177

ICD Implanted 75 (27.5) 25 (19.5) 50 (34.5) 0.007

Appropriate ICD Shock 11 of 75 (14.7) 4 of 25

(16.0)

7 of 50

(14.0)

1.000

Sustained VT or Appropriate ICD shock 70 (25.6) 45 (31.0) 25 (19.5) 0.037

Sudden Cardiac Death 6 (2.2) 4 (3.1) 2 (1.4) 0.424

All-cause mortality 11 (4.0) 6 (4.7) 5 (3.5) 0.760

ICD–implantable cardioverter defibrillator, VT–ventricular tachycardia.

https://doi.org/10.1371/journal.pone.0217612.t004
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Phenotype in patients with genetic variants

Genetic testing for HCM is used clinically in the form of targeted exonic sequencing of known

disease-causing genes.[23] Echocardiography has traditionally been used for genotype-

Table 5. Clinical outcomes by genetic testing result.

MYH7
(n = 41)

MYBPC3
(n = 37)

Other gene variants

(n = 12)

VUS

(n = 13)

No identified

mutation

(n = 99)

p Value (MYH7 vs

MYBPC3)

p-value

(No variant vs. any

variant)

Myectomy/ Septal Ablation 12

(29.3)

5 (13.5) 1 (8.3) 2 (15.4) 30 (30.3) 0.108 0.102

ICD Implanted 11

(26.8)

20 (54.1) 5 (41.7) 4 (30.8) 26 (26.3) 0.020 0.072

Appropriate ICD Shock 2 of 11

(18.2)

4 of 20

(20.0)

0 of 5

(0.0)

0 of 4

(0.0)

5 of 26

(19.2)

1.000 0.741

Sustained VT or Appropriate

ICD shock

5 (12.2) 10 (27.0) 1 (8.3) 3 (23.1) 27 (27.3) 0.150 0.179

Sudden Cardiac Death 0 (0.0) 2 (5.4) 0 (0.0) 1 (7.7) 2 (2.0) 0.222 1.000

All-cause Mortality 1 (2.4) 2 (5.4) 0 (0.0) 0 (0.0) 6 (6.1) 0.601 0.324

ICD–implantable cardioverter defibrillator, VT–ventricular tachycardia.

https://doi.org/10.1371/journal.pone.0217612.t005

Fig 3. Summary of associations between clinical outcomes and genetic diagnosis. Note logarithmic scale.

https://doi.org/10.1371/journal.pone.0217612.g003
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phenotype correlation in HCM, and prior studies have shown that the reverse curvature septal

morphological subtype was a predictor of positive genetic testing.[30] Studies using CMR to

help characterize HCM genotype-phenotype relationships have also found that more patients

with any genetic mutation had reverse curvature HCM in comparison to sigmoidal HCM or

apical HCM, indicating that CMR may be useful in genotype-phenotype analysis.[19] In the

same study, it was noted that LGE was more common in those with a positive genetic test in

comparison to those with a negative test. In our study, we found no association between pres-

ence of LGE and genetic diagnosis but did find larger volumes of LGE associated with the pres-

ence of an identifiable variant. Additionally, we did not see an association between genetic

testing result and overall morphology. We used contemporary genetic testing data and found a

larger proportion of patients with abnormal genetic testing compared to previous studies.

[30,31]

Differences between MYH7 and MYBPC3
In our cohort, the most common variants occurred in MYH7 and MYBPC3. Our analysis

revealed that the presence of a MYBPC3 variant was associated with a lower LVEF and a higher

prevalence of low LVEF. Interestingly, Weissler-Snir et al. found a similar trend in a cohort of

HCM patients characterized with CMR.[31] No other mutation groups were sufficiently prev-

alent to allow further characterization. MYBPC3 is a key component of myocardial thick fila-

ments and variants have been associated with dilated cardiomyopathy.[32] Additionally,

Additionally, MYBPC3 variants have been associated with impaired ventricular function in

patients with coronary artery disease.[33] However, it is not clear why ventricular function is

less impaired in patients with MYH7 variants since an interaction between the two genes

seems to be necessary to maintain systolic function.[34] There was also a trend towards

increased LGE burden in patients with MYBPC3 variants, which itself was associated with an

increase in sustained VT or ICD shock. While we did not see these phenotypic differences

translate into clinical outcomes, differences may be seen in larger populations. Data from the

sarcomeric human cardiomyopathy (SHARE) registry showed that overall clinical outcomes

may be worse in patients with MYH7 variants.[35] However, they found that the incidence of

cardiac arrest was higher in patients with MYBPC3 variants.[35] Interestingly, variant position

was significantly associated with LVMI in patients with MYBPC3 variants, although with poor

overall correlation. Our findings suggest that wider use of CMR as well as genetic testing may

help to characterize the phenotypes of other disease-associated genes.

Correlation between CMR characteristics and clinical outcomes

One of the major benefits of CMR characterization in patients with HCM is to quantify LGE

which has significant prognostic ability.[16,17] Our findings were consistent with previously

published data that demonstrated increased LGE in HCM particularly in areas of increased

wall thickness,[16]. and that reverse curvature septal morphology was associated with LGE as

previously described.[19,36] We found ICD implantation to be more common, likely repre-

senting this increased incidence as well as the use of LGE as a risk stratification tool.[37] ICD

shocks were not more common in this group compared to patients without LGE. However,

given the low incidence of events in this population and the importance of LGE in other larger

cohorts it is likely that our study was not sufficiently powered to demonstrate an association.

[38] [39,40]
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Limitations

Our study has several important limitations. We had a relatively small patient sample and were

not able to assess phenotypic features seen in less frequent gene variants. Since the presence of

LGE was based on presence on two orthogonal views, it’s possible that small foci of LGE were

not included. Additionally, variation in gadolinium dosing may have impacted LGE identifica-

tion and quantification. Some of our negative findings, particularly with respect to LGE, may

be due to lack of statistical power. However, we were able to demonstrate differences in mor-

phology between the most common variants. We did not assess RV mass, RV wall thickness,

or atrial morphology and these may also be associated with genotype. The small patient sam-

ple, with limited follow-up duration in some patients, may have impaired our ability to assess

for differences in clinical outcomes between groups. However, our data may provide mecha-

nistic insights into data from larger studies such as the SHARE registry. Finally, genetic testing

was not complete in our cohort which may have influenced some of our findings. However,

our study is one of the largest published cohorts with comprehensive CMR and genetic charac-

terization to date.

Conclusions

CMR may be useful to characterize genotype-phenotype relationships in HCM. We found that

patients with MYBPC3 mutations were more likely to have impaired ventricular function and

may be more prone to arrhythmic events. Larger studies using CMR phenotyping may be

capable of identifying additional characteristics associated with less frequent genetic causes of

HCM.
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