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include signifi cant regional and/or temporal changes in 
the levels of many lipid species. Such lipid-mediated cellular 
processes also underpin normal cell (and thus tissue) ho-
meostasis as well as tissue development, repair, and immu-
nity. Direct or indirect interference of these lipid signaling 
processes can severely disrupt cellular signaling processes, 
potentially leading to a range of developmental, autoim-
mune, cancer, and infl ammatory diseases. Two major lipid 
signaling systems, the eicosanoids and the endocannabi-
noids, form elements of the oxylipin family and are based 
primarily on metabolic derivatives of arachidonic acid (AA) 
and show signifi cant interrelation in terms of enzyme path-
ways [cyclooxygenase (COX), lipoxygenase (LOX), cyto-
chrome P450 (CYP), and prostaglandin (PG) synthase 
series of enzymes] involved in the generation of bioactive 
species (  Fig. 1  ).  PGs, leukotrienes (LTs), thromboxanes 
(TXs), HETEs, epoxyeicosatrienoic acids (EETs), hydroper-
oxyeicosatetraenoic acids (HPETEs), and the equivalent 
acyl chain modifi ed species including the endocannabi-
noids, anandamide (AEA), and 2-arachidonoylglycerol 
(2-AG) are generated from AA by these pathways ( Fig. 1 ). 
The physiological and biochemical functions of eicosanoid 
lipids derived from these metabolic routes have been widely 
studied, but there is signifi cantly less information regarding 
the equivalent acyl-modifi ed lipids, such as metabolized 
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(AraGly), and N-arachidonoyl dopamine (NADA). Both 
the endocannabinoids and eicosanoids are synthesized on 
demand and are distributed widely in different tissues in 
the body ( 7 ). 

 Eicosanoids and endocannabinoids mainly target local 
G protein-coupled receptors such as the prostanoid re-
ceptors, cannabinoid receptors, CB 1  and CB 2 , or nuclear 
receptors, such as PPARs ( 8 ). Several bioactive lipids 
(12-HPETE, 12-HETE, 9-HODE, 13-HODE, 9-oxoODE, 
and 13-oxoODE) also activate transient receptor potential 
vanilloid 1 (TRPV1) ( 9–13 ), a nonselective ion channel 
located on sensory neurons which are activated by ther-
mal, chemical, and painful stimuli ( 14 ). 

forms of AEA and 2-AG species and the potential crosstalk/
interaction between these two sets of bioactive lipids ( 1 ). 

 The production of pro-infl ammatory (e.g., LTs and 
PGs) and/or anti-infl ammatory [e.g., PGs and LXs ( 2, 3 )] 
eicosanoids, as well as other bioactive lipids, increases dur-
ing infl ammation  . Linoleic acid (LA) is a key source of AA 
and has a direct effect on eicosanoid synthesis ( 4, 5 ), as 
well as being the substrate for the generation of HODEs, 
which are oxidized to oxooctadecadienoic acids (oxoODEs) 
by 15-LOX and have anti- and/or pro-infl ammatory ef-
fects ( 6 ). The endocannabinoids and endocannabinoid-
like compounds include AEA, 2-AG, pal mitoyl ethanolamide 
(PEA), oleoyl ethanolamide (OEA), arachidonoyl glycine 

  Fig.   1.  Metabolic pathways of bioactive lipids analyzed with this LC-MS/MS method. G, glycerol; CYP450, 
cytochrome P450; FAAH, fatty acid amide hydrolase; MAGL, monoacylglycerol lipase; FLAP, 5-LOX activat-
ing protein.   
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ionization and can be achieved on any standard triple 
quadrupole LC-MS/MS instrument. 

 We report a fully validated and quantitative method for 
the simultaneous measurement of a wide range of bioac-
tive lipids in a typical range of different tissue types in the 
rat, and demonstrate its application in the detection of 
changes in peripheral and central tissue oxylipin profi les 
in a rat model of osteoarthritis (OA). 

 MATERIALS AND METHODS 

 Chemicals 
 Acetonitrile, ammonium hydroxide, ethanol, ethyl acetate, 

hexane, formic acid, and methanol were all purchased from 
Fisher Scientifi c (Loughborough, UK). All solvents were HPLC 
grade and far UV grade acetonitrile was also used. Representative 
chemical structures of the different groups of lipids measured 
are shown in   Fig. 2  .  A full list of the quantifi ed lipids and the 
sources of standards is provided in the supplementary material. 

 Sample preparation 
 Male Sprague-Dawley rats (200–250 g, Charles River Laborato-

ries) were used and all experiments were conducted in accordance 

 Although LC-MS/MS methods have been developed for 
the quantifi cation of bioactive lipids, they have typically 
been limited to a relatively small number of lipids, and/or 
aimed at a specifi c type of tissue ( 15, 16 ), or multiple 
methods have been used ( 17 ). Successful development of 
comprehensive quantitative profi ling methods for these 
groups of lipids has been hampered by their relatively low 
concentrations in tissues (picomolar or nanomolar  ), struc-
tural similarity/isomerization, and incompatibility of MS 
detection of the different classes of lipids. Methods have 
been published to quantify the eicosanoids ( 18–23 ) but, 
apart from one method which separated four PGs and 
their glyceryl esters ( 24 ), there are no methods which in-
clude the simultaneous analysis of a broad range of eico-
sanoids and their acyl derivatives such as N-ethylamine or 
monoacylglycerol derivatives. The main reason for this 
can be traced to a distinct difference in electrospray ion-
ization MS response of the two core chemical species with 
those having a free carboxylic acid preferring negative ion-
ization mode and those with modifi ed carboxylic acids 
preferring positive ionization mode ( 25–28 ). The LC-MS/
MS method reported here for simultaneous measurement 
of both of these types of lipids in a single analysis involves 
staged switching between positive and negative modes of 

  Fig.   2.  Representative chemical structures of the different groups of lipids measured using LC-MS/MS.   
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equivalent 100 mg portions of homogenized “standard” rat brain 
tissue (combined from a number of animals) to determine the 
accuracy, precision, recovery, and ion suppression of the method 
using the method of standard addition as described previously 
( 23, 28 ). This process ensured that the endogenous levels of all 
the analytes were equal between the samples used for validation. 
These endogenous levels were accounted for in all subsequent 
validation calculations. 

 Seven-point calibration curves spiked into rat brain tissue were 
used for each analyte at concentrations of 0.01–5 nmol/g. The 
2-AG was spiked at concentrations of 0.1–50 nmol/g to account 
for the high endogenous levels of this analyte in rat brain. Linear-
ity was calculated using the LC-MS/MS-determined peak area of 
each analyte expressed as a ratio to the peak area of the selected 
internal standard (chosen based on structural similarities). 

 Accuracy and precision values for intraday (n = 5) and inter-
day (n = 4) were determined using rat brain tissue spiked with 
each analyte at concentrations of 0.02 nmol/g (low), 0.2 nmol/g 
(medium), and 0.8 nmol/g (high), except 2-AG which was spiked 
in at concentrations of 0.2, 2, and 8 nmol/g. Accuracy and preci-
sion values were calculated for each analyte from the peak areas 
and the relative standard deviation (RSD) of the replicates. Ac-
curacy was determined as a ratio of the measured level of each 
analyte to the expected concentration. The LLOQ was the con-
centration at which the RSD of the analyte was found to be 20% 
or more. The limit of detection was the concentration at which 
the signal-to-noise ratio was greater than 3:1. Recovery values 
were calculated by comparing the peak area of each analyte at all 
three concentrations with the peak area of the equivalent 100% 
standard. Matrix effects were investigated by measuring ion sup-
pression by spiking the analytes into the extracts from control 
(i.e., nonspiked) rat brain samples and comparing the peak area 
of each analyte to 100% standard equivalent where a 100% value 
represents the value for the absence of a sample matrix effect. 

 Application of method to tissues from a rat monosodium 
iodoacetate model of OA pain 

 Intra-articular injection of monosodium iodoacetate (MIA) is 
a well-characterized and widely used rodent model of OA pain 
( 29 ). Rats were anesthetized with isofl urane (3% in 50% N 2 O and 
50% O 2 ) before receiving an intra-articular injection of either MIA 
(1 mg/50  � l) in saline or 50  � l of saline (control) through the 
infra-patellar ligament of the left knee ( 30 ). Pain behavior was as-
sessed for up to 28 days postinjection, as previously described ( 31 ). 
MIA-induced weight asymmetry was assessed using an incapaci-
tance tester, and the changes in hind paw mechanical paw with-
drawal thresholds were assessed using von Frey monofi laments 
(1–15 g), as previously described ( 31 ), and analyzed using Graph-
pad Prism 5 software. At day 28, rats were euthanized by stunning 
and decapitation, with tissue samples (spinal cord; brain divided 
into frontal cortex, midbrain, hippocampus, rest of cortex, and 
rest of brain regions; knee joints; and DRGs) dissected and ex-
tracted as described previously. 

 RESULTS AND DISCUSSION 

 Optimization of LC-MS/MS conditions 
 The pH and gradient elution profi le of the mobile 

phases was optimized to completely separate the oxylipins 
into two groups, one that contained an ionizable carbox-
ylic acid group (suitable for detection in electrospray neg-
ative ionization MS mode) and the other with a conjugated 

with the UK Home Offi ce regulations. Animals were euthanized 
by stunning and decapitation followed by rapid dissection of 
spinal cord; brain divided into frontal cortex, midbrain, hip-
pocampus, rest of cortex, and rest of brain regions; knee joints; 
and dorsal root ganglia (DRGs); and collection of blood and im-
mediate transfer of tissues into liquid nitrogen. Blood was cen-
trifuged (4°C, 4,000  g ) and the plasma collected and frozen. 
All samples were stored immediately at  � 80°C until extraction 
and analysis. 

 Brain, spinal cord, and DRGs were weighed and then ho-
mogenized with 1 ml added water with hand-held pestles in a 
glass tubes. Plasma samples did not have additional water added 
and paw tissue and knee tissue (crushed) required 1 h slow shak-
ing with the extraction solvent. Internal standards [100  � l of 
2-AG-d8 (10  � M) and 15  � l of AEA-d8 (28 nM), 10  � l of PGF2a-
ethanolamide (EA)-d4 (2.49  � M), 10  � l of AA-d8 (100 nM), 10  � l 
of PGD2-d4 (1  � M), and 10  � l of 15-HETE-d8 (7.6  � M)] were 
added to each sample or blank sample (0.2 ml water), with 10  � l 
of butylhydroxytoluene. Ethyl acetate:hexane 2.5 ml (9:1, v/v) 
was added, followed by slow vortex-mixing (10 min) and centrifu-
gation (3,200  g , 4°C) for 15 min. The supernatant was transferred 
to a glass tube, the procedure was repeated, and the supernatants 
were pooled and evaporated under nitrogen. The samples were 
then reconstituted in 200  � l of acetonitrile:water (50:50, v/v) 
and analyzed immediately. 

 LC-MS/MS method 
 An Applied Biosystems MDS SCIEX 4000 Q-Trap hybrid triple-

quadrupole-linear ion trap mass spectrometer (Applied Biosys-
tems, Foster City, CA) was used in conjunction with a Shimadzu 
series 10AD VP LC system (Shimadzu, Columbia, MD). Analytes 
were separated chromatographically using a complex gradient 
(detailed in supplementary Table I), mobile phase A (0.05% for-
mic acid in water, pH adjusted with dilute ammonium hydroxide), 
mobile phase B [methanol:acetonitrile (20:80, v/v)], mobile 
phase C (acetonitrile), and a Phenomenex Luna C18 (150 × 
2.0 mm, 3  � m internal diameter) column maintained at 30°C. 
The autosampler temperature was maintained at 4°C throughout 
analysis. Multiple reaction monitoring (MRM) of individual com-
pounds in negative and positive mode using specifi c precursor 
and product  m/z  ratios allowed simultaneous measurement of 
endocannabinoids, eicosanoids, and their metabolites in the 
same method. At 18.5 min the MS ionization mode was changed 
from negative to positive electrospray ionization mode, to allow 
the detection of the endocannabinoids and other oxylipins with 
a modifi ed carboxylic acid group. Source parameters, decluster-
ing potential, collision energy, and collision cell exit potential 
were optimized by direct infusion or injection to maximize sensi-
tivity (  Table 1  ).  Quantifi cation was performed using Analyst 
1.4.1. Identifi cation of each compound in biological tissue was 
confi rmed by LC retention times of each standard and precursor 
and product ion  m/z  ratios. 

 Data analysis 
 Data were quantifi ed and presented using Prism (version 5.01; 

GraphPad, USA). The lower limit of quantifi cation (LLOQ) for 
each analyte was regarded as any peak with a signal-to-noise ratio 
greater than 4:1. Data are expressed as mean ± SEM. 

 Validation 
 Validation was undertaken for 30 of the lipids that were repre-

sentative of the majority of eicosanoids and related species. Be-
cause all the analytes are potentially found endogenously there is 
no appropriate “blank” matrix available for the validation. There-
fore, all the analytes were spiked at known concentrations into 
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interfering peaks were found in the MRM channels 
of each analyte or internal standard, demonstrating that 
there was no “crosstalk” between these channels which 
might compromise selectivity, apart from the diffi culty in 
distinguishing between PGD 2  and PGE 2 , which is discussed 
below. Chromatographic separation of the structurally 
similar dihydroxyeicosatrienoic acids (DHETs), HETEs, 
and EETs was achieved; and where racemic mixtures of the 
lipids were used, these were resolved into two enantiomer 
peaks (for example  cis - and  trans -11-HETE; supplementary 
Fig. I). This fi ne tuning of separation is particularly impor-
tant in a group of compounds in which many lipids are 
isobaric and where  cis  and  trans  isomers may vary in po-
tency in their biological actions ( 21 ). In agreement with 

carboxylic acid group (suitable for detection in electro-
spray positive mode). This gradient profi le allowed time 
for switching from negative ionization mode for the 
COOH-containing lipids to positive ionization mode for 
the later eluting conjugated lipids. An extracted ion LC-
MS/MS chromatogram showing the separation of all 43 
analytes and 6 internal standards (with the exception of 
PGD 2  and PGE 2 ) is shown in   Fig. 3  .  Unique product ions 
for each analyte were used where possible to distinguish 
between analytes and to enable quantifi cation by a com-
bination of retention time and MRM transition ( Table 1 ). 
The MRM transitions used were based on previous 
methods ( 23, 28 ), and further experimental optimization 
was conducted using product ion scans. No signifi cant 

 TABLE 1. Mass spectrometer values for all compounds where the product ions, declustering potential, collision 
energy, and collision exit potential were optimized increased sensitivity        

Analyte Retention Time (min) Q1 Mass Q3 Mass DP (V) CE (V) CXP (V)

PGD 2 1.9 351.22 271.21  � 40  � 25  � 20.00
PGE 2 1.9 351.22 271.21  � 50  � 25  � 15.00
TXB 2 1.9 369.23 169.09  � 50  � 25  � 10.00
PGE 1 -EA 3.7 396.28 360.20  � 55  � 15  � 10.00
PGF 2 �  -EA 3.7 396.28 334.21  � 70  � 25  � 10.00
8,15-Di-HETE  4.1 335.23 127.20  � 60  � 30  � 10.00
PGE 2 -EA 4.3 394.26 358.24  � 70  � 17  � 10.00
PGD 2 -EA 4.4 394.26 203.12  � 55  � 34  � 15.00
14,15-DHET 5.0 337.25 207.15  � 75  � 25  � 3.24
LTB 4 5.6 335.23 335.23  � 60  � 15  � 15.00
LTE 4 — 438.23 438.23  � 50  � 12  � 10.00
11,12-DHET 6.0 337.25 167.11  � 70  � 26  � 10.90
19-HETE 6.7 319.24 275.20  � 85  � 27  � 7.23
20-HETE 7.2 319.24 289.22  � 67  � 30  � 6.27
13-HODE 8.3 295.23 195.14  � 60  � 28  � 10.00
16-HETE 8.0 319.24 233.15  � 65  � 20  � 3.91
8,9-DHET 8.3 337.25 127.11  � 74  � 28  � 8.41
9-HODE 9.1 295.23 171.10  � 60  � 30  � 10.00
13-oxoODE 9.7 293.21 113.10  � 75  � 28  � 8.00
15-HETE 9.7 319.24 219.14  � 65  � 18  � 3.78
14,15-EET 11.6 319.24 219.14  � 72  � 15  � 3.50
9-oxoODE 10.1 293.21 185.12  � 85  � 28  � 12.00
5,6-DHET 10.4 337.25 145.06  � 71  � 26  � 10.02
11-HETE 10.8 319.24 167.11  � 85  � 23  � 2.01
11,12-EET 12.8 319.24 167.11  � 65  � 21  � 7.89
12-HETE 11.1 319.24 179.11  � 70  � 21  � 3.00
8-HETE 11.7 319.24 155.07  � 65  � 20  � 9.89
8,9-EET 13.4 319.24 155.08  � 72  � 17  � 9.74
9-HETE 11.9 319.24 123.00  � 70  � 23  � 6.60
12-HPETE 12.1 317.23 153.10  � 80  � 24  � 10.75
5-HETE 13.1 319.24 115.04  � 64  � 20  � 7.00
5-HPETE 13.9 317.23 203.18  � 75  � 30  � 12.00
5,6-EET 13.9 319.24 191.18  � 70  � 16  � 13.60
AraGly 16.3 360.25 74.02  � 60  � 45  � 10.00
LA 17.8 279.23 279.23  � 60  � 15  � 7.00
AA 18.0 303.23 259.00  � 80  � 20  � 15.00
14,15-EET-Glycerol 18. 9 395.27 285.21 80 23 10.02
5,6-EET-EA 19.1 364.28 62.06 90 40 9.00
AEA 20.7 348.28 62.06 25 30 8.56
NADA 21.0 440.31 137.06 25 33 23.98
2-AG 21.1 379.28 287.22 88 22 4.90
PEA 21.6 300.28 62.06 25 30 9.22
OEA 21.9 326.30 62.06 25 32 8.19
AEA-d8  a  20.6 356.33 63.03 80 45 15.00
2-AG-d8  a  21.0 387.33 95.11 70 61 7.08
PGD 2 -d4  a  1.9 355.24 193.15  � 45  � 29  � 10.00
PGF 2 �  -EA-d4  a  3.7 400.26 338.24  � 70  � 23  � 10.00
15-HETE-d8  a  9.5 327.29 226.25  � 67  � 20  � 3.97
AA-d8  a  17.8 311.28 267.29  � 50  � 20  � 10.00

  a   Denotes internal standards.
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the recommended RSD of less than ±15%, except for two 
values discussed below  . The intraday precision range was 
between 1.38 and 14.9% and the interday precision range 
was between 3.76 and 26.8%. The intraday accuracy range 
was between 89.2 and 114.3% and the interday precision 
range was between 85.2 and 111.4%. Both 19- and 20-
HETE had poorer precision and accuracy values across all 
three concentrations compared with the other analytes. 
These fatty acids with terminal hydroxyl groups were 
poorly fragmented in electrospray MS, which has also 
been observed previously ( 22 ). Despite the instability and 
low recovery of 12-HPETE, it showed reasonable precision 
(RSD 15–27%) and accuracy (85–111%) values, hence 
demonstrating the method’s suitability for quantitative 
analysis of this lipid. 

 Overall, the developed analytical method was shown to 
be suitably validated to measure accurate and precise con-
centrations of oxylipins from a rat brain extract. The 
method was fully validated in brain tissue (relevant for 
other neural tissue such as spinal cord, DRGs, and brain 
regions), and for both rat blood plasma and knee tissue 
was shown to give reproducible and linear calibrations 
(data not shown). A typical example of an extracted ion 
chromatogram from the analysis of a spinal cord sample is 
shown in supplementary Fig. V, showing a profi le of all the 
lipoxins measured in this individual sample. 

 Tissue distribution of bioactive lipids in normal rats 
 The method was used to generate a profi le of the differ-

ent bioactive lipids in a range of different tissues from 
naive rats. Eighteen lipids were measurable in these tissue 
samples: 5-HETE, 11-HETE, 12-HETE, 15-HETE, AEA, 
PEA, OEA, 2-AG, AraGly, PGD 2 /PGE 2 , TXB 2 , AA, LA, 
9-HODE, and 13-HODE (  Fig. 4  , supplementary Table II).  
All other lipids listed in the method were below the LLOQ, 
and hence are not reported in fi gures or tables relating to 
the biological tissue analysis. In  Fig. 4 , the lipids are classi-
fi ed according to the enzyme responsible for their produc-
tion (COX, LOX, or CYP) or as endocannabinoids and 
related compounds. 

 Blood plasma.   The range and concentration of oxy-
lipins in rat plasma were broadly in agreement with pre-
vious studies with AA, LA, and 2-AG, constituting over 
90% of the total oxylipins measured. Values for PGD 2 /
PGE 2 , AA, and LA were somewhat lower than previously 
reported [supplementary Table II ( 35 )], but those for 
AEA, PEA, and OEA (endocannabinoids) were in keep-
ing with previous work: 3.1 ± 0.6 pmol/ml, 9.4 ± 1.6 
pmol/ml, and 9.2 ± 1.8 pmol/ml, respectively ( 36 ). The 
12-HETE has previously measured in rat plasma at levels 
around 100 ng/ml ( 37 ). Lipoxgenases are highly ex-
pressed in blood and immune cells ( 37, 38 ), which may 
account for the high levels of LA- and AA-derived LOX 
products in plasma: 9-HODE, 13-HODE, 9-oxoODE, 
13-oxoODE, 12-HETE, and 15-HETE. The 12-HETE is 
primarily formed from the metabolism of AA by 12-LOX 
( Fig. 1 ), whereas the HODEs are formed through metabo-
lism of LA by 15-LOX [for review see ( 6 )]. The 15-LOX 

previous studies ( 32–34 ), we found that 5-HPETE and 
12-HPETE were unstable and lost water in the MS source; 
and hence, we found that monitoring  m/z  317 [M-H 2 O]  �   
as the precursor ion for these lipids produced a signifi cant 
improvement in sensitivity compared with use of  m/z  350 
[M-H]  �  . The  m/z  273 product ion was common to both 
the 5-HPETE and the 12-HPETE; hence, the unique prod-
uct ions of  m/z  153 for 12-HPETE (shown in supplemen-
tary Fig. II) and  m/z  115 for 5-HPETE were selected to 
clearly distinguish these lipids. 

 PGD 2 , PGE 2 , and TXB 2  had the same retention time in 
our method and also shared similar product ions. We used 
the unique MRM transition of  m/z  369.23 > 169.09 for the 
detection of TXB 2 , which was apparent in both a standard 
spectra and in a rat brain sample extract (supplementary 
Fig. III). However, the product ion spectra of PGD 2  and 
PGE 2  were very similar and it proved diffi cult to fi nd 
unique product ions. Consequently PGD 2  and PGE 2  could 
not be distinguished with confi dence by the method. 

 Validation of the LC-MS/MS method 
 The validation results in one tissue (rat brain) for 30 

representative lipids by this method are shown in supple-
mentary Table I. Linearity of the method was confi rmed 
by a seven-point calibration curve of each analyte over a 
range of 0.01–5 nmol/g (and 0.1–50 nmol/g for 2-AG). 
The correlation coeffi cients (r 2 ) in the validation ranged 
from 0.9311 to 0.9999 (supplementary Table I). Repro-
ducible recoveries, generally greater than 50%, were 
observed for the majority of the analytes. The lipids 
12-HPETE, 5-HPETE, 14,15-DHET, and AEA gave recov-
ery values below 50%, but these recoveries were reproduc-
ible and did not affect the quantifi cation of these lipids. 
Ion suppression analysis (supplementary Table I) indi-
cated that the majority of the analytes were minimally af-
fected by the rat brain tissue matrix, which agrees with a 
previous study in human blood plasma ( 23 ). 

 The accuracy and precision data for intraday (n = 5) 
and interday (n = 4) values for each analyte were within 

  Fig.   3.  A 3D chromatogram of the individual separation of each 
analyte in order of elution time.   
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generates 15-HETE from AA. It is noteworthy that posi-
tional specifi city of enzymes may be of pathophysiologi-
cal importance because LOXs in the rat favor production 

of 12-HPETE, which is further metabolized to 12-HETE; 
whereas in humans, 15-HPETE is favored ( 39 ). Samples 
of blood plasma (and other tissues) were cooled, pro-
cessed, and snap-frozen rapidly in an attempt to avoid 
known problems with artifactual generation of pros-
tanoids due to platelet aggregation ( 40 ) or activation 
of phospholipases ( 41 ) and the generally lower values 
of PGD 2 /PGE 2  reported here compared with previous 
literature values suggest that this was at least partially 
successful. 

 Knee joint.   Lipids in the rat knee joint are profi led here 
for the fi rst time. A similar profi le to that in rat plasma is 
reported, with AA (97%), LA (1%), and 2-AG (2%) com-
prising the majority of the lipids present. Levels of PGs in 
rabbit and human synovial fl uid ( 42–44 ) and levels of en-
docannabinoids in human synovial fl uid ( 45 ) have previously 
been reported. A higher proportion of LOX metabolites 
were present in the knee joint, compared with plasma. In 
addition, a high proportion of COX metabolites were also 
present in the knee joint, compared with plasma ( Fig. 4 ) .  
The 9- and 13-oxoODE, oxidative metabolites of the HODEs, 
were only detectable in the knee joint and plasma (supple-
mentary Table II). The level of LA detected in the knee 
joint was signifi cantly higher than the other tissues; this is 
particularly evident when expressed as a ratio of AA. 

 DRGS and spinal cord.   The distribution of lipids within 
the DRGs and spinal cord ( Fig. 4 , supplementary Table II) 
was different to the distribution of lipids in plasma and 
knee joint. In the DRGs, 99% of the lipids were AA, with 
2-AG making up 1%. The main difference when compar-
ing DRGs to the spinal cord and brain was the high levels 
of LOX metabolites; however, the main precursor, LA, was 
not detectable in the DRGs. In the DRGs, 5-HETE, 11-
HETE, 12-HETE, 15-HETE, AEA, PEA, OEA, 2-AG, PGD 2 /
PGE 2 , TXB 2 , AA, LA, 9-HODE, and 13-HODE were all de-
tected ( Fig. 4 , supplementary Table II). AraGly, along with 
8-HETE, were both below the limit of quantifi cation in this 
tissue. It is noteworthy that the LOX products (5-HETE 
and 12-HETE) can activate TRPV1, which is expressed by 
the small diameter sensory neurons, whose cell bodies are 
housed within the DRGs; hence, the presence of these bio-
active lipids in the DRGs likely refl ects a biological func-
tion. The 2-AG has previously been detected in the DRGs 
of the rat ( 46 ), however previously reported levels were 
considerably higher, which may refl ect differences in ex-
traction methods ( 46, 47 ). Comparison of the neural tis-
sue revealed that levels of lipids in the DRGs are very high 
compared with the spinal cord and brain ( Fig. 4 , supple-
mentary Table II). 

 In the spinal cord, the proportion of LA was relatively 
small and the major lipids were AA and 2-AG (supple-
mentary Table II). Comparison of the distribution of 
the lipids between tissues revealed some interesting dif-
ferences. In the spinal cord, 5-HETE, 11-HETE, 12-HETE, 
15-HETE, AEA, PEA, OEA, 2-AG, AraGly, PGD 2 /PGE 2 , 
TXB 2 , AA, LA, 9-HODE, and 13-HODE were detected (sup-
plementary Table II). The 8-HETE was below the limit 

  Fig.   4.  A: Lipid distribution of the measured analytes in knee joint 
(pmol/g) and plasma (pmol/ml), excluding 2-AG and AA. B: Lipid 
distribution of the measured analytes in knee joint and plasma, ex-
cluding LA, 2-AG, and AA. C: Lipid distribution of the measured 
analytes in spinal cord, DRGs, and brain. D: Lipid distribution of the 
measured analytes in rat brain divided into fi ve regions; frontal cor-
tex, midbrain, hippocampus, rest of cortex, and rest of brain                                       
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protein kinases, and neurotransmitter uptake systems, and 
therefore neuronal activity. 

 Multivariate data analysis [principle component analysis 
(PCA)] of naive rat lipid profi le data sets in all tissues 
(scores plot,   Fig. 5A  ) emphasizes the usefulness of the ana-
lytical method to profi le changes in the patterns of lipid 
distribution between tissues  .  PCA analysis shows three 
groups with similar distributions of oxylipins:  1 ) plasma 
and knee,  2 ) spinal cord and DRGs, and  3 ) brain regions. 
The PCA loadings plot ( Fig. 5B ) shows the dominant lip-
ids which typify these groups: LA higher in plasma and 
knee, PEA higher in spinal cord and DRGs, and AA higher 
in brain regions 

 Profi ling of bioactive lipid tissue distribution 
in a rat model of OA 

 Lipid profi les from saline- versus MIA-injected rats were 
compared to validate the use of this analytical method to 
determine changes in peripheral and central tissues under 
pathological conditions  . Intra-articular injection of saline 
did not alter weight distribution (day 28 contralateral: ip-
silateral difference = 2 ± 3 g) or hind paw withdrawal 
thresholds in the ipsilateral hind limb (day 28 = 15 g). 
Consistent with previous studies ( 30 ), intra-articular injec-
tion of MIA resulted in a signifi cant decrease in weight 
bearing on the ipsilateral hind limb from day 7 onwards 
compared with saline-treated rats (day 28 contralateral: ip-
silateral difference = 57 ± 12 g). In addition, intra-articular 
injection of MIA resulted in signifi cant decreases in hind 
paw withdrawal thresholds to mechanical punctuate stim-
ulation at day 28 (7 ± 2 g;  P  < 0.01) compared with saline-
treated rats (15 ± 0 g). 

 On the whole, levels of the lipids did not vary signifi -
cantly between MIA- and saline-treated rats (supplemen-
tary Table II). The exceptions were 12-HETE, which was 
signifi cantly increased in the knee joint in MIA-treated 
rats compared with saline-treated rats, and 15-HETE, 
which was signifi cantly increased in the DRGs in MIA-
treated rats compared with saline-treated rats (supplemen-
tary Table II). Comparison of 15-HETE levels in the 
various tissues from saline- and MIA-treated rats revealed 
that the elevation of 15-HETE was tissue specifi c and not a 
generalized effect (  Fig. 6  ).  It is noteworthy that levels of 
15-HETE were signifi cantly decreased in the spinal cord of 
MIA-treated rats compared with saline-treated rats. 

 CONCLUSIONS 

 The sensitive and selective LC-MS/MS method described 
allows comprehensive profi ling of a wide range of bioactive 
lipids ranging from pro-infl ammatory to anti-infl ammatory 
oxylipins, providing a useful analytical tool for biological 
investigation. The use of polarity switching and careful 
manipulation of chromatographic separation has enabled 
simultaneous analysis of a structurally diverse range of 
compounds and provides a more representative picture of 
the in vivo infl ammatory process. 

of quantifi cation and other lipids were not quantifi able 
in this tissue. These lipids have previously been measured 
in the spinal cord of rats, except for AraGly and 2-AG, 
using three separate methods: two LC-MS/MS methods 
(one positive mode and one negative mode) for analyzing 
the ethanolamines and eicosanoids, respectively, and a 
GS-MS method for analyzing the fatty acids ( 17 ). We and 
others have previously reported levels of 2-AG using a 
number of LC-MS/MS methods ( 46, 48–50 ), as well as 
AEA, OEA, and PEA ( 48 ) in the rat spinal cord. There is 
little information on spinal levels of eicosanoids apart from 
this publication; only PGD 2  has previously been measured 
in mouse spinal cord ( 51 ). 

 In general, the levels of the analytes measured herein 
are much lower than previous reports ( 17, 48 ). 

 Brain regions.   Tissue was subdivided into fi ve regions 
for analysis: frontal cortex, hippocampus, midbrain, rest 
of cortex, and rest of brain. In all brain regions, 5-HETE, 
8-HETE, 11-HETE, 12-HETE, 15-HETE, AEA, PEA, OEA, 
2-AG, AraGly, PGD 2 /PGE 2 , TXB 2 , AA, LA, 9-HODE, and 
13-HODE were detected ( Fig. 4 , supplementary Table 
II). In the frontal cortex, AA made up 99% of the distri-
bution, with 2-AG the remaining 1%; therefore, both 
these lipids were excluded again to show the distribu-
tion of the other lipids in this brain region. This was 
similar for the midbrain, hippocampus, rest of cortex, 
and rest of brain regions, where the AA made up 97–
98% of the distribution with 2-AG making up the re-
mainder. In whole rat cortex, 5-HETE, 8-HETE, 
12-HETE, and 20-HETE have previously been measured 
(ranging from 2.6 to 12.14 pg/mg), and PGD 2  and PGE 2  
have also been measured (1.76 and 3.97 pg/mg, respec-
tively) ( 52 ). Previously, AA, PGD 2 , PGE 2,  TXB 2 , 5-HETE, 
and 12-HETE were measured in ischemic rat brain; 
however, PGD 2  and PGE 2  were not detected in control 
brains ( 53 ). AEA, OEA, PEA, 2-AG, and AA have also 
been measured in the rat frontal cortex, where levels of 
these lipids were signifi cantly higher than those re-
ported with this method ( 54 ). AEA and 2-AG have been 
measured in the prefrontal cortex and hippocampus in 
rats ( 55 ). Endocannabinoids have also previously been 
measured in several different brain regions ( 28, 56, 57 ) 

 Regional differences in lipid profi les.   Comparison of the 
tissues revealed that the distribution of lipids in the spinal 
cord and brain are very similar ( Fig. 4 ). The main differ-
ence between neural tissue and the knee and plasma is the 
relative amounts of AA versus LA. The knee joint and 
plasma had considerably more LA compared with AA; 
whereas, the converse was true for all brain regions. Inter-
estingly, the DRGs and spinal cord had more equal levels 
of LA and AA present. A likely explanation for the high 
levels of AA in the brain is that neurons are not capable of 
AA synthesis from LA ( 58 ). Free AA is rapidly stored by 
esterifi cation to membrane phospholipids ( 59, 60 ). Once 
released, AA can be metabolized by COX, LOX, or CYP to 
produce lipids which can modulate ion channels, pumps, 
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  Fig.   5.  Lipid profi les from each rat tissue were analyzed using PCA to examine variation between samples 
represented by scores plot of a two-component PCA model of the dataset (A) and loadings plot of the same 
dataset (B). SC, spinal cord; FC, frontal cortex; HIP, hippocampus; MID, midbrain; ROC, rest of cortex; 
ROB, rest of brain.   
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