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There has been a growing interest in understanding how the relative levels of human

milk fat globule (MFG) components change over the course of lactation, how they

differ between populations, and implications of these changes for the health of the

infant. In this article, we describe studies published over the last 30 years which have

investigated components of the MFG in term milk, focusing on changes over the course

of lactation and highlighting infant andmaternal factors that may influence these changes.

We then consider how the potential health benefits of some of the milk fat globule

membrane (MFGM) components and derived ingredients relate to compositional and

functional aspects and how these change throughout lactation. The results show that the

concentrations of phospholipids, gangliosides, cholesterol, fatty acids and proteins vary

throughout lactation, and such changes are likely to reflect the changing requirements of

the growing infant. There is a lack of consistent trends for changes in phospholipids and

gangliosides across lactation which may reflect different methodological approaches.

Other factors such as maternal diet and geographical location have been shown to

influence human MFGM composition. The majority of research on the health benefits

of MFGM have been conducted using MFGM ingredients derived from bovine milk, and

using animal models which have clearly demonstrated the role of theMFGM in supporting

cognitive and immune health of infants at different stages of growth and development.

Keywords: milk fat globule, lactation, human milk, maternal origin, phospholipids, fatty acids, gangliosides

INTRODUCTION

Given the importance of breastfeeding, with theWHO recommendation that infants be exclusively
breast fed for the first 6 months of life (1), there is a growing interest in the health benefits of specific
components of human milk (HM). There is also interest in understanding how the relative levels
of these components change over the course of lactation, how they differ between populations, and
implications of these changes for the health of the infant. In addition, with the low prevalence of
breastfeeding, especially in high-income countries (≤40% at 6 months and ≤20% at 12 months)
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(2), knowledge on the compositional variation of HM helps to
tailor new infant formulations to better meet the nutritional
requirements of a growing infant.

Fat is the component of HM that provides most of the
energy and comprises a complex mixture of different lipid species
(3). To enable this fat [including triglycerides, diglycerides,
free fatty acids (FA), and cholesterol] to remain as a natural
emulsion within milk, lipids produced within the secretory cells
of the mammary gland are encapsulated by the milk fat globule
membrane (MFGM) (Figure 1). As the milk fat globule (MFG) is
synthesized in the rough endoplasmic reticulum, and transported
through the cell cytoplasm, it is secreted through the apical
membrane of the mammary epithelial cell. This results in the
lipids being stabilized by a membrane with three distinct layers;
an inner interfacial layer, the cytoplasm (enriched in protein),
and finally a true bilayer membrane (4).

It has been proposed that the complex structure of the
MFGM has arisen due to physiological constraints of the
secretion process, and that it would not in itself be expected
to contribute a significant health benefit to the offspring other
than suppling the lipids necessary for growth and development
(5). However, although some components of the MFGM are
relatively minor within milk [for example, MFGM proteins
contribute 1–4% of the total protein content in milk (6)], for
others, such as phospholipids, gangliosides and cholesterol the
MFGM represents the major source (7). Furthermore, although
the fundamental physiological function of the MFGM is to allow
for secretion of fat into milk, it is also clear that it communicates
chemically important growth and immunological signals to the
neonate (8). In addition, many different biological functions have
been reported to be associated with MFGM proteins including
protein synthesis/folding, signal transduction, transport, cell
communication, as well as energy production metabolism, and
immune function (6, 9).

In this article, we reviewed studies published from 1990 to
2020 that have investigated components of the MFGM in HM
from mothers that delivered at term. The focuses were on those
studies which have looked at changes over the course of lactation
(at least two stages of lactation) and highlighted infant and
maternal factors (including country of origin and diet) that may
influence these changes. We then considered the functional and
health effects of these compositional changes over the course
of lactation. We also included a brief overview of the pre-
clinical and clinical evidence of the health effects of MFGM
components and we discussed whether MFGM is a necessary
ingredient for infant formula products, to ensure that infants
receive appropriate nutrition in the critical early years.

Abbreviations: HM, Human milk; MFG, milk fat globule; MFGM, milk fat
globule membrane; FA, fatty acids; LA, linoleic acid; ALA, α-linolenic acid; EPA,
eicosapentaenoic; DHA, docosahexaenoic acid; ARA- arachidonic acid; PUFAs,
polyunsaturated fatty acids; MUFA, monounsaturated fatty acids; SFA, saturated
fatty acids; MCFA, medium chain fatty acids; DPA, docosapentaenoic acid;
OL, oleic acid; XO, xanthine oxidase; BTN, butyrophilin; ADPH, adipophilin;
MEC, mammary epithelium cells; MUC, mucin; ER, endoplasmic reticulum;
TAG, triacylglycerol; PC -phosphatidylcholine; PE, phosphatidylethanolamine;
PS, phosphatidylserine; PI, phosphatidylinositol; SM, sphingomyelin; GD3,
disialoganglioside; GM3, monosialodihexosylganglioside.

Search Strategy, Study Selection and
Exclusion Criteria
We performed a search and retrieved over 2,000 studies from
Ovid Medline and Scopus databases from 1990 to 15th July 2021,
as shown in Supplemental Material. All articles resulting from
the search were assessed for eligibility based on the titles and
abstracts. Of the remaining articles, full text was screened to
check for eligibility. Only observational studies were included
in this review. Studies were included if a specific human
milk fat globule membrane component (phospholipids, proteins,
gangliosides, and cholesterol) was measured at two or more
time points during lactation period. For each milk component,
we defined lactation period as colostrum (1 to 7 days post-
partum), transitional milk (8 to 15 days post-partum) andmature
milk (from 15 days post-partum). Studies reporting data from
mothers that delivered at term were included. The reference
lists of identified studies, reviews, and textbooks were reviewed
to avoid missing relevant publications. Only studies in English
were included. We created worksheets to systematically manage
study selection, collating relevant study details such as date
of publication, country of origin, lactation stage, measurement
points, results, and confounding factors (method of collection,
full expression, pre- or post-feed). We excluded (1) duplicate
publications, (2) multiple publications of the same trial, (3)
conference abstracts, (4) study protocols, (5) nonhuman studies,
(6) studies and trials where any intervention was administrated to
the mothers, (6) studies where samples were not from individual
participants (pooled samples), and (7) studies reporting preterm
milk data only.

MILK FAT GLOBULE

Milk fat is the most dynamic macronutrient in HM, and its
yield affects the MFG size distribution and the composition
and profile of MFGM components (10). The largest portion
of milk fat consist of triglycerides (98%) in the form of MFG
and other minor components such as diacylglycerides (<2%)
and free FA (11). Total fat concentration increases during
lactation, especially during the transition from colostrum to
transitional milk (12, 13) with smaller changes from transitional
to mature milk (12, 14). Although colostrum is known to be
rich in immune factors and proteins, mature milk, in contrast,
is energy dense to support infant growth (15). Fat concentration
in colostrum, transitional and mature milk shows a increase
trend from 1.1–5.9 to 3.0–5.6 g/100 and 2.0–6.1 g/100mL,
respectively, despite individual variability, sample type (pooled
milk, full breast expression, foremilk, hindmilk) or sampling time
(morning, night) (Supplementary Table 1, provides a summary
of studies regarding total fat concentration in human colostrum,
transitional, and mature milks).

Total fat changes during nursing; foremilk has a lower fat
concentration compared to hindmilk (16, 17) and fat also follows
a circadian rhythm (morning milk has lower concentration of fat
compared to evening milk) (12). The effects of circadian rhythms
in human fat have been recently reviewed (18). The authors
reported that 15 out of 19 reviewed studies described circadian
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FIGURE 1 | Representation of the origin and structure of the milk fat globules (MFG). MFG are secreted from the mammary epithelium cell (MEC), with components

from the endoplasmic reticulum (ER), cytoplasm and cellular membrane. The secreted MFG contain a triacylglycerol (TAG) core and a tri-layered structure, the milk fat

globule membrane (MFGM). The MFGM, in detail, shows the lateral segregation of sphingomyelin and glycolipids surrounded by the glycerophospholipids. Illustrative

pictures of some of the major MFGM proteins (which includes mucins (MUC-1, MUC15), lactadherin, adipophilin (ADPH), xanthine oxidase (XO) and butyrophilin) are

also presented. PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; PI, phosphatidylinositol.

variation with the peak in the evening, for total fat concentration.
Challenging this current dogma, a recent study reported that
the concentrations of human foremilk fat, collected daily, from
both breasts for 21 consecutive days did not differ according to
time of day, day of week or breast used for collection (19). This
suggests that circadian effects on milk fat may be observed only
in hind milk (where the concentration of fat is higher) and that
other factors, such as infant feeding pattern, time since last feed,
breast fullness and lactation period may also play an important
role on HM fat content. These factors may explain the large
variation in fat concentration observed between mothers, and
the consequent wide standard deviation reported in most studies
(Supplementary Table 1).

The average MFG size can vary during lactation, due to
the changes in the total amounts of milk fat produced during
lactation (20). For example, it has been reported (21) that fat
content as well as MFG average size increased from the third day
(3.24± 1.68%, 3.77± 0.95µm) until the 11 day of lactation (4.96
± 2.13%, 5.09± 0.88µm) and remained stable until the thirtieth
day. In contradiction, others reported that whereas fat increased
during lactation, colostrum had a larger MFG average size than
transitional and mature milk (22, 23). This may be explained by

coalescence of small globules with incomplete membrane coating
provided by the immature mammary gland (24). It has also been
demonstrated that increase in fat content in milk leads primarily
to the increase in the number of MFG rather than the size (25).
Changes in MFG numbers, therefore, are also likely to influence
the concentration of MFGM components in milk. Overall, the
increase in milk fat observed from colostrum to mature milk,
independent of individual variability, may lead to changes in
the MFG numbers and or size, affecting the concentration of
membrane components in milk.

Fatty Acids Composition
MFG (comprising a triacylglycerol core and the MFGM) are the
main source of FAs in HM supplying not only energy but also
essential and bioactive FAs for infant development. The HM
FA profile is diverse with over 200 FA structures with different
concentrations (26). Generally fatty acid compositional data from
both the triacylglycerol core and the MFGM are reported as a
total FAs profile.

Saturated FA (SFA), monounsaturated FA (MUFA) and
polyunsaturated FA (PUFA) represent 35–45%, 36–39 and
∼18% of the total fat content of HM whereas short-chain FA
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FIGURE 2 | Distribution of fatty acids categories in colostrum (1–7 days), transitional milk (8–15 days) and mature milk (15–60 days) after pooled data analysis of

worldwide milk samples reported by Floris et al. (28). (PUFAs) polyunsaturated fatty acids; (n-3 PUFAs) n-3 polyunsaturated fatty acids; (n-6 PUFAs) n-6

polyunsaturated fatty acids; (MUFA) monounsaturated fatty acids; (SFA) saturated fatty acids and (MCFA) medium chain fatty acids.

(SCFA) and medium-chain FA (MCFAs) contribute relatively
little (8%) (27, 28). Figure 2 reports fatty acid composition
of pooled data analysis reported by Floris et al. (28). Three
main sources of lipids are utilized in the synthesis of milk
lipids: maternal dietary lipid, FAs from adipose tissue and de
novo synthesized lipids. The importance of these sources is
FA-specific and may influence their concentration at different
stages of lactation. For example, palmitic acid (C16:0) and
the essential FAs linoleic acid (LA, C18:2 n−6) and α-
linolenic acid (ALA; C18:3 n−3) are sourced predominantly
from maternal fat storage (70%) and only some from maternal
dietary intake (30%) (29). MCFAs, however, are only synthesized
de novo in the mammary gland, and the concentration have
been suggested to be linked to mammary gland maturation
and therefore present at higher concentrations in mature
milk (30).

A recent systematic review including data from 55 studies
worldwide, and a total of 4,374 term milk samples reported
analysis for the variation of 36 main FA across lactation (28).
The most abundant SFA, palmitic (C16:0), stearic (C18:0)
and myristic (C14:0) and MUFA oleic acid (C18:1 n-9) were
shown to remain stable whereas gondoic (C20:1 n−9), erucic
(C22:1 n−9) and nervonic (C24:1 n−9) acid were shown to
decrease over the course of lactation (Figure 3) (28). The
opposite pattern was observed for the MCFAs, specially the
most abundant, lauric acid (C12:0), which was shown to almost
double from colostrum to transitional milk. Among the long-
chain PUFAs, n−6 PUFAs, and more specifically LA (C18:2
n−6, 16%), were the most abundant FA compared to n−3
PUFAs (3%). LA, eicosapentaenoic (EPA; C20:5 n−3) and ALA
concentrations were shown to be relatively stable during lactation
(Figure 3). However, a steady decrease of arachidonic acid (ARA;
C20:4 n−6), docosahexaenoic acid (DHA, C22:6 n−3) and
docosapentaenoic acid (DPA; C22:5 n−3) over the course of
lactation has been consistently reported in other literature (28,
31–33) (Figure 3).

Factors Affecting Fatty Acid Profile
Numerous studies have indicated the influence of maternal
origin, ethnicity (34), diet and cultural habits on the composition
of milk FAs (35–41). Brenna et al. (42) in a meta-analysis of 65
studies worldwide found that DHA concentration varies greatly
among countries with a mean (±SD) concentration of 0.32
± 0.22 and a range of 0.06–1.4%. DHA levels were higher in
countries with high consumption of fish, such as the Canadian
Artic (1.4%) and the Philippines, Japan (43, 44), Chile (44, 45)
and Taiwan (46) with levels above 0.4%. In contrast, countries
such as Pakistan (0.06%), Canada and the United States, had
very low DHA levels (below 0.2%). Geographical locations with
the highest DHA levels, e.g., Philippines and Japan also had
the highest EPA (C20:5n-3) levels ranging from 0.15–0.26%
(44) (Figure 4). Compared to DHA, ARA levels were shown
to be less variable among countries, with the mean level of
all samples being 0.41% (44) (Figure 4). This may due to the
poor conversion of dietary LA to ARA in milk (47). The mean
ARA:DHA ratio found for most countries (Australia, Canada,
UK, Mexico, China, Spain) was 1.6:1 whereas the ratio was lower
for Japan (0.5:1) and higher for China (2:1 to 3:1) (35, 36, 48)
and USA (3.2:1) (44) (Figure 4). Although optimal ARA:DHA
ratios are not fully elucidated, the ratio of both LCPUFAs was
suggested to impact immune response, cognitive and behavioral
outcomes, competition for tissue incorporation and risk for
atopic disease (49–51).

Human Milk LA levels were found to be relatively elevated
in countries, such as Mexico and Chile (∼16%) that, typically
consume a high-maize diet, compared to Australia, Canada, Iran
and the UK (∼10%) (44, 45, 52, 53). High levels of HM LA
(22%) and ARA (0.5%) were also reported in China compared
to Sweden (10 and 0.3%, respectively) (36), which may be linked
to the high consumption of SFA by the Chinese population (54).
The Philippines presented an odd FA profile, with low LA levels
(7%) and high levels of lauric (13%) andmyristic acids (12%) (44)
compared to other Asian countries (∼5 and 3–6%, respectively),
which may indicate consumption of diets restricted in both total

Frontiers in Nutrition | www.frontiersin.org 4 May 2022 | Volume 9 | Article 835856

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Thum et al. Milk Fat Lactation Variation

FIGURE 3 | Distribution of individual fatty acids in colostrum, transitional milk and mature milk after pooled data analysis of worldwide milk samples reported by Floris

et al. (28). (A) n-3 polyunsaturated fatty acids; (B) n-6 polyunsaturated fatty acids; (C) Monounsaturated fatty acids; (D) Saturated fatty acids and; (E) Medium chain

(C6-C12) saturated fatty acids.

fat and essential FA (55). The FA profile from Canada and China
(∼35%) had the highest oleic acid content compared to UK,
Australia, Japan, Chile and Mexico (26–32%) (44), most likely

due to a relatively elevated intake of canola or rapeseed oils in
these countries (56, 57). The ALA levels were constant, at ∼1%
of FA for Australia, Canada, Chile, Japan, UK, USA, Iran and
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FIGURE 4 | The ratio of arachidonic acid to docosahexaenoic acid (ARA:DHA) and the ratio of eicosapentaenoic acid to docosahexaenoic acid (EPA:DHA) in mature

human milk from nine different countries. Data extracted from Yuhas et al. (44). Means with different superscripts are statically different (P < 0.05), n = 44–54, per

country.

Mexico, but lower for the Philippines (0.43%) and higher for
China (2%) (44, 53). In general, higher percentages of PUFA have
been reported in Chinese HM studies (22.4–30.0%) (41, 58–60)
compared to developed Asian countries (17.25–21·50%) (44, 61)
and those in the Western countries (11.5–21%) (23, 62).

It is important to note that studies generally report data
from a specific country region, and interpretation of data must
be related to that specific geographical area and not to the
entire country. Previous studies have demonstrated that several
countries, such as France (63) and China (64) have regional
differences. It is also worth noting that factors other than diet and
geographical location may affect the profile of FA in milk. LA,
for example, was shown to be consistently more highly expressed
in HM secreted for male infants (37% increase) compared to
female (65). The effect of gestational age on FA profile has
been reviewed and linked to changes in DHA concentration
(increase in premature milk) in some studies (66) but not in
others (28).

COMPOSITION OF THE MILK FAT
GLOBULE MEMBRANE

The composition of the MFGM is more intricate than the MFG
core, with a ratio of ∼1:1 of proteins and lipids (67). Other

minor components, such as RNA, are also present (68). The
major MFGM proteins (i.e., that are well-described, and are
present in relatively high concentrations) are mucin 1 (MUC
1), xanthine oxidoreductase (XDH/XO or XOR), butyrophilin
(BTN), lactadherin (PAS 6/7, MFG-E8), CD 36, adipophilin,
and fatty acid-binding protein (FABP) (69). Proteomics studies
have demonstrated that there are at least 200 (70, 71) and
perhaps more than 400 (71, 72) proteins within the MFGM
of HM, and their relevance for human health is an area
of active research and commercial interest. In this review
we focus on a number of studies in which the putative
role of some of the major proteins are reported, and we
also include more detail on some proteomics studies of the
human MFGM, however it is beyond the scope of this review
to consider the levels and function of these minor proteins
in detail.

The key lipid species of the MFGM are phospholipids, with
phosphatidylethanolamine (PE, 6–36%), phosphatidylcholine
(PC, 14–38%), and sphingomyelin (SM, also a sphingolipid,
27–43%) being the major species, and phosphatidylserine
(PS) and phosphatidylinositol (PI) are relatively minor
components (Table 2) (58, 73). Other important lipid
components of the MFGM are cholesterol, gangliosides
and FA, which appear to play an integral role in cognitive
development (58).
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Phospholipids
Milk phospholipids have important functional properties
influencing general lipid absorption (74, 75), brain development
(76, 77) gut mucosal development (78), and immune
maturation (79).

Table 1 provides a summary of studies of total phospholipid
content of HM across lactation. Total phospholipids appear to
vary through lactation, with some studies reporting a decrease
over time (7, 58, 81, 83–86), whereas in one study the total
milk phospholipids concentration was reported to not vary across
lactation (82). Other studies have reported an increase in total
phospholipids from colostrum to transitional milk followed by
a decrease over the mature milk period (13, 23, 84). These
results might be explained by the relationship between the
phospholipids contents and the diameter of the MFG, where
phospholipids are generally negatively correlated to the diameter
of MFG (transitional milk < mature milk < colostrum). For
a constant total fat content in milk, more phospholipids are
required to cover the larger surface area of smaller MFG (see
details in “Milk Fat Globule” section).

The effects of geographical location on total HM phospholipid
composition were evaluated by Claumarchirant et al. (13),
reporting a higher concentration of total phospholipids in
transitional milk and at 6 months after delivery in a geographical
coastal zone (Valencia, 33–53mg 100 mL−1) compared to the
central zone (Madrid, 26–43mg 100 mL−1) of Spain. Similarly,
the geographical differences in total phospholipid in colostrum
among Chinese cities (Beijing, Suzhou and Guangzhou) has
also been reported recently by Giuffrida et al. (58). This study
showed higher concentrations of total phospholipid in mothers
from Suzhou (38mg 100 mL−1) compared to the other cities
(33mg 100mL−1) (Table 2). The authors hypothesized that these
differences could be due to the increased consumption of marine
foods or rapeseed oil in this region.

Table 2 provides a summary of studies on the variation of HM
phospholipid species across lactation. SM was found to be the
most abundant phospholipid (27.4–43.4% of total phospholipid)
from analysis using Phosphorus-31 nuclear magnetic resonance
(31P NMR), Thin-layer chromatography (TCL) (43.3 ± 2.6%)
(82, 88) and by High-performance liquid chromatography
with evaporative light-scattering detection (HPLC-ELSD) (23,
65, 84), with the exception of Giuffrida et al. (58) who
reported PC as the most abundant phospholipid using ELSD.
HM phospholipids analyses using liquid chromatography–mass
spectrometry generally conclude that the major phospholipid
is PE (7, 89). The difference in phospholipid composition may
be explained by the response differences of the detectors, or
by other factors, such as diet, geographical location, sampling
time, and gestation age at birth (preterm vs. term), metabolic
stage, and diurnal rhythm. Supplementary Table 2, summarizes
the methodology used to collect and analyses the phospholipid
composition in the studies reviewed.

Some differences in the distribution of HM phospholipid
classes have also been reported in different geographical locations
(Figure 5). A study conducted in a Chinese population showed
higher proportions of PC (35%) and lower concentrations of

PE (26%) in mature milk (58), compared to mothers from the
Unites Arab Emirates [14 and 36%, respectively (85)], Spain
[Madrid, Valencia and Murcia (15 and 31%, respectively) and
Malaya (14 and 36%, respectively (86)]. The studies conducted in
Spain showed that the distribution of mature milk phospholipids
from Granada (84) had higher proportions of PC (38%) and
lower proportions of PE (6%) compared to other parts of
Spain (Madrid, Valencia and Murcia, 13 and 32% respectively)
(13) (Figure 5). These discrepancies may be due to the type
of sample collection, as one study collected hindmilk (84)
and another did not report the type of sample collected (13)
(Supplementary Table 2).

Variation in phospholipid classes during lactation is shown in
Table 2. PC, PI and PS concentration was reported to be elevated
in colostrum, and decreased to lower levels in transitional and
mature milk (82) whereas, no significant differences were found
in the concentration of PE (82, 85) or SM (82, 84, 85) during
lactation. Other studies (7, 58, 81), however, found that all
individual PL decreased from colostrum to mature milk. An
increase in PE during lactation was observed by Sala-Vila et al.
(84). These authors reported an increased ratio of PUFA to
saturated fatty acid from colostrum and mature milk, suggesting
that this variation is related to the evolution of the fatty acid
content of total phospholipids. This increase may be due to
the preferential pattern of distribution of FAs into the different
classes of phospholipids. Although SM mainly esterifies mainly
saturated and monounsaturated fatty acids (MUFAs), PUFA are
mainly esterified in PE. PE exhibits an increase in LA (C18:2
n-6) as lactation progresses from the secretion of colostrum to
transitional milk and then to mature milk (90).

Phospholipids Fatty Acids Composition
There are only a few studies that investigated the FAs
composition associated with phospholipids in HM (23, 84, 88,
89, 91). Compared to a total milk FAs profile the MFGM had
increased concentrations of SFAs at all lactation stages (23). The
SFA (mainly C16:0 and C18:0) represent around 60–70% of FAs,
followed by oleic acid (C18:1 n-9), LA (C18:2 n-6) and the LC-
PUFA ARA (C20:4,n-6), adding up to 80% of total FAs (7, 82,
84, 91). Mature milk was reported to contain higher amounts
of saturated MCFA and lower contents of C16:0 compared to
colostrum and transitional milk, whereas the contents of total
MUFAs and PUFAs were not different (23) (Figure 6). PUFAs
(n-3) were found to increase from colostrum to mature milk,
whereas no difference was found for n-6 PUFAs, especially for
C18:2 n-6 (23). Another study found no difference among total
SFAs, MUFAs and PUFAs at different lactation stages but an
increase in C18:2 n-6 in mature milk (84). This is important as
the degree of FAs unsaturation, together with cholesterol and
SM, influence membrane fluidity. SFAs allow the phospholipids
to pack more closely in the membrane decreasing fluidity,
whereas unsaturated FAs increase fluidity (92), and affecting
digestion and perhaps functionality (93). The high content
of SFA and LCFAs (C22:0, C24:0 and C18:0) were shown to
contribute to the structural role of SM, maintaining rigidity of
the MFGM (94).
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TABLE 1 | Total phospholipid concentration in human colostrum, transitional, and mature milks.

Mothers Units Colostrum Transition milk Mature milk References

Country (Day 1–7) (Day 8–15) 1 month 2 months 3 months 4 months Up to 8 months

Singapore mg/100mL 23.0 ± 4.9 20.8 ± 8.5 24.2 ± 8.2 (65)

China (Beijing) mg/100mL 33.0 ± 11.2 24.4 ± 8.1 22.3 ± 9.9 (58)

China (Suzhou) mg/100mL 38.9 ± 18.8 34.9 ± 16.6 26.02 ± 11.3 (58)

China (Guangzhou) mg/100mL 33.2 ± 8.1 25.6 ± 11.1 25.3 ± 12.5 (58)

China (Shanghai,

Huangpu)

mg/100mL 40.7 22.9 (80)

China (Shanghai)* mg/100 g 35.1 ± 10.8 35.1 ± 8.6 28.1 ± 7.8 – (81)

China (Wuxi) µmol/100mL 25.8 ± 3.8 24.8 ± 3.5 23.7 ± 2.4 23.6 ± 3.6 22.6 ± 1.1 (82)

Ireland (Cork) mg/100mL 67.7 ± 14.5 48.7 ± 18.1 36.9 ± 16.4 (7)

France (Marseilles) mg/100mL 72 ± 51 55 ± 26 45 ± 26 (83)

Denmark mg polar

lipids/100 g

total lipids

4.4 ± 0.4 5.9 ± 0.3 5.1 ± 0.4 (23)

Spain (Granada) nmol/mL 202 ± 39 209 ± 38 147 ± 23 (84)

Spain (Madrid) mg/100mL 37.2 ± 1.0 43.7 ± 2.3 39.2 ± 2.8 35.9 ± 0.9 26.5 ± 0.7 (13)

Spain (Valencia) mg/100mL 31.5 ± 3.1 53.5 ± 2.5 42.2 ± 1.3 32.1 ± 1.8 33.4 ± 2.0 (13)

Spain (Murcia) mg/100mL 39.2 ± 2.5 34.9 ± 2.0 28.1 ± 1.4 (13)

United Arab

Emirates (Sharjah,

Dubai, and Ajman)

mg/L NR 269.0 ± 89.2 219.6 ± 85.0 (85)

Malay mg/L 352.4 ± 166.3 273.0 ± 58.4 147.1 ± 41.2 187.5 ± 110.0 (86)

*Only measured PC, PE, and SM. NR, not reported.

The concentration is shown as mean ± standard deviation. Units differ according to each publication.

Although ARA and DHA are mainly found in a triglyceride
structure within the core of the MFG, they are also found in
MFGM phospholipids, principally in PE (7, 89). One study
reported that around 10% of ARA is found in the phospholipid
fraction for both transitional and mature milk, whereas ∼10
and 22% of the DHA was found in the phospholipid fraction in
transitional and mature milk, respectively (83). This same study
also reported that the DHA:ARA ratio was significantly higher in
the phospholipid fraction compared to the triacylglycerol core,
suggesting that HMwith the higher phospholipid concentrations
may be more efficient for brain and intestinal LC-PUFA
accretion since phospholipids provides a best delivery system
(95, 96).

Recent studies, using a lipidomic approach, described the
distribution of HM glycerophospholipids molecular species
across lactation (7, 97, 98). The major glycerophospholipids
molecular species for PE, PC, PI and PS found in mature
milk of a Chinese cohort was C36:2 (35–64%) followed
by C36:1 [16–28%, with the exception of PC (4%)], with
both phospholipids increasing during lactation (98). This may
indicate that similar FAs moieties (34–36 carbons) across the
range of glycerophospholipids may have a functional role in
the MFGM. Similarly, high concentrations of C36:2 for PE
were also found in the milk of Singaporean mothers (97),
whereas C36:4 was the major molecular specie reported from
Irish mothers (7). The major types of PC varied according
to the study with C36:2 and C32:0 representing 31–41

and 10–13% of the molecular species, respectively, in some
studies (97, 98), while in another, it was about 12 and 46%,
respectively (7).

SM has a very distinct molecular profile in mature milk, with
d40:1 (20%), d42:1 (16%), d36:1 (14%), d34:1 (13%), d42:2 and
d38:1 (10% each), adding up to 85% of total SM molecules (98).
Although these major SM molecules were identified in other
studies (91, 97), their distribution were different. A very different
profile of SM molecules, d38:0 (47%), d38:1 (13%), d40:1 (16%),
d32:1 (7%), and d40:0 (13%), was reported in an Irish cohort
(7). As previously discussed, FAs composition can be affected
by maternal dietary factors and maternal geographical origin
observed across different cohorts. To our knowledge, no study
has addressed the effects of maternal geographical origin and diet
on phospholipid FAs, only on the total fatty acids profile.

Gangliosides
Table 3 provides a summary of studies reporting total
concentrations of HM gangliosides and GD3 (disialoganglioside)
and GM3 (monosialodihexosylganglioside) molecular structures
across lactation. Higher concentrations of total gangliosides
were found in colostrum, followed by transitional milk with
the lowest in mature milk, in most studies (99, 102, 105, 106).
A few studies reported that the concentrations of gangliosides
were relatively consistent during lactation (100, 101) or
increased from colostrum to mature milk (58, 103) and
continued to increase in mature milk (87, 106). Such
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TABLE 2 | Concentration of phospholipid species in human colostrum, transitional, and mature milks.

Colostrum (Day 1–7)

References (81) (82) (84) (23) (7) (58) (58) (58) (86) (13)

Country China

(Shanghai)

China (Wuxi) Spain

(Granada)

Denmark Ireland (Cork) China (Beijing) China (Suzhou) China

(Guangzhou)

Malay Spain (Madrid) Spain (Valencia

and Murcia)

Units mg/100 g µmol/100mL Total (202 ±

39 nmol/mL)

mg polar

lipids/total

lipids

mg/100mL mg/100mL mg/100mL mg/100mL mg/L mg/100 mL

Weight%

PE 4.61 ± 2.11 7.39 ± 0.58 5.86 ± 0.63 0.41 ± 0.03 49.40 ± 13.68 7.6 ± 3.1 12.6 ± 7.4 9.9 ± 2.6 89.9 ± 25.8 12.36 ± 0.61 10.46 ± 0.75

PC 20.32 ± 6.61 7.55 ± 1.52 38.40 ± 3.09 1.26 ± 0.19 11.44 ± 2.64 10.9 ± 4.8 12.6 ± 7.7 12.5 ± 4.6 76.7 ± 55.4 4.87 ± 0.11 4.51 ± 0.28

PS 1.29 ± 0.09 7.91 ± 1.12 0.56 ± 0.03 1.8 ± 2.3 1.7 ± 0.5 1.3 ± 0.4 125.8 ± 63.0 3.49 ± 0.01 3.43 ± 0.20

PI 1.05 ± 0.06 6.03 ± 0.61 0.36 ± 0.02 1.6 ± 0.5 2.3 ± 1.0 1.8 ± 0.5 11.2 ± 3.3 3.13 ± 0.01 3.12 ± 0.15

SM 10.14 ± 3.39 8.54 ± 1.83 40.49 ± 3.57 1.82 ± 0.26 6.90 ± 1.26 10.9 ± 4.9 9.7 ± 3.1 7.7 ± 1.6 39.7 ± 25.7 13.36 ± 0.29 9.95 ± 1.75

Transition milk (Day 8–15)

References (58) (58) (58) (81) (23) (82) (84) (7) (85) (86) (13)

Country China

(Beijing)

China

(Suzhou)

China

(Guangzhou)

China

(Shanghai)

Denmark China (Wuxi) Spain

(Granada)

Ireland (Cork) United Arab

Emirates

Malay Spain

(Madrid)

Spain

(Valencia and

Murcia)

Units mg/100mL mg/100mL mg/100mL mg/100 g mg polar

lipids/total

lipids

µmol/100mL Total (209 ±

38 nmol/mL)

mg/100mL mg/L mg/L mg/100 mL

Weight%

PE 7.3 ± 2.4 10.8 ± 5.8 5.6 ± 3.7 4.79 ±

2.01

0.77 ± 0.12 7.07 ± 0.60 8.55 ± 1.16 37.86 ± 14.00 66.3 ± 27.16 100.0 ± 24.5 13.90 ± 0.98 15.90 ± 0.85

PC 8.3 ± 3.7 11.9 ± 6.1 11.3 ± 5.6 19.94 ±

5.35

1.50 ± 0.13 7.21 ± 1.20 37.69 ± 4.88 6.56 ± 3.26 66.4 ± 32.87 48.6 ± 11.6 5.97 ± 0.15 8.09 ± 0.14

PS 1.0 ± 0.4 1.3 ± 0.5 0.8 ± 0.4 1.21 ± 0.24 8.17 ± 1.04 28.5 ± 13.29 90.9 ± 18.0 4.66 ± 0.10 6.74 ± 0.08

PI 1.5 ± 0.4 2.4 ± 1.1 1.2 ± 0.7 0.40 ± 0.03 0.93 ± 0.30 5.21 ± 0.54 11.2 ± 5.5 9.6 ± 3.0 4.30 ± 0.07a 6.32 ± 0.05

SM 6.2 ± 3.8 8.5 ± 4.7 6.8 ± 2.7 10.37 ±

2.69

2.37 ± 0.40 8.37 ± 1.54 39.20 ± 3.63 4.23 ± 1.88 91.2 ± 26.38 20.9 ± 5.7 14.86 ± 1.11 16.49 ± 1.46

Mature milk

1 month (16–60 days) 2 months

References (23) (82) (82) (84) (65) (13) (81) (82) (86)

Country Denmark China (Wuxi) China (Wuxi) Spain

(Granada)

Singapore Spain (Madrid) Spain

(Valencia)

Spain (Murcia) China

(Shanghai)

China (Wuxi) Malay

Units mg polar

lipids/total

lipids

µmol/100mL µmol/100mL µmol/100mL mg/100mL mg/100mL mg/100 g µmol/100mL mg/L

PE 0.76 ± 0.10 7.21 ± 1.20 6.92 ± 0.98 1.87 ± 0.17 6.76 ± 1.86 11.98 ± 1.09 12.68 ± 0.66 11.58 ± 0.98 3.63 ± 1.53 6.89 ± 1.22 39.3 ± 15.8

PC 1.07 ± 0.11 1.21 ± 0.24 6.74 ± 0.72 4.59 ± 0.70 5.97 ± 1.34 5.42 ± 0.31 6.55 ± 0.13 5.67 ± 0.24 15.41 ± 5.09 6.06 ± 0.60 21.0 ± 10.8

PS 0.84 ± 0.06 0.93 ± 0.30 1.03 ± 0.15 1.52 ± 0.19 0.75 ± 0.31 4.45 ± 0.24 5.55 ± 0.07 4.90 ± 0.18 1.15 ± 0.22 14.8 ± 7.7

PI 0.41 ± 0.02 8.37 ± 1.54 0.64 ± 0.08 0.86 ± 0.07 1.07 ± 0.35 4.15 ± 0.24 5.20 ± 0.04 4.60 ± 0.17 1.00 ± 0.21 6.3 ± 3.6

SM 1.97 ± 0.33 41.03 ± 3.41 8.34 ± 0.94 6.03 ± 0.50 8.47 ± 1.72 13.20 ± 1.27 12.19 ± 0.54 12.44 ± 1.11 9.07 ± 2.52 6.89 ± 1.22 57.4 ± 11.7

(Continued)

F
ro
n
tie
rs

in
N
u
tritio

n
|w

w
w
.fro

n
tie
rsin

.o
rg

9
M
a
y
2
0
2
2
|
V
o
lu
m
e
9
|A

rtic
le
8
3
5
8
5
6

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


T
h
u
m

e
t
a
l.

M
ilk

F
a
t
L
a
c
ta
tio

n
V
a
ria

tio
n

TABLE 2 | Continued

Mature milk

3 months 61–135 days 4 months 6 months

References (65) (82) (13) (7) (87)

Country Singapore China (Wuxi) Spain (Madrid) Spain (Valencia) Spain (Murcia) Ireland (Cork) Malay

Units mg/100mL µmol/100mL mg/100mL mg/100mL mg/L

PE 6.36 ± 3.11 7.13 ± 0.32 10.71 ± 0.24 9.51 ± 0.76 11.36 ± 0.73 29.15 ± 13.04 66.1 ± 0.

PC 4.84 ± 2.06 5.89 ± 0.53 5.06 ± 0.14 4.92 ± 0.13 4.86 ± 0.16 4.50 ± 1.97 23.7 ± 0.

PS 0.75 ± 0.33 0.85 ± 0.07 4.56 ± 0.14 4.39 ± 0.06 4.30 ± 0.13 15.5 ± 9.4

PI 1.13 ± 0.55 0.75 ± 0.14 4.23 ± 0.11 4.13 ± 0.05 4.06 ± 0.13 5.9 ± 0.0

SM 7.71 ± 3.01 8.15 ± 0.55 11.34 ± 0.34 9.20 ± 0.90 10.29 ± 0.83 3.29 ± 1.73 70.4 ± 36.8

Mature milk

Up to 8 months

References (65) (85) (58) (13)

Country Singapore United Arab Emirates

(Sharjah, Dubai, and

Ajman)

China (Beijing) China (Suzhou) China (Guangzhou) Spain (Madrid) Spain (Valencia) Spain (Murcia)

Units mg/100mL mg/L mg/100mL mg/100mL mg/100mL mg/100 mL

PE 8.08 ± 3.10 80.0 ± 35.35 5.3 ± 2.6 7.3 ± 3.2 7.1 ± 3.9 8.29 ± 0.40 10.24 ± 0.60 8.37 ± 0.56

PC 4.94 ± 1.88 30.2 ± 22.07 7.6 ± 4.5 8.5 ± 5.3 8.6 ± 5.1 3.79 ± 0.19 5.02 ± 0.16 4.13 ± 0.12

PS 0.91 ± 0.33- 16.1 ± 6.99 0.9 ± 1.2 1.2 ± 1.4 1.0 ± 0.6 3.39 ± 0.17 4.49 ± 0.07 3.73 ± 0.11

PI 1.67 ± 0.66 6.5 ± 3.61 1.2 ± 0.5 1.7 ± 0.8 1.5 ± 0.8 3.12 ± 0.1 4.23 ± 0.08 3.50 ± 0.09

SM 8.26 ± 2.64 82.9 ± 29.21 7.3 ± 3.9 7.4 ± 4.2 7.1 ± 4.0 7.96 ± 0.11 9.44 ± 1.09 8.39 ± 0.52

PE, phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine; PC, phosphatidylcholine; SM, sphingomyelin.

The concentration is shown as mean ± standard deviation. Units differ according to each publication.
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FIGURE 5 | Distribution of phospholipid classes in colostrum (C), transitional milk (TM) and mature milk (MM) in different geographical cohorts. Data from (23),

Denmark; (86), Malaysia; (13), Spain (Madrid, Valencia and Murcia); (84), Spain (Granada); (58), China (Beijing and Suzhou); (85), UAE (Sharjah, Dubai, and Ajman). PE,

phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine; PC, phosphatidylcholine; SM, sphingomyelin.

FIGURE 6 | Distribution of phospholipids fatty acids categories in colostrum (1–7 days), transitional milk (8–15 days) and mature milk (60 days) from Chinese mothers

reported by Wei et al. (82). PUFAs, polyunsaturated fatty acids; n-3 PUFAs, n-3 polyunsaturated fatty acids; n-6 PUFAs, n-6 polyunsaturated fatty acids; MUFA,

monounsaturated fatty acids; SFA, saturated fatty acids.

discrepancies in the results could be due to differences
in sampling, analytical methods (Supplementary Table 2)
and other factors such as maternal diet and infant gender,
etc. A significant positive correlation between gangliosides

and total milk lipid has been described (87, 100, 104, 106).
Gangliosides are found in the MFGM surrounding the
fat droplet; therefore, if the gangliosides were a constant
proportion of the MFGM and the MFG were a similar size,
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TABLE 3 | Concentration of ganglioside molecular structures in human colostrum, transitional, and mature milks.

Colostrum 0–11 days

References (99) (79)* (100) (100) (101)* (87)# (102) (58)# (103)#

Country Spain Spain Panama Spain Japan Malaysia China China China

Units mg LBSA/kg µg LBSA/g µg LBSA/g µg LBSA/g µg LBSA/mL mg/L mg/L mg/L µg/mL

Total 2.3 ± 0.5 2.9 2.2 ± 0.4 3.6 ± 0.6 9.2 ± 2.0 26.8 15.9 ± 5.9 8.0 ± 5.3 8.1

GM3 8.8 ± 2.2% 7.40% 6.2 ± 2.3% 6.2 ± 2.3% 3.7 ± 2.0% 6.5 ± 7.0 2.3 ± 0.5 3.8 ± 2.5 4.3 ± 0.9

GD3 63.2 ± 4.0% 37.40% 51.3 ± 7.0% 43.7 ± 2.5% 46.7 ± 9.9% 20.3 ± 13.0 13.7 ± 5.7 4.1 ± 4.5 3.8 ± 0.4

Transitional milk 16 days-8

months

References (99) (79)* (100) (100) (101)* (87)# (102) (58)# (103)# (99)

Country Spain Spain Panama Spain Japan United Arab

Emirates

Malaysia China China China

Units mg LBSA/kg µg LBSA/g µg/g µg/g µg LBSA/mL mg/L mg/L mg/L mg/L mg/L

Total 1.38 ± 0.4 1.54 3.8 ± 0.8 3.7 ± 0.6 9.2 ± 0.2 21.2 ± 11.5 18.9 12.7 ± 4.5 8.5 ± 4.5 11.0 ± 5.0

GM3 11.6 ± 2.2% 1.6 12.0 ± 2.0% 10.2 ± 1.6% 26.7 ± 5.9% 9.5 ± 8.4 8.3 ± 4.8 2.1 ± 0.3 5.5 ± 3.2 10.1 ± 4.6

GD3 52.4 ± 4.2% 21 34.4 ± 3.5% 38.9 ± 3.0% 31.2 ± 7.6% 11.7 ± 9.5 10.6 ± 4.3 10.6 ± 4.4 3.0 ± 3.4 1.0 ± 1.7

Mature milk

1 month

References (101)* (104)* (100) (100) (42) (103)# (58)# (65)# (102) (86)

Country Japan Spain Panama Spain Spain China China Singapore China China

(Guangzhou)

Units µg LBSA/ mL µg LBSA/g LBSA µg/g LBSA µg/g mg LBSA/kg µg/mL mg/L mg/L mg/L mg/L

Total 9.0 ± 1.6 0.82 4.3 ± 2.1 2.1 ± 0.5 0.8 ± 0.2 9.1 9.5 ± 3.1 13.1 ± 6.7

GM3 32.1 ± 7.6% 47.4% 27.2 ± 6.5% 22.0 ± 2.7% 50.2 ± 1.6% 7.4 ± 0.2 10.1 ± 4.6 2.3 ± 0.8 2.2 ± 1.1 8.5 ±

4.7%

GD3 19.9 ± 2.1% 8.2% 23.2 ± 6.9% 21.5 ± 3.7% 21.3 ± 1.3% 1.7 ± 0.2 1.0 ± 1.7 2.3 ± 1.2 7.2 ± 3.2 4.6 ±

3.1%

Mature milk

2 months 3 months

References (101)* (104)* (100) (100) (42) (103)# (58)# (65)# (102)

Country Spain China (Guangzhou) China China Singapore Malaysia Spain China China (Guangzhou)

Units µg LBSA/g mg/L mg/L µg/mL mg/L mg/L µg LBSA/g mg/L mg/L

Total 0.85 18.2 ± 7.8 7.4 ± 2.2 10 14.8 ± 8.0 1.39 7.5 ± 2.3 20.9 ± 10.5

GM3 42.3% 11.3 ± 6.2% 2.2 ± 0.8 9.1 ± 0.3 2.9 ± 1.4 8.3 ± 5.5 56.3% 2.1 ± 0.6 17.4 ± 9.0%

GD3 9.3% 7.0 ± 7.7% 5.2 ± 2.1 0.9 ± 0.1 1.9 ± 2.0 6.5 ± 5.1 13.5% 5.3 ± 2.3 3.5 ± 2.5%

(Continued)
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more gangliosides would be expected with an increase in
fat content.

Due to the large range of ganglioside structures, quantification
of gangliosides can be difficult. Until 2009, conventional methods
to detect and quantify gangliosides were mainly based on high-
performance thin-layer chromatography (HPTLC) and results
were converted from lipid-bound sialic acid (LBSA). Data were
often inaccurate due to limitations of these method (107). An
improved HPLC-MS method was developed by Fong et al.
(108), reporting the content and number and a large number
of ganglioside structures in different food matrixes. In 2013–
2014, this method was used to report that the total content of
gangliosides in HM of Singaporean and Chinese mothers 30–120
days after delivery was 4.6–5.6 and 9.1–10.7 mg/L, respectively
(65, 103). In 2015, Ma et al. reported the content of HM in
mothers from South China within 8 months after delivery as
13.1–22.9 mg/L (106) and Tan et al. (102) reported the content
of gangliosides in HM of Chinese mothers was 6.5–15.9 mg/L
within 6 months after delivery (102). The lowest content (0.8
mg/L) was observed for Spanish samples from studies using the
HPTLC methodology (99). It is interesting to note that high
overall ganglioside concentrations in milk were reported in Asian
mothers (7- 25.3 mg/L) (Table 3) (58, 101, 102, 106) where
nutritional aspects (such as fat being mainly sourced from fish)
may largely contribute to these findings.

Among the seven different gangliosides that have been
identified in HM (99, 101, 104), GD3 and GM3, referred to as
“simple” gangliosides, are the prevalent individual components
of the ganglioside fraction. GD3 ganglioside is the predominant
form present in human colostrum and transitional milk (30–
80%) but concentrations decrease up to 4–6 months post-partum
(8–25%). Conversely, GM3 is predominance in mature milk (58,
100, 106, 109). These gangliosides are likely to survive the infant’s
digestion, reaching the intestinal tract and having an inhibitory
effect on the adhesion of pathogenic bacteria (110, 111). It has
been suggested that in early milk GD3 may have a role in organ
development, such as of the gut and brain (112). The increase
in GM3 in mature milk has been linked to the development of
the immune and central nervous systems by supporting signal
transduction, cell adhesion, and growth factor receptors (79).
Therefore, the variation in the ganglioside composition of HM
over the course of lactation might be linked to alterations that
occur in the immunological prophylactic system, and in the
development of the central nervous system and the autonomic
nervous system of the intestine and other organs.

Large variations in the concentration of individual
gangliosides can be observed in studies using similar
methodologies (Supplementary Table 2). Giuffrida et al.
(58) reported average GM3 values, in colostrum and transitional
milk, of 4.1 and 3.0 mg/L, respectively, whereas Ma et al. (87)
reported 20 and 10 mg/L, respectively. Within mature milk, at
1–2 months and 3–8 months GD3 content was reported to be
as low as 0.87 and 0.25–0.50 mg/L, respectively (58) and high
as 4.6–7.0 and 1.5–2.7 mg/L (87, 106), respectively in Asian
mothers. Interestingly, infant gender may influence gangliosides
concentration with one study reporting an increase in GM3 in
milk for male infants at 120 days of lactation compared to milk
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for female infants (65). These authors indicated that the increase
in the total amount of lipid in milk for male infants at 120 days
(119%) could partly explain the observed increase in GM3 and
other amphipathic molecules such as phospholipids (PC, PI, PE,
and SM).

Only one study compared the concentrations of HM
gangliosides in different countries across lactation stages (100).
Although no statistically significant differences were observed
across locations and lactation periods, the gangliosides content
tended to be higher in Spanish mothers colostrum compared to
Panamanian mothers colostrum. The opposite observation was
found in mature milk, where fat and gangliosides content were
enriched in Panamanian mothers (100). These authors indicate
that although different dietary habits were observed among these
countries, the use of foremilk for their investigations may have
masked the effects of maternal origin on gangliosides content.

Cholesterol
The MFGM is the source of cholesterol in HM, which is essential
for the synthesis of lipoproteins, bile acids, hormones and
calciferols, therefore, essential to infant growth (113). Moreover,
cholesterol is a crucial part of the cell membranes and myelin,
and is especially required during the neuroplasticity period
(from conception to up to 4 years old) (114, 115). Despite the
importance of cholesterol, only a few studies have examined
the concentration of this bioactive compound in HM during
lactation. Most studies, not reviewed here, were published before
1990 and showed large variability, probably due to the limitations
of analytical methods available at the time.

In general HM cholesterol changes dynamically throughout
lactation, with the highest level in colostrum, decreasing
significantly during the first month after delivery (116–118)
(Table 4). One particular study showed that HM cholesterol
decreased by 60% from colostrum to the first month postpartum
(118), and another by half at 6 months postpartum (123).
After the first month postpartum, the decline in cholesterol
concentration was shown to be much less pronounced (117, 118,
123) and this may be associated with the MFG size and number.
Changes in the MFG diameter from colostrum to mature milk
(from ∼ 3µm in colostrum to around 5µm in mature milk) as
well as a decrease in the number of globules leads to reduced
MFGM surface area and consequently, cholesterol.

Studies of HM in Iraq, Spain, Portugal, and China reported
similar ranges of cholesterol in colostrum (20–29 mg/100mL),
whereas studies in Poland and Africa reported the lowest (3.4–
11.9 mg/100mL) and the highest (36.0 ± 16.2 mg/100mL)
concentrations, respectively. Similar results were observed for
mature milk, with cholesterol concentrations ranging from 11
to 13 mg/100mL for most countries but higher in the study
conducted in Africa (19 mg/mL).

Proteins
Proteins represent 25–60% of the total MFGMmass and 1–4% of
the total protein content of HM. The use of proteomic techniques
has enabled the assessment of MFGM-derived proteins to
understand their diversity and physiological roles (70–72, 125–
129). Beyond a nutritional source, the main human MFGM

proteins were shown to have a role on cell communication and
signal transduction, immune function, metabolism, and energy
production (6).

The proteomics studies generally do not provide absolute
quantitative data, however by comparing relative levels they
can provide information on how MFGM proteins change over
the course of lactation. In one relatively early study, Cavaletto
et al. (130) used proteomics to assess the MFGM butyrophilin
(BTN) protein family (which comprises seven proteins); they
observed only slight differences in BTN spot distribution
when comparing colostrum with mature milk. More recently,
relative quantification of MFGM proteins during lactation was
performed by label free spectral counting and differentiation
expression analysis (6). This demonstrated a change in relative
levels of manyminorMFGMproteins from early to late lactation;
for example, alpha-1-antitrypsin, alpha-amylase, apolipoproteins
D and E, alpha-enolase, insulin-like growth factor-binding
protein 2 and long chain fatty acid-coA ligase 4 were expressed
at higher levels during early lactation (particularly in colostrum),
whereas CD9 antigen, fatty acid binding protein, folate receptor
alpha, and glutathione peroxidase 3 were expressed at higher
levels during late lactation (6–12 months). Interestingly, other
proteins such as xanthine dehydrogenase/oxidase, complement
C3, BTNA1 and Annexin 2 had a sharp increase in concentration
later in lactation (3–6 months). Other studies showed that, as
observed for total proteins (131), the colostral MFGM proteome
contains a higher number of proteins related to the establishing
immune system than mature milk (71, 129). This may indicate
that proteins may be expressed to aid a particular developmental
stage of the infant (73).

Individual MFGM Proteins
Within the timeframe specified for this review, there are few
reports in which levels of MFGM proteins have been quantified
in HM. One study of 45 mothers in León, Nicaragua measured
lactadherin in HM at 3 months of age, reporting a median
concentration of 5.4µg/mL (interquartile range, 4.0–7.3) (132). It
should be noted that this level wasmeasured following a rotavirus
vaccination, so it is not clear whether this represents a normal
level in HM. In addition, there were no data on changes in
lactadherin through lactation in this study.

In an observational study, 200 infants in Mexico were
recruited at birth, and their stool monitored for rotavirus
infection; at the same time, samples of mothers’ milk were
collected, and assayed for a range of MFGM-associated proteins
(133). Similar to observations regarding levels of phospholipids,
these analyses showed wide inter-individual variation, with levels
of lactadherin in HM ranging from 5.6 to 180µg/mL. This also
demonstrated an association between levels of lactadherin and
protection of infants from rotavirus infection, consistent with
this protein playing a role in immunity and response to infection.

Glycoproteins and Phosphoproteins
Protein glycosylation, the attachment of a carbohydrate
(glycan) to a protein, is one of the most common post-
translational modifications of proteins. Glycosylation has
been reported to be involved in several biological and cellular
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TABLE 4 | Concentration of cholesterol in human colostrum, transitional, and mature milks.

Country Sample collection Method

analysis

Colostrum Transitional Mature milk Reference

1 month 2 months 3 months 4 months 5 months 6 months

Spain Pooled milk E-S 11.3 ± 0.4 (119)

Iraqi Partial expression

(5–10mL) of two

breasts combined

morning

E-S 28.3 ± 4.2 (120)

USA NR GC 14.2 ± 3.3 (121)

Netherlands 24 h sample GC-FID 16.6 12.8 ± 1.0 (122)

Spain Pooled milk GC 20.7 ± 0.6 14.8 ± 0.8 12.8 ± 0.5 10.9 ± 0.5 10.1 ± 0.4 (123)

E-S 23.2 ± 1.1 17.1 ± 0.8 13.6 ± 0.5 12.8 ± 0.2 11.7 ± 0.1

Poland NR ATR-FTIR 3.4–11.9 4.4–13.0 (124)

Portugal NR HPLC-

DAD

29.2 ±

0.01

17.4 ± 0.5 12.0 ± 0.1 9.5 ± 0.1 (117)

African Manual expression,

mid-way through

nursing

GC 36.0 ±

16.2

19.7 ± 0.7 19.0 ± 0.8 (116)

China Full single breast

expression,

mechanical

expression, morning

HPLC 20 17.1 12.6 (118)

NR, not reported; E-S, enzymatic–spectrophotometric; GC, gas chromatography; ATR-FTIR, attenuated total reflectance–Fourier transform infrared spectroscopy; HPLC-DAD,

high-performance liquid chromatography with diode array detector.

The concentration is shown as mean ± standard deviation (mg/100 mL).

functions, including protein folding, immune response,
and pathogen binding (134, 135). Many MFGM proteins,
for example, the major proteins mucins, lactadherin, and
butyrophilin (136). LC-MS/MS analysis of pooled samples
from a total of 60 mothers (30 colostrum, 30 mature milk)
identified 220 MFGM N-glycoproteins differentially expressed
in mature milk compared with colostrum, demonstrating
a significant shift in N-glycoprotein composition of HM
across lactation (72). Among those proteins differently
glycosylated, the proteins involved in immune system
maturation and microbial colonization, such as lactoperoxidase,
major histocompatibility complex (MHC) and cell adhesion
molecules (CAMs) showed increased N-glycosylation levels
in colostrum compared to mature milk (72). This may play
a significant role in the formation of the immune system of
infants. Also, it has been proposed that not only the overall
concentration of a protein is crucial for its overall activity
but understanding glycosylation pattern during lactation
could also reflect the individual needs of infants during their
growth (137).

Protein phosphorylation is another common posttranslational
modification, regulating various cellular processes such as
protein location, interaction, and overall function (138).
Therefore, understanding the variation in phosphopeptides is
very important to recognize the changes of many biological
processes in health and disease (139). Recently, a quantitative
phosphoproteomics analysis of human MFGM demonstrated
that colostrum and mature milk have different phosphorylation
profiles (129). Among 203 phosphoproteins identified, 48

proteins were differentially expressed between the different
stages of lactation. Of those, phosphoproteins related to the
cellular process and immunity (27 and 24 phosphorylation sites,
respectively) were identified only in human colostrum milk.

FACTORS INFLUENCING MFGM
COMPONENTS

Stage of lactation is clearly one factor that impacts on MFGM
composition. There are also several maternal factors influencing
MFGM content of HM, and these have recently been reviewed
(17, 73). Some of them, such as stage of lactation, circadian
rhythms, infant birth weight, gender (140), development at
delivery (pre-term vs. term) (141), maternal diet and weight, and
method of breast milk expression (17) can directly affect the total
lipid content in milk, and MFG size and numbers. Because lipids
and proteins are the major components of the MFGM, these have
been most widely assessed in this context.

Lipids
Although FAs in the core of the globule and those in the MFGM
have not been separately analyzed in many studies of milk lipids
(73), some insight has been gained into key maternal factors
that influence the lipid composition of the MFGM. In addition
to lactation stage, the following factors also influence MFGM-
derived lipid levels in HM.
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Method of Sample Collection
There are two main methods of HM collection, by hand or
mechanical expression by electric pump. An electric pump cycles
the negative pressure with a rhythmic action simulating suckling,
which provides a standardized method to collect milk samples
(142). Milk hand expression generally requires breast massage,
which can increase release of milk fat (143). Variation in nutrient
content across expression methods needs to be considered when
interpreting data.

Time of Collection and Subsampling
Lipid content varies over the course of the day (with higher
concentrations found in the evening milk) and ideally milk
samples representative of 24h production should be obtained.
The difficulty to obtain these samples generally leads to the
collection of full expression from one breast, a few mL of
hindmilk, foremilk or a combination of both (142). The total
amount of fat changes over time during nursing; foremilk
has a lower fat concentration compared to hindmilk (16,
17) and fat also follows a circadian rhythm (morning milk
has lower concentration of fat compared to evening milk)
[reviewed by Italianer et al. (18)]. It has also been suggested
that nursing frequency and breast (left or right) may affect milk
macronutrient composition. The impact of breast (left or right)
on macronutrient composition has been linked to the level of
fullness of the breast before sampling, in turn linked with the
last feed (144). This highlights the importance of standardization
of milk collection methods or at least a thoughtful reporting
of the conditions of milk collection in studies that report milk
composition data.

Genetic Factors
Few studies have been published on maternal genetics regulating
levels of MFGM phospholipid classes. One such study describes
a polymorphism in the diacylglycerol acyltransferase 1
(DGAT1) gene which was associated with altered phospholipid
composition and phospholipid/TAG ratios (145). However,
this study was on bovine milk, hence more research is needed
to understand the extent of the influence of genetic variation
in HM.

Diet
Of particular relevance to this review, milk ganglioside, FAs
and phospholipid concentrations have been reported to differ
according to geographical locations, suggesting that diet may
influence the amounts in HM (58). Indeed, several studies
have reported associations between maternal diet and milk lipid
composition [reviewed by Bravi et al. (146)]. Crossover (147–
149) and observational studies (146, 150) indicate that maternal
lipid intake plays an important role on the HM total fat content
and FA profile. Lipids from maternal diet is one of the three
known sources of milk lipids, the other being de novo synthesis
and FAs from maternal adipose tissue. Other food components,
such as choline dietary supplementation has been shown to be
positively correlated with HM PC, especially in choline-deficient
diets (151). The impact of maternal diet, however, may vary

for particular MFGM components. The content of the long-
chain fatty acid DHA within particular phospholipids in HM,
for example, appears to be independent of the maternal intake
of these compounds (152).

Gender of the Infant
The potential for the infant’s gender to influence maternal
milk composition has recently been reviewed (153). Evidence to
support this idea is largely from animal studies which suggest
gender is a predictive determinant of milk composition. In
human studies, the lipid content in mature milk produced for
males was higher thanmilk produced for female infants (65, 154).
Authors hypothesized that higher suckling response (longer and
more frequent) from male infants may feedback as a message for
additional energy content that results in increased energy output
from the mother. It is important to note that most studies did not
assess individual milk production or infant intake, restricting the
ability to account for volume and overall fat production.

Gestation Length (Term vs. Pre-term)
There is evidence that pre-term delivery may result in a different
phospholipid profile in HM (7), with some evidence that
sphingomyelin and PE may decrease in full-term colostrum,
whereas other phospholipids such as PC, PI, and PS showed no
correlation with delivery term (155). However, as this review is
focused on normal, term infants we have not considered this
aspect further.

Maternal Factors
Maternal factors such as body weight have been shown to
correlate with milk lipid concentration in early (20, 39, 156)
and late lactation (after 6 months post-partum) (157, 158). In
a recent systematic review of 63 datapoints, a meta-regression
analysis demonstrated a positive association between maternal
BMI and human milk fat (115). It has been hypothesized that
while in early lactation fat stores accumulated during pregnancy
are mobilized for milk production. Later in lactation, where fat
accumulated during pregnancy is depleted, the effects of maternal
weight (and blood triglyceride concentration) may become more
apparent (157).

Maternal age was shown to affectmilk volume, with an average
fall of up to 40% in the yield of breastmilk from the age of 20
to 30 years and above, as reported in several studies (159–161).
Dewey et al. (160), hypothesized that milk yield is dependent
on the amount of functional breast tissue, which may decrease
with age due to atrophy. Interestingly, maternal age was shown
to affect fat concentration in colostrum, which was increased
in mothers over 35 years old compared to younger mothers,
but not in transitional or mature milk. Remarkably, maternal
weight was similar between the groups leading to the hypothesis
that changes in maternal metabolism with age may be linked to
the observed results (162, 163). Other maternal factors such as
tobacco smoking (164) was associated with a lower content of
milk lipids, while no link between exercise (165) and maternal
genetic factors on changes in milk fat concentration have been
reported (166).
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Proteins
In addition to stage of lactation, environmental influence is
one of other key factors affecting proteins within the MFGM.
As stated above, MFGM proteins showed various functions,
such as immune defense, leading to health benefits that will be
described further in following section. Therefore, fluctuations
in MFGM immune-related proteins were observed as part
of immune response during environmental challenges, e.g.,
bacterial infection. MFGM proteins that are up-regulated in
response to such a challenge include those involved in host
defense, inflammation, and oxidative stress. It should be noted
that these observations are from other mammal species such
as cows and sheep, however similar phenomena likely occur in
humanMFGM.Whether those changes have implications for the
breast-feeding infant is not yet clear (73).

HEALTH BENEFITS OF THE MFGM

The health benefits of MFGM have recently been reviewed
(167, 168). There is strong evidence to demonstrate several
health benefits derived from the MFGM, including cognitive
and immune function, gut health and maturation, metabolism
(including cholesterol and insulin metabolism) and even skin
health. Some of these benefits, such as mobility, have been
investigated exclusively in the context of aging humans, with
a focus on the potential development of functional foods to
enhance the health of aging population. There are several
benefits of relevance for the growing infant, including immune
and cognitive development and function, and gut maturation
and health.

Most of evidence suggesting health benefits of the MFGM
come from preclinical and clinical studies testing the effects of
purified MFGM components or ingredients from bovine milk.
Commercially available MFGM ingredients are extracted from
bovine buttermilk, beta serum or whey producing products
with different total composition (lactose, protein, ash, total
lipids and phospholipids) and the distribution of phospholipid
species (Table 5). Although beta serum provides the highest
concentration of phospholipids (≥14%), whey offers a high
concentration of phospholipids (7.5%) to be used as supplement
and provides an excellent source of protein (73%), especially
for infant formula supplementation. The profile of proteins in
MFGM-enriched dairy products are not usually described in
product label information, however, it is likely that products
sourced from cream, beta serum and buttermilk contain MFGM
protein as well as other components like gangliosides, cholesterol,
lactoferrin, sialic acid and IgG.

Most proteins in human and bovineMFGMare from the same
classes such as BTN, ADPH, FABP, MUC1, XDH and lactadherin
(MFGE8). BTN was shown to be the most abundant protein, in
both bovine (24.8%) and human (16.3%) MFGM (71). The main
difference between human and bovine MFGM proteins is that
humanMFGM has a higher level of proteins involved in immune
response and in lipid catabolism than bovine MFGM (169).
Human MFGM, for example, is enriched in immunoglobulins
whereas bovine MFGM is enriched in antimicrobial proteins

(131). However, theMFGMproteome and protein functionalities
between the two species are mostly similar suggesting that
MFGM proteins could have a positive impact in infant health
such as anti-adhesive and antimicrobial functions (169).

The lipid profile and the distribution of phospholipid species
of bovine MFGM enriched ingredient and HM are described in
Table 5. The large variation found in lipid composition in mature
HMdemonstrate the potential of this ingredients to be tailored to
supplement IF with polar lipids, closing the gap between breast
milk and infant formula composition. Although it is important
to note that the phospholipid fatty acid profile differ between
human and bovine milk (170), the tolerance and beneficial effects
of dietary bovine milk polar lipids has been described in many
clinical studies, recently reviewed by Brink and Lonnerdal (167).

In the following sections, we briefly summarize the key
evidence of the health benefits of MFGM (including mechanistic
studies in animals, and studies in human populations) and
discuss how changes in specific components across lactation may
reflect the particular role of these components in the health of the
growing infant.

Cognitive Function
Cognitive function is the most widely studied potential benefit
of the MFGM, because of the rapid cognitive development
that occurs during early human life (in particular gestation
and lactation) and the consequent influence on cognitive
function throughout life. So far, five clinical trials have been
published reporting the effects of dietary bovine MFGM or
MFGM components (through supplemented infant formula) on
neurological development (171–175). Although it is generally
acknowledged that more research is needed in infants, the
evidence supports the hypothesis that there are cognitive (173,
176), neurodevelopmental (171, 172, 174, 177–179) and vision
functional (175) benefits from MFGM for infants. This evidence
is also supported by pre-clinical studies where individual
components of MFGM, or diets enriched with bovine MFGM
derived product were fed to various animal models.

Gangliosides and sialic acid may be the active components
within the MFGM mediating cognitive effects, possibly by
ensuring sufficient amounts of these nutrients are available for
the developing brain (76, 180, 181), although there is also
evidence that these compounds when supplied exogenously may
influence growth signaling in the brain leading to improvements
in learning and (spatial) memory outcomes (76, 177, 182, 183). It
is well established that there are key periods during human brain
development when there is rapid accumulation of particular
lipids, for example gangliosides in the forebrain at 32 weeks of
gestation and plasmalogens in both cerebrum and cerebellum
from 32 weeks of gestation to 6 months of age and beyond
(184). Both plasmalogens and gangliosides are components of
the MFGM, associated with essential processes [myelination and
synaptic development, respectively (184)] for appropriate growth
and development of the brain.

Phospholipids, especially choline (which is found attached
to the phosphate group of PC) sourced during pregnancy were
associated with improved infant cognitive scores (176) and
neurodevelopmental outcomes (178, 179). Choline is a nutrient
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TABLE 5 | The composition of commercially available MFGM-enriched dairy ingredients compared to mature human milk.

Bovine MFGM enriched ingredient Mature human milk

Concentration in product (g/100g) Buttermilk# Beta serum# Whey#

Lactose ± 50 ≤10 ≤3

Protein (N × 6.38) ≥30 >52 73

Ash ≤9 ≤6 ≤3

Total lipids 5–13 3–27 12–26 4 (range 2.0–6.1)

Total phospholipids (PL) (g/100 g of fat)* 1.6–22 ≥14 5–16 0.5–1

Phospholipids (% of total PL)

Phosphatidyl ethanolamine (PE) 35–43 22–29 19–41 12–36

Phosphatidyl choline (PC) 19–32 27–47 19–25 13–34

Phosphatidyl serine (PS) 8–18 1.2–23 8–12 4–16

Phosphatidyl inositol (PI) 4–9 1–8 3.6–7 3–12

Sphingomyelin (SM) 11–19 14–27 16–24 28–41

Gangliosides (g/100 g of fat) * NR NR NR 0.02–0.05

Cholesterol (g/100 g of fat) * NR NR NR 0.2–0.48

*Based on the variation of milk fat content average of (4 g/100mL), phospholipid (23–43 mg/100mL), gangliosides (0.7–2.0 mg/100mL) and cholesterol (11–19 mg/100mL) in mature

milk described in this review. #Data compiled by Fontecha et al. (168).

that affects DNA methylation, long term potentiation and neural
cell populations in the hippocampus as demonstrated in fetal rats
(185–187). Its role in postnatal brain development is assumed
to be equally important as postnatally, as its concentration in
human milk was shown to be 15 times higher than in maternal
blood (188).

PUFAs, in particular ARA and DHA, have been extensively
studied for their impact on brain development. Pre- and
postnatal development of infant brain and retina, for example,
require a rapid accumulation of long-chain PUFAs (189). Healthy
brain tissue consists of about 60% structural fat; of this, about
25% is DHA and 15% ARA (190, 191). Postnatally ARA and
DHA are supplied mostly by human milk and, to some extent, by
the infant’s adipose tissue (192) influencing the PUFA profile of
infant blood and tissue (193). ARA and DHA can be synthesized
by chain elongation and desaturation of essential FAs, such as LA
(C18: 2n-6) and ALA (C18: 3n-3), however, in infants, due to low
enzymatic activity, this synthesis is very low (194) and influenced
by genetic heritability (195). Thus, dietary intake of ARA and
DHA are essential for infant’s brain development.

It is important to understand the relevance of changes
in components such as these across lactation for cognitive
development, as these changes may reflect particular times at
which these components may influence infant development.

Immune Function
Although not as well researched as the impact on cognitive
function, there have been reports on the effects of MFGM
components on immune function. Human studies have largely
been in infants and relate to prevention from infection by micro-
organisms (both bacteria and viruses) (196–198), with a large
body of in vitro and animal studies investigating mechanisms of
action and potential active molecules (199–202). In one clinical
trial, bovine MFGM supplementation in infant formula was
found to reduce febrile episodes in infants and young children

and the number of days with fever among 2.5 to 6 year old
children (203). Dietary supplementation of bovine milk complex
milk lipids (197) or whey-derived MFGM (protein rich) (196),
lowered the duration (197) and/or incidence of diarrhea (196)
in infants. Reduction of the incidence of respiratory illness was
also reported as a result of bovine MFGM supplementation in
infants (174).

Much of this research relates to the ability of a range of
MFGM components such as gangliosides (204, 205), sialic acid
(206), proteins [butyrophilin, lactadherin, and fatty acid binding
protein (207)], and glycoproteins to act as decoys for pathogens
and therefore prevent infection. The reducing effects of MFGM
on the expression of E. coli virulence gene (202) and the ability
to bind to human epithelial cells (208) were suggested as a
possible mechanism to prevent infection. However, there is
also good evidence of other mechanisms, including neutralizing
viral and bacterial toxins [gangliosides (209)], direct toxicity to
the invading organisms, or prevention of growth and invasion
[XDH (210, 211), MUC 1 and 4 (212)]. The lipid component
of the MFGM and its digestion products were shown to have
bactericidal activity against rotavirus (213) and food borne
pathogens (214).

There is also evidence of MFGM components having
immune-modulatory effects such as influencing cytokine
production and macrophages (215, 216), although these effects
are not as well characterized as those relating to protection
from pathogens.

Gut Maturation and Gut Health
Studies have shown that MFGM components may have
an impact on the development of the gut epithelium and
immune system, however, these findings largely come from
pre-clinical studies in animal models, in particular pigs, rats,
and mice during the pre-weaning period, which is critical for
gut maturation.
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FIGURE 7 | Summary of the factors affecting MFG composition emphasizing the effects of lactation period. MFG, milk fat globule; ARA, arachidonic acid; DHA,

docosahexaenoic acid; DPA, docosapentaenoic acid; ALA, α-linolenic acid; LA, linoleic acid; OL, oleic acid; XO, xanthine oxidase; BTN, butyrophilin.

Intestinal maturation being influenced by dietary bovine
MFGM was shown in piglets and rats, with specific effects being
improvement of intestinal morphology, increased enzymatic
activity, and reduction of the proportions of pathogenic bacteria
(78, 217). In vivo studies showed that MFGM components
purified or extracted from bovine milk protect the gut

from injury [for example by carcinogens (199) and bacterial
lipopolysaccharide (LPS) (218)]. These results also suggest there
is a role for MFGM on gut maturation. Phospholipids in
particular were shown to protect the gut from injury in a dextran
sodium sulfate challenge model (213) and reduced the depletion
of goblet cells by decreasing the overactivated Notch signaling

Frontiers in Nutrition | www.frontiersin.org 19 May 2022 | Volume 9 | Article 835856

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Thum et al. Milk Fat Lactation Variation

pathways (219). In a lipopolysaccharide challenge model, bovine
MFGM supplementation to suckling mouse pups decreased
epithelium injury, inflammatory cytokines and increased the
expression of gap junction proteins (220–222). The MFGM
protein lactadherin was shown to support wound healing by
binding to intestinal cell in vitro (223). These studies indicate
that MFGM components are able to support the development of
the infant intestine by directly strengthening, protecting and up
regulating the intestinal barrier.

As summarized by Rueda (79), dietary gangliosides may play
various roles relating to gut development and health, including
modifying themicrobiota, influencing the development of the gut
immune system, and modulation of oral tolerance during early
life. Overall, they appear to promote gut immunity development
in the neonate, and consequently play a role in the prevention
of infections during early infancy. Other MFGM components
also clearly have an impact on gut maturation, affecting factors
such as villus height, cell maturation, and gut enzyme activity (for
example, lactase) (224).

Gut Microbiota
In addition to being important in gut maturation, barrier
function and resilience and modulation of inflammation, the
MFGM appears to have beneficial effects through promotion
of a beneficial gut microbiota (78). To date, only one clinical
study showed direct effect of bovine whey-derived MFGM
on the oral microbiome of formula fed infants, with the
species Moraxella catarrhalis being significantly reduced in the
supplemented group (225). Later, the same group published
data on the fecal microbiome and metabolome of infant fed
formula supplemented with MFGM, standard formula or breast
milk, as a reference (226). The effect of MFGM on fecal
microbiota was moderate and did not override the effect of
formula. Much of this research has used a fairly general MFGM
preparation from bovine milk, or even a mixture of MFGM
with other compounds (probiotics, prebiotics and lactoferrin)
(217, 227, 228) which makes it difficult to isolate the effect of
MFGM on the microbiota. The effects of polar lipids, such as
phospholipids (229) and gangliosides (230) on the gut microbiota
has been demonstrated.

In one in vivo study, artificially reared newborn rats
supplemented with bovine whey-derived MFGM had similar
microbiota to the dam-reared pups compared to non-
supplemented pups (78). Another study found that feeding
formula with bovine MFGM to piglets decreased the proportions
of Firmicutes and increased Proteobacteria and Bacteroides in
the gut compared to piglets fed formula with vegetable oils. The
effects of undigested MFGM in vitro have been demonstrated
(231) suggesting that MFGM components may play a role on the
infant’s gut microbiota development. There is a need for further
research to more clearly identify the specific MFGM components
that may confer these benefits.

Metabolic Health
Intake of milk sourced cholesterol in early life was shown to
correspond to infants’ serum cholesterol levels, which are high
in breast-fed compared to formula-fed infants (232). Higher

levels of serum cholesterol were shown to prevent cardiovascular
diseases in adult life (121, 233) by downregulating hepatic
hydroxymethyl glutaryl coenzyme A reductase via epigenetic
modifications (234).

CONCLUSIONS

Although the body of literature describing compositional analysis
of MFGM components within HM is not standardized in
terms of methodology, the results do show certain patterns.
For example, the relative concentration levels of MFGM-specific
phospholipids, gangliosides, cholesterol, FAs and proteins appear
to alter over the course of lactation, and such changes are likely to
reflect the changing requirements of the growing infant (review
summary, Figure 7). There is also evidence that factors such as
maternal diet and geographical location can influence certain
aspects of HMMFGM composition.

Although the majority of the research has been conducted
using MFGM materials derived from bovine milk and employs
animal models, the body of evidence for specific health benefits
of MFGM components is increasing, and clearly demonstrates
that in addition to its role in encapsulating and delivering lipids
within milk, theMFGM also contains a range of components that
have important implications for the health of the growing infant.
Health outcomes include cognitive development, intestinal
development and function, and immune health.

The small number of clinical trials in which infant formula
products have been tested provide some evidence that the
inclusion of MFGM, or components such as gangliosides, in
infant formula has benefits for the health of the growing
infant. Although current infant formula products are adequate
to support growth and development, comparisons with breast-
fed infants suggest that these formula products are not optimal,
in particular regarding cognitive outcomes. The data from in
vivo studies and clinical trials, suggest that the inclusion of
MFGM or components within it in infant formula is important
to ensure optimal cognitive, immune, and intestinal development
and function.

Collectively, the information presented here suggests that
infant formula products require further development to mimic
the composition of HM more closely, including the MFGM.
The production of MFGM ingredients to supplement infant
formulations could be tailored to meet the different stages of
lactation, or even the different maternal geographical locations.
This will ensure that those mothers for whom breast feeding
is not possible can have the best possible alternative to their
growing infant. To enable this, further work is required to fully
understand patterns of MFGM components across lactation, and
their efficacy in supporting the health of the infant at different
stages of growth and development.
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