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Abstract: A series of reconfigurable compact photonic arbitrary power splitters are proposed based
on the hybrid structure of silicon and Ge2Sb2Se4Te1 (GSST), which is a new kind of non-volatile
optical phase change material (O-PCM) with low absorption. Our pixelated meta-hybrid has an
extremely small photonic integrated circuit (PIC) footprint with a size comparable to that of the
most advanced electronic integrated circuits (EICs). The power-split ratio can be reconfigured in a
completely digital manner through the amorphous and crystalline switching of the GSST material,
which only coated less than one-fifth of the pattern allocation area. The target power–split ratio
between the output channels can be arbitrarily reconfigured digitally with high precision and in
the valuable C-band (1530–1560 nm) based on the analysis of three-dimensional finite-difference
time-domain. The 1 × 2, 1 × 3, and 1 × 4 splitting configurations were all investigated with a variety
of power–split ratios for each case, and the corresponding true value tables of GSST distribution
are given. These non-volatile hybrid photonic splitters offer the advantages of an extremely small
footprint and non-volatile digital programmability, which are favorable to the truly optoelectronic
fusion chip.

Keywords: arbitrary power splitter; inverse design; phase change material; digital nanophotonics

1. Introduction

Perfect optoelectronic fusion chip solutions require photonic integrated circuits (PICs)
and electronic integrated circuits (EICs) with two basic properties: (1) an extremely small
PIC size and similar EIC size, enabling high integration; the difference in the order of
magnitude between traditional PICs and EICs is a significant fusion barrier; (2) a PIC
programmability that is also similar to EICs [1–4].

Power splitters are widely used in several applications as one of the very basic PIC
devices [5–7]. They can be roughly classified into two types: those with a fixed proportional
power–split ratio and those with an adjustable power–split ratio. In the past, multimode
interferometers (MMIs) can be used as power splitters based on the principle of self-
imaging in planar multimode waveguide [8] such as a 1 × 4 power splitter with two-stage
cascaded MMI couplers connected by phase shifters [9] and 1 × 2 power splitters based on
asymmetrical MMIs (by breaking the structural symmetry of multimode waveguide) [10,11].
Additionally, there are power splitters based on specific photonic crystal structures, such as
a 1 × 2 power splitter with Y-shaped photonic crystals waveguides combined with point
defects [12,13] and a 1 × 3 power splitter based on triangular lattice air hole silicon slab
photonic crystals [14], that achieve good performance and excellent progress. However, this
device’s design method adopts manual parameter adjustment technology and is limited
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to several parameters intuitively selected based on design experience. The size of the
device remains large, ranging from tens of microns to hundreds of microns. To meet
the demand for optoelectronic fusion chip solutions, inverse design methods have been
rapidly developed in recent years. Different from the traditional forward design method,
the inverse algorithm can discretize the pattern allocation area into only a few microns
and realize various functions by constantly optimizing the refractive index distribution
of parameters. This can effectively avoid using intuitive experience in device design and
reduce the time cost. Examples include the direct binary search (DBS) algorithm [15–17],
the genetic algorithm [18], and deep learning [19]. Recently, various ultra-small fixed-ratio
power splitters based on inverse design have been reported. Xu et al. designed a device
with a 3.6 × 3.6 µm2 footprint size with a QR code-like nanostructure and achieved 80%
efficiency in their arbitrary power divider [20]. Tahersima et al. designed a multi-hole
distributed nanostructure with an area of only 2.6 × 2.6 µm2 using a deep neural network,
realizing multiple power–split ratios [21]. For such ultra-small devices with pixelated
meta-structures, Huang et al. proposed the concept of digital nanophotonics [22]. Digital
nanophotonic methods enable the design of complex refractive index distribution devices
with a high degree of freedom and an ultra-small area [23–26]. This digitalized meta-
structure is a photonic crystal-like (PhC-like) structure combining an MMI and a photonic
crystal [16]. In the all-silicon MMI structure, the pores or materials are non-periodic and
uneven. It has strong robustness to fabrication error, and the ultra-compact PhC-like
structure can be an ideal choice for the inverse design of on-chip integrated photonic
devices [22,27]. Compared with fixed-ratio power splitting, a power splitter with a variable
power splitter ratio is also highly attractive and has a wide range of applications such as
in feedback circuits and tap-port power monitoring. Tian et al. demonstrated a variable
split-ratio power splitter on a silicon-on-insulator (SOI) architecture [28]. However, most of
these silicon-based PIC devices exhibit a rather static (untunable) behavior.

Recently, optical phase-change materials (O-PCMs) have become highly attractive [29,30]
by offering the feasibility of designing tunable photonic devices. Generally, O-PCMs can
exist in either two states: crystalline or amorphous. The complex refractive index (real and
imaginary) of an O-PCM varies significantly during the transition between amorphous and
crystalline states, enabling the introduction of a large phase and amplitude modulation
within the range of a compact device. This property has been exploited to explore PIC
switching [31–35], reconfigurable element optics [36,37], photonic memory [38,39], and neu-
ral computing [40]. Moreover, experiments have proved that an O-PCM state is reversible
from amorphous to crystalline and can be adjusted by absorbing the incident laser radiation
or by electric heating [41]. The transition of the two states of an O-PCM should go through
a multi-stage phase transition process so that performance is non-volatile. The formation of
intermediate states can be promoted by adjusting the intensity of light pulses or electricity.
These properties allow O-PCMs to maintain a constant light state even without power input
as given in [29,42,43]; thus, it has optical non-volatility. However, most of the proposed
power splitters do not have non-volatile adjustability and the size of the device is very
large, usually a hundred times larger than that of EICs and, therefore, is not conducive for
optoelectronic fusion. Thus, O-PCMs are a promising option.

In this study, we propose a non-volatile programmable photonic arbitrary power
splitter using an all-digital nanophotonics design and O-PCM hybrid structure. The power–
split ratio can be reconfigured in an all-digital way through the amorphous and crystalline
switching of the non-volatile O-PCM material Ge2Sb2Se4Te1 (GSST). In the 1 × 2 splitter
case, power ratios of 1:1, 1.5:1, 2:1, and 2.5:1 were achieved in the C-band (1530–1560 nm).
Moreover, to show that the design method can be extended to a multi-channel splitter, a
1 × 3 (1 × 4) power splitter was studied with power–split ratios of 1:1:1, 2:1.5:1, 2:1:1, and
2:1:2 (1:1:1:1, 2:1:2:1, 3:1:2:1, and 2:2:2:1). All of these chips have an ultra-small footprint
of 2.4 × 2.4 µm2 or 2.4 × 3.6 µm2, the same size level as EICs on chips, with orders of
magnitude smaller than traditional silicon photonics devices. We believe that this ultra-



Nanomaterials 2022, 12, 669 3 of 17

compact and reconfigurable photonics platform provides an effective solution for designing
a range of tunable photonic and truly optoelectronic fusion chips.

2. Principle and Simulation Results

Figure 1 shows the functional concept of our programmable power splitter using
silicon and O-PCM. The device consists of one input waveguide and one air hole, or a
GSST-embedded silicon photonic waveguide coupling region and two output waveguides.
By inputting a TE0 mode light into the device and controlling the state distribution (crys-
talline or amorphous) of the O-PCM, the device can dynamically achieve different power
distribution ratios in the two output channels. All of the devices designed below supported
only the TE0 mode. The silicon and O-PCM were combined using PhC-like subwavelength
structures to realize the power splitter. Here, standard SOI waveguides were employed
with a 220 nm thick silicon core layer and a 3 µm thick buried silicon dioxide layer [17].
The planar waveguide width was set at W = 2.4 µm (the width of both the input and output
waveguides wg was 500 nm, and the output waveguide spacing w1 was 600 nm), the length
was L = 2.4 µm (the width of the GSST array region L1 was 480 nm), and the thickness
was h1 = 220 nm (h2 = 3 µm). According to the fabrication process, the couple design area
consisted of 20 × 20 pixels, each of which was a 120 × 120 nm2 square with a circular
hole. The radius of the hole was 45 nm, and the depth of the hole was 220 nm. The GSST
material could be embedded in these holes if necessary. In this design, different pixel states
determine the distribution of the refractive index in the core region. We started with the
all-silicon structure of an ordinary MMI. The fundamental transverse electric (TE0) mode
light was emitted into the input waveguide, and a monitor could be used to measure the
TE0 mode light power of the output waveguide. This structure can make full use of the free
space so that the device has a good ability to regulate the light field in an ultra-compact size.
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Figure 1. Schematic of the 1 × 2 photon programmable power splitter. Transverse electric (TE0) mode
waves within a wavelength range of 1530–1560 nm were input from the left port. After these waves
passed through the coupling region, the TE0 mode waves with Power1 and Power2 split ratios were
output from the upper and lower channels on the right, respectively. The splitting ratio was regulated
by the state of the phase-change material controlled by an electronic circuit program.
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As mentioned previously, the refractive index difference between the two states of
O-PCM is quite large, and its nonvolatile phase transition enables stable phase or amplitude
modulation. The most commonly used O-PCM is Ge2Sb2Se5 (GST), and it exhibits excessive
light loss even in the dielectric state. There is a significant difference in the refractive indices
of amorphous GST (a-GST; 1550 nm: 4.6 + 0.12i) and crystalline GST (c-GST; 1550 nm:
7.45 + 1.49i). However, the imaginary part of the refractive index in either state (a-GST or
c-GST) is relatively high. If GST is embedded in the silicon structure to transmit light, it will
cause excessive loss even in the amorphous state. To solve the problem of high GST loss, a
new O-PCM, Ge2Sb2Se4Te1 (GSST), was developed to replace the traditional GST; a part of
the Te in the traditional GST alloy was replaced by Se [42,43]. In the refractive index curves,
shown in Figure 2a,b, the extinction coefficient of GSST in different crystal states was
significantly lower than that of GST. At 1550 nm, the GSST complex refractive indices of the
amorphous and crystallized states were n (a-GSST) + I × k (a-GSST) = 3.3258 + 1.8 × 10−4i
and n (c-GSST) + i × k (c-GSST) = 5.0830 + 0.350i [43,44]. respectively.
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A few GSST-based nanophotonic devices have been reported recently such as switches,
modulators, and photonic memory [44–46]. Therefore, in this study, we introduced GSST
as an O-PCM to construct a hybrid structure. The refractive index of amorphous GSST is
quite close to that of silicon, so all the devices discussed herein used a-GSST as the initial
pattern. O-PCM can be combined with silicon waveguides by placing it as a sheet on the
waveguide surface or embedding it into the silicon hole structure. Here, GSST was embed-
ded into silicon holes to effectively change the overall refractive index distribution [47–49].
Subsequently, the switching of O-PCM states can be realized digitally by optical or electric
pulses [50,51]. As shown in Figure 1, the digital control can be realized by an on-chip ASIC
(application-specific integrated circuit). Here, the ASIC function mainly controls the electric
heating of the GSST unit in a program-controlled way. Using the logic circuit in the ASIC,
it can connect the target light field distribution through the specific truth tables, which
will be released in the follow-up results. Here, we introduce a hybrid structure, where the
O-PCM was embedded in the silicon structure, thus achieving a significantly ultra-compact,
nearly 10 times compression in a one-dimensional size and an approximately 100 times
compression in a two-dimensional area compared to that of References [50,51]. Further, our
O-PCM-coated area only occupied less than one-fifth of the pattern allocation area, with
fewer control units and significantly easier ASIC handling. In particular, it should be noted
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that the ultra-compact photonics part was nearly the same size as the EICs’ part. Thus, this
proposed scheme could be effective for the development of optoelectronic fusion chips.

The three-dimensional finite-difference time-domain (3D FDTD) method was used
for simulation. The basic process of DBS algorithm optimization is shown in Figure 3.
By searching the pixel state, the DBS algorithm can determine the optimal refractive
index distribution in the design area to meet the functional requirements. This design
approach was used in the following process. The algorithm optimization process is shown
in Figure 3. In the optimized region, the pixels have binary dielectric properties: Si/air
or a-GSST/c-GSST (corresponding to the logical state “0” or “1”, respectively). GSST
has a small extinction coefficient, but if they are all covered in the coupling region, the
transmission efficiency will be reduced to a certain extent.
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Figure 3. DBS algorithm optimization process. The process can be divided into two steps: first to
achieve a 50:50 average power splitter and then to achieve an arbitrary power splitter with a target
splitting ratio by filling GSST optimization.

To design a programmable power splitter with a small footprint and high efficiency,
we divided the coupling region into two parts: an air hole array and a GSST array. Basically,
the optimization process contains two steps. Firstly, we set the target segmentation ratio of
the two output channels as 1:1 and used the DBS algorithm to optimize the distribution of
the air holes. The optimized structure could transmit power to the output channel at 50:50,
and the transmission efficiency was greater than 94% as shown in Figure 4.
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Then, the DBS algorithm was used to optimize the distribution of GSST, and the true
value satisfying different segmentation ratios was obtained as shown in Figure 2c. This
special structure could greatly reduce equipment loss and tunable complexity with an
ultra-compact footprint. In this design, the true value was used to regulate the state of the
GSST material in the form of an electrical pulse, as shown in Figure 2d, and the device
structure conforming to the target split ratio was obtained as shown in Figure 1. The
figure-of-merit (FOM) of the initial structure can be defined as:

FOM_1 = − | 0.5 − Tupper |(Tupper = Tlower) (1)

FOM_2 = − | Tupper − a·Tlower | (2)

where a is the split ratio of the upper and lower output channels (let the splitting ratio be
a:1), and Tupper and Tlower are the average transmission efficiency of the upper and lower
output channels, respectively. The FOM can be used as the quantitative evaluation function
of the chip performance. The transmittance data are discrete at different wavelengths;
therefore, we chose 31 data points distributed in the wavelength range of 1530–1560 nm
at equal distances. Subsequently, we simulated the metamaterial structures with different
refractive index distributions in an iterative process until they converged. Here, the size of
the coupling region was selected as 0.48 × 2.4 µm2 (the selection of this size is discussed
later) to achieve a precise and low-loss power split. In the ideal case, the simulation
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optimization value gradually approaches the target value, and the FOM should converge
to a unit (FOM = 0). During the iterations, the optimization ends when the FOM does not
improve further.

To verify the feasibility of our approach, we designed four power splitters with
different split ratios (i.e., 1:1, 1.5:1, 2:1, and 2.5:1) for comparative analysis as shown in
Figure 5. The simulation results showed that the proposed controllable power splitter
usually exhibited good performance. The optical properties of GSST can be changed
by applying electrical pulses without changing the structure itself. We recaptured the
distribution of GSST through the optimization algorithm and, finally, obtained GSST phase
distribution in line with the target split ratio.
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with 1:1, 1.5:1, 2:1, and 2.5:1 split ratios; (e–h) light field distribution at 1550 nm of the upper and
lower channels; (i–l) transmission spectra of all tested channels; (m–p) simulated power–split ratio
for the 1 × 2 splitter, where the green line indicates the simulated power ratio between the upper and
lower channels in the wavelength range of 1530–1560 nm.

After the optimization process was completed, we obtained a set of structures that
divided the optical power in the desired proportion. Figure 5a–d shows the final structure
after optimization. The light field distribution corresponding to 1550 nm and the energy
intensities of the TE0 modulus of the cross-section of each output channel are shown in
Figure 5e–h. The corresponding transmission spectra are shown in Figure 5i–l. The power–
split ratios of the two output optical channels at corresponding wavelengths within the
wavelength range of 1530–1560 nm was plotted as shown in Figure 5m–p.
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Table 1 shows the true values corresponding to the different power–split ratios and
the resulting GSST phase-distribution structure. First, we set the target split ratios (i.e.,
1:1, 1.5:1, 2:1, and 2.5:1), then we obtained the true value of the input pulse through the
electronic control, and finally we obtained the GSST phase distribution corresponding to
the target split ratio through the impulse train. On the basis of the 3D FDTD simulations,
it can be easily observed from the power–split ratio diagram that the structure calculated
using the DBS algorithm had good power-splitting ability.

Table 1. Truth tables of different split ratios in 1 × 2 power splitter, the true value ‘1’ corresponding
to the yellow spots (c-GSST state).

Power Ratio True Value Distribution of GSST

1:1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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After it was confirmed that the coupling region in the proposed design could achieve
any arbitrary power–split ratio, the distribution location and quantity of GSST were ana-
lyzed; this analysis is critical for minimizing the design cost and for simplifying the digital
control of the ASIC. Figure 6a–c shows the limit number of GSST pixels when the target
power–split ratio was satisfied. It is clear that the optimization efficiency of the pixels was
low and that different split ratios can be achieved with 80 or 100 pixels. Consequently,
the structures in this study were optimized with 80 pixels. In addition, we analyzed the
variation in FOM with the number of iterations when the GSST was at the front, middle,
and back of the coupling region as shown in Figure 6c–e. The optimized structure with
GSST at the end of the coupling region had the highest efficiency. As shown in Figure 6f–j,
the iterative optimization processes with different splitting ratios exhibited similar trends.
We can infer the variation trend of the FOM corresponding to other higher-order splitting
ratios with the number of iterations from several known splitting–ratio iteration curves
shown in Figure 6. Along this optimization process, any split ratio could also be received.
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Figure 6. Analysis of the initial structural parameters in the second step of DBS algorithm optimi-
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sponding to pixels in the back three columns (60 pixels), the back five columns (100 pixels), and the 
back four columns (80 pixels) with the number of iterations; (i,j) FOM change process corresponding 
to pixel points in the front and middle four columns with the number of iterations (where the aster-
isk (*) represents the number of simulations in an iteration). 

3. 1 × 3 and 1 × 4 Arbitrary Power Splitters 
By changing the number of output channels, we can design a power splitter with 

additional splitting ratios. On this basis, we increased the number of output channels to 
three, designed a device with three split ratios, and optimized it using 3D FDTD. As 
shown in Figure 7a, the 1 × 3 arbitrary power splitter consisted of a 500 nm wide input 
waveguide; three 500 nm wide output waveguides; one coupling region of 2.4 × 2.4 µm2. 
The spacing between the output waveguides was set to 450 nm. 

Figure 6. Analysis of the initial structural parameters in the second step of DBS algorithm op-
timization: (a–e) the initial structure of different GSST distributions; (f–h) FOM change process
corresponding to pixels in the back three columns (60 pixels), the back five columns (100 pixels), and
the back four columns (80 pixels) with the number of iterations; (i,j) FOM change process correspond-
ing to pixel points in the front and middle four columns with the number of iterations (where the
asterisk (*) represents the number of simulations in an iteration).
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3. 1 × 3 and 1 × 4 Arbitrary Power Splitters

By changing the number of output channels, we can design a power splitter with
additional splitting ratios. On this basis, we increased the number of output channels to
three, designed a device with three split ratios, and optimized it using 3D FDTD. As shown
in Figure 7a, the 1 × 3 arbitrary power splitter consisted of a 500 nm wide input waveguide;
three 500 nm wide output waveguides; one coupling region of 2.4 × 2.4 µm2. The spacing
between the output waveguides was set to 450 nm.
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upper, middle, and lower output channels, respectively. An arbitrary power splitter with 
four splitting ratios is shown in Figure 7a–d. The corresponding transmission spectra are 
shown in Figure 7i–l. From the transmission curve, the power-splitting effect met the de-
sign objective. The light field distribution corresponding to 1550 nm and the energy inten-
sities of the TE0 modulus of the cross-section of each output channel are shown in Figure 
7e–h. Figure 7m–p show the power–split ratio between different channels in the wave-
length range of 1530–1560 nm. 

Table 2 shows the true values corresponding to different power–splitting ratios and 
the resulting GSST phase-distribution structure. First, we set the target splitting ratios (i.e., 
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Figure 7. Design of a three-channel adjustable programmable power splitter: (a–d) structure diagram
of a 1 × 3 power splitter with 1:1:1, 2:1.5:1, 2:1:1, and 2:1:2 split ratios; (e–h) light field distribution at
1550 nm of the upper, middle, and lower channels; (i–l) transmission spectra of all tested channels;
(m–p) simulated power–split ratio for the 1 × 3 splitter, where the green line indicates the simulated
power ratio between the upper and lower channels in the wavelength range of 1530–1560 nm. The
purple line indicates the ratio between the middle and lower channels.

Figure 7 shows the performance analysis of a three-channel adjustable arbitrary power
splitter by 3D FDTD. The FOM of the three-channel power splitter is:

FOM_1 = − | 0.33 − Tupper | −| Tupper− Tmiddle | (Tupper = Tlower) (3)

FOM_2 = − | b·Tupper − a·Tmiddle | − | c·Tupper − a·Tlower | − | c·Tmiddle − b·Tlower | (4)

where a–c is the split ratio of the upper, middle, and lower output channels (let the splitting
ratio be a:b:c); Tupper, Tmiddle, and Tlower are the average transmission efficiency of the
upper, middle, and lower output channels, respectively. An arbitrary power splitter with
four splitting ratios is shown in Figure 7a–d. The corresponding transmission spectra
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are shown in Figure 7i–l. From the transmission curve, the power-splitting effect met the
design objective. The light field distribution corresponding to 1550 nm and the energy
intensities of the TE0 modulus of the cross-section of each output channel are shown in
Figure 7e–h. Figure 7m–p show the power–split ratio between different channels in the
wavelength range of 1530–1560 nm.

Table 2 shows the true values corresponding to different power–splitting ratios and
the resulting GSST phase-distribution structure. First, we set the target splitting ratios
(i.e., 1:1:1, 2:1.5:1, 2:1:1, and 2:1:2), then obtained the true value of the input pulse through
electronic control, and finally obtained the GSST phase distribution corresponding to the
target split ratio through the impulse train.

Table 2. Truth tables of 1 × 3 power splitter corresponding to different split ratios. The detailed
c-GSST state distribution of four power ratio cases are presented.

Power Ratio True Value Distribution of GSST

1:1:1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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power splitter consisted of a 500 nm wide input waveguide, four 500 nm wide output 
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Similarly, we continued to increase the number of output channels to four to achieve
an arbitrary power splitter with four split ratios. As shown in Figure 8a, the 1 × 4 ar-
bitrary power splitter consisted of a 500 nm wide input waveguide, four 500 nm wide
output waveguides, and a 2.4 × 3.6 µm2 coupling region with spacing between the output
waveguides set at 530, 540, and 530 nm, respectively.

The FOM of the four-channel power splitter is:

FOM_1 = − | 0.25 − Tupper | − | 0.25 − Tmiddle_up | − | Tupper− Tmiddle_up | (Tupper = Tlower, Tmiddle_up = Tmiddle_down) (5)

FOM_2 = − | b·Tupper − a·Tmiddle_up | − | c·Tupper − a·Tmiddle_down | − | d·Tupper − a·Tlower | − | c·Tmiddle_up

− b·Tmiddle_down |− | d·Tmiddle_up − b·Tlower | − | d·Tmiddle_down − c·Tlower |
(6)

where a–d is the split ratio of the upper, middleup, middledown, and lower output channels
(let the splitting ratio be a:b:c:d). Figure 8a–d show the structure diagram of the power
splitters with different splitting ratios (i.e., 1:1:1:1, 2:1:2:1, 3:1:2:1, and 2:2:2:1). The light
field distribution corresponding to 1550 nm and the energy intensity of the TE0 modulus
of the cross-section of each output channel are shown in Figure 8e–h. The corresponding
transmission spectra are shown in Figure 8i–l. Figure 8m–p show the power–split ratio
between different channels in the wavelength range of 1530–1560 nm.
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line indicates the ratio between the middledown and lower channels. 
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Figure 8. Design of a four-channel programmable arbitrary power splitter: (a–d) structure diagram of
a 1 × 4 power splitter with 1:1:1:1, 2:1:2:1, 3:1:2:1, and 2:2:2:1 split ratios; (e–h) light field distribution
at 1550 nm of the upper, middleup, middledown, and lower channels; (i–l) transmission spectra of
all tested channels; (m–p) simulated power–split ratio for the 1 × 4 splitter, where the red line
indicates the simulated power ratio between the upper and lower channels in the wavelength range
of 1530–1560 nm. The blue line indicates the ratio between the middleup and lower channels. The
green line indicates the ratio between the middledown and lower channels.

Table 3 shows the true values corresponding to different power–split ratios and the
resulting GSST phase-distribution structure. First, we set the target splitting ratios (i.e.,
1:1:1:1, 2:1:2:1, 3:1:2:1, and 2:2:2:1), then obtained the true value of the input pulse through
electronic control, and finally obtained the GSST phase distribution corresponding to the
target splitting ratio through the impulse train. As expected, changing the number of
output channels can achieve more split ratios, and precise ratios can be obtained through
programming optimization. Theoretically, by regulating the phase distribution or the
number of channels of the O-PCM, it can be extended to a higher split ratio and more split
ratio configurations.
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Table 3. Truth tables of 1 × 4 power splitter corresponding to different split ratios. There are four
output channels and then a bigger GSST spot array (30*4) have to be used to control the split ratio.

Power Ratio True Value Distribution of GSST

1:1:1:1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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To demonstrate the versatility of the device, we compared the programmable device
with a few reported representative arbitrary power splitters [9,20,52]. As shown in Table 4,
the proposed devices had an ultra-small footprint and exhibited multi-channel and re-
configurability functions. For instance, most of the previously related works were not
non-volatile and non-programmable [9,20,52]. GSST material switching between a crys-
talline and amorphous state gives the unique advantages of non-volatility and tunability.
Here, our scheme offers non-volatility and digital programmability. Compared to the fixed
power–split ratio in other studies, our device can realize an almost arbitrary split ratio
through a fully digital program operation. Moreover, the footprint of our device is the
smallest one in Table 4. Compared with the result in Reference [9], the footprint of our
device was reduced by approximately two orders of magnitude.

Table 4. Structural parameters and performance of arbitrary power splitters.

Refs. [9] [20] [51] This Work

Footprint 124 × 6.4 µm2 3.6 × 3.6 µm2 2.8 × 2.8 µm2 2.4 × 2.4 µm2,
2.4 × 3.6 µm2

Dimension of the input/output waveguide 1.6 µm 480 nm 500 nm 500 nm

Containing O-PCM No No No Yes (Ge2Sb2Se4Te1)

Operating bandwidth 1530–1570 nm 1530–1560 nm 1500–1600 nm 1530–1560 nm

Maximum number of channels 4 3 3 4

Design technology Forward design Inverse design Inverse design Inverse design

Non-volatile No No No Yes

Tunability No No No Yes

Programmable No No No Yes

Error analysis No No No Yes

Origin of results Experiment and
simulation

Experiment and
simulation Simulation Simulation

4. Tolerance to Fabrication Errors

Over-etching and under-etching are typical errors in device manufacturing. Round
holes are easier to manufacture than square holes that have too many sharp corners, but
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the size of the holes is not easy to control. To investigate the manufacturing tolerances of
these nanostructured splitters, we simulated the effects of varying the top hole radius and
silicon thickness on device performance using a 1 × 2 power splitter as an example. Here,
we defined the normalized FOM error as:

FOM error = | 1 − (Tupper/Tlower)/a| (a = 1, 1.5, 2, 2.5) (7)

It can be used to approximate the deviation between the simulated value obtained
by the device and the expected value. The closer the FOM error is to 0, the smaller the
deviation. Figure 9a depicts the error analysis of different power ratios, as the hole radius
varied from −10 to +10 nm. Figure 9b–d show the power–split ratio curves (i.e., 1.5:1, 2:1,
2.5:1) of the round hole when its diameter changed from −10 to +10 nm in the wavelength
range of 1530–1560 nm. As the aperture deviation increased, the error increased, which
is a reasonable and acceptable performance [52]. It can be observed that the fabrication
deviation of the device has strong robustness under the hole diameter change of ±10 nm.
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Figure 9. Analysis of the fabrication tolerances for the 1 × 2 photon programmable power splitter:
(a) simulated FOM error as the hole radius varied from −10 to +10 nm; (b–d) simulated power–split
ratio as the hole radius varied from −10 to +10 nm; (e) simulated FOM_error of the top layer of
silicon as its thickness varied from −10 to 10 nm; (f–h) simulated power–split ratio of the top layer of
silicon as its thickness varied from −10 to 10 nm.

Additionally, Figure 9e shows the error analysis of silicon in the −10 to 10 nm thickness
range. Figure 9f–h shows the power–split ratio curves (i.e., 1.5:1, 2:1, and 2.5:1) of the round
hole when the top layer silicon thickness changed from −10 to +10 nm in the wavelength
range of 1530–1560 nm. In the range of −10 to 10 nm, the power–split ratio error of the
output channel was very small (below 10%), indicating that the disturbance of silicon
thickness had minimal influence on the transmission efficiency of the device and a good
machining tolerance.

5. Conclusions

In summary, we proposed a reconfigurable compact photonic arbitrary power splitter
based on a digital nanophotonics method and a silicon and O-PCM hybrid structure with a
footprint of only 2.4 × 2.4 and 2.4 × 3.6 µm2. The switching between the amorphous and
crystalline states of the O-PCM material GSST enabled a high-precision digital reconfigura-
tion of the power–split ratio between the target output channels. In the bandwidth range
of 1530–1560 nm, all the power ratios of 1:1, 1.5:1, 2:1, and 2.5:1 were achieved. Moreover,
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using the same design method, it can be extended to a multi-channel splitter to program an
arbitrary splitter ratio and achieve high-precision reconfiguration. This hybrid photonics
platform not only provides an effective method for designing reconfigurable ultra-small
tunable photonic devices, but also offers a certain potential value for the realization of
perfect optoelectronic fusion chips.
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