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Forecasting induced seismicity 
in Oklahoma using machine 
learning methods
Yan Qin  1*, Ting Chen1, Xiaofei Ma1 & Xiaowei Chen  2

Oklahoma earthquakes in the past decade have been mostly associated with wastewater injection. 
Here we use a machine learning technique—the Random Forest to forecast induced seismicity rate in 
Oklahoma based on injection-related parameters. We split the data into training (2011.01–2015.05) 
and test (2015.06–2020.12) periods. The model forecasts seismicity rate during the test period 
based on input features, including operational parameters (injection rate and pressure), geological 
information (depth to basement), and modeled pore pressure and poroelastic stress. The results show 
overall good match with observed seismicity rate (adjusted R2 of 0.75). The model shows that pore 
pressure rate and poroelastic stressing rates are the two most important features in forecasting. The 
absolute values of pore pressure and poroelastic stress, and the injection rate itself, are less important 
than the stressing rates. These findings further emphasize that temporal changes of stressing rates 
would lead to significant changes in seismicity rates.

The sharp seismicity increase in Oklahoma during the last decade has been associated with wastewater 
disposal1–3. The proposed mechanisms of induced earthquakes include pore pressure diffusion2,4,5, poroelastic 
stress disturbance6–8, earthquake interaction effect6,9–11, and aseismic slip12. Many studies have made seismicity 
rate forecasts based on known mechanisms. For example, a numerical model that integrates fluid pressuriza-
tion from injection with a rate-and-state friction model of the earthquake nucleation process is developed to 
forecast rates of induced seismicity13. The study finds that the models with injection data outperform a standard 
statistical model that only uses prior earthquake observations to forecast induced earthquake activity. A hybrid 
physical-statistical model combining hydrogeologic modeling and modified Gutenberg-Richter relation is used 
to forecast seismic hazards5. The study finds that seismicity in Oklahoma and Kansas was driven by the rate of 
injection-induced pressure increases. Another study combines poroelastic modeling and a rate-and-state earth-
quake nucleation model to forecast the timing and magnitude of induced seismicity8. The authors find that while 
pore-pressure diffusion controls the induced earthquakes in Oklahoma, its impact is significantly enhanced by 
poroelastic stressing rate changes.

The modeled pore pressure and poroelastic stress are typically calculated based on injection rates, injection 
locations (including depth), and assumed hydrology models. While injection rate is one of the most important 
parameters, other operational and geological parameters are also found to be important. For example, the injec-
tion depth relative to the crystalline basement strongly correlates with seismic moment release, and the joint 
effects of injection depth and volume are critical, as injection rate becomes more influential near the basement 
interface from an advanced Bayesian network14. Study shows that most earthquakes in Oklahoma are located 
where the crystalline basement is likely composed of fractured intrusive or metamorphic rock15. A 2-D Pg 
wave tomography shows that most moderate-size ( M > 4 ) earthquakes occurred either close to the boundaries 
between high- and low-seismic velocity zones or within the high-velocity zones16. The parameters that are best 
correlated with earthquakes change with different scales of studies4 and different methods17.

In this study, we compile all the available geological and operational parameters from wastewater injection 
(Fig. 1) and use a machine learning approach—the Random Forest regression model to forecast the seismicity 
rate. Without any prior knowledge of the weight of the input features, the model can identify the most important 
features and improve the understanding of the triggering mechanisms of induced seismicity.
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Results
Seismicity rate forecast.  We build and select injection- and physics-based features at different spatial 
scales (grid size from 0.6◦ to 2.0◦ with an increment of 0.1◦ ) using the procedure described in “Methods” section. 
The features are then used to forecast the seismicity rate in various time windows (30, 60, 90, and 180 days) using 
Random Forest (RF). To account for the associations of injection and earthquakes at the border of a grid, we use 
a different grid size to search for earthquakes, that is grid plus ( − 0.3

◦ to 0.3◦ with an increment of 0.1◦ relative 
to the grid size for features).

We split the data into training (2011.01–2015.05) and test (2015.06–2020.12) dataset. The number of training 
and test data points is 1696 and 2144, respectively, where each data point consists of a set of injection features and 
the corresponding seismicity rate in a specific time window. We run the RF forecast for each combination of grid 
sizes, grid plus, and time windows. We use adjusted R2 (defined in “Methods” section, range from negative to 1) 
to evaluate the model performance, with high adjusted R2 implying good fit between forecast and observations. 
The adjusted R2 for training data increase with grid size, while the adjusted R2 for test data first increases and 
then decrease with grid size. In time, neither training data nor test data show significant difference for different 
time windows (Fig. S1 in the Supporting Information).

Here, we show the best results of all the models, where the grid size is 1.6◦ , the time window is 30 days, and the 
grid plus is − 0.2

◦, and the model results in an adjusted R2 of 0.95 and 0.75 for training and test dataset, respec-
tively. The model forecasts the number of earthquakes in the time window of 30 days. In each grid, we sum the 
number of earthquakes in 12 months of each year and get the annual seismicity rate. The map view of annual 
forecasting results is shown in Fig. 2. Consistent with the observations, the seismicity is mainly distributed in 
central and western Oklahoma, and the seismicity rate remains elevated until 2020 especially for western Okla-
homa (300/year ≫ 19/year in 2008). The drastic color change between 2016 and 2017 suggests that the model 
captures the rapid decrease of seismicity in those two years. The annual seismicity rate continues to decrease 
from 2018 to 2020.

In time, we sum the number of earthquakes of selected grids together and plot the seismicity curve for differ-
ent regions (Fig. 3). Overall, the model forecasts the rapid decreasing seismicity after 2015 with an adjusted R2 
of 0.75 for the whole study area. For individual grids (e.g., Pawnee, Prague, and Fairview), the temporal forecast 
is also reasonable, but the adjusted R2 is lower because of small number of data points in small areas. The results 
suggest that our model can forecast the first-order seismicity rate for the study area and also reflect heterogeneous 
relationship between injection and seismicity at different locations. We notice that starting from 2019, the model 
shows over-prediction for almost the whole study area. The over-prediction likely results from the assumptions 
about injections, for example, pore pressure data assume constant injection after March, 20185. We also note that 
the R2 score of training data is higher than that of test data. On one hand, even though we use cross validation 

Figure 1.   Map view of the declustered seismicity and well injections. Squares: injection wells scaled by the 
cumulative injection volume from 2011 to 2019. Circles: M ≥ 2.2 earthquakes from 2011 to 2020, colored by 
their origin times. The gray lines are county boundaries in Oklahoma. The background shows the modeled 
pore pressure in June, 20155. The three red stars show the location of M > 5 earthquakes in Fairview, Pawnee, 
and Prague in Oklahoma. The inset figure shows the location of our study area (the map is created in Python 
(Version 3.6); software available at https://​www.​python.​org).

https://www.python.org
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Figure 2.   The forecast annual earthquake number for the study area. The white circles denote earthquakes 
occurred during each year. The annual forecast is the sum of the monthly forecast in each year.

Figure 3.   Seismicity rate forecast for different regions, including the whole study area, central Oklahoma 
(longitude ≥ −98

◦ ), western Oklahoma (longitude < −98
◦ ), Pawnee area, Prague area, and Fairview area. 

The gray lines are observations, and the blue and red lines are forecast results from training and test dataset, 
respectively. The red dashed line shows forecast for year 2020, where the injection data are not available yet. Red 
areas indicate one standard deviation from 100 runs. The location of the Pawnee, Prague, and Fairview is shown 
in Fig. 1. The R2 and R2

adj for training data and test data are listed on each subplot. Notice that R2

adj is smaller 
than R2 , especially for Pawnee, Prague, and Fairview, where the number of data points is small.
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in the training process, the model can be over-fitting due to the small dataset. On the other hand, the seismicity 
rate is not stationary18, which makes the forecast process more complicated.

Feature importance.  Figure 4 shows the rank of feature importance from the model. The most important 
features are pore pressure rate (0.4), poroelastic stress rate (0.25), pore pressure (0.1), injection pressure (0.08), 
and cumulative volume (0.06). The pore pressure rate and poroelastic stress rate correspond to the two main 
mechanisms of induced seismicity. The relative importance of the two factors changes slightly with different 
gridding parameters. The physics-based parameters alone could make forecast as good as those using all the 
parameters (Figs. S2 and S3 in the Supporting Information).

Besides the above features, injection rate, and 1 year injection volume, and injection depth also show posi-
tive correlations to seismicity rate. Without incorporation of pore pressure and poroelastic stress, operational 
parameters alone can not forecast the seismicity rate well ( R2

adj = 0.2 , Fig. S4). Contrary to the heterogeneity 
we observed before, the region parameter encoded from the grid number has low feature importance ( < 0.001 ). 
Possible explanations are that for physics-based features, hydrogeologic modeling already takes the spatial het-
erogeneity into account. We add the region parameters with columns of sparse ones and zeros, which could be 
less informative than the other features. We speculate that adding more meaningful parameters, for example, seis-
mogenic index5, geological boundaries15, or geospatial correction14, could potentially further improve the results.

Discussion
Comparison of different forecast models.  For comparison, we use different machine learning models 
to forecast seismicity based on the same set of training and test data. The models include a least square Linear 
Regression model (referred to as Linear model), a sequential model with three Dense layers stacked (referred to 
as Dense model) where each Dense layer includes linear regression and activation functions, a Support Vector 
Regression model (referred to as SVR model), a sequential model with a 1D Convolutional layer and a Dense 
layer (referred to as CNN model), and a sequential model with a Long Short-Term Memory (LSTM) layer and 
a Dense layer (referred to as RNN model). Different from the Linear model, the Support Vector Regression is a 
supervised learning algorithm to predict discrete values by finding the best-fit hyperplane with the maximum 
number of points. The algorithm acknowledges the non-linearity in the data and is robust to outliers. Convo-
lutional layers apply a convolution operation to the input and pass the results to the next layer, which are used 
to extract features from the input data and have been used widely in earthquake detection19. A LSTM layer 
learns long-term dependencies between time steps in time series and sequence data, which has also been used 
in earthquake detection20. We use the aforementioned adjusted R2 and mean absolute error (MAE) as metrics to 
compare the performance of different models. MAE is defined as,

where yi is the observed seismicity rate, fi is the corresponding prediction of yi . The results are shown in Fig. 5.
The models are ranked from high to low by their performance on test data: RF, Dense, RNN, SVR, CNN, and 

the Linear model. Random Forest outperforms the other models. Besides Random Forest model, considering our 
training dataset is relatively small, the Dense model is a good balance between model complexity and fit of data. 
RNN can keep track of arbitrary long-term dependencies in the input sequences, which might help with some 
complex situations in earthquake forecast, e.g., different time lags between injection and earthquake occurrence.

(1)MAE =

∑n
i=1

|fi − yi|

n

Figure 4.   Histogram of feature importance from the RF model. The most important features are pore pressure 
rate, poroelastic stress rate, and pore pressure.
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We also check against the forecast results from two physics-based forecasting methods8,21. Since the study 
area and forecast target are different, it is not easy to make one-to-one comparison. We qualitatively compare our 
model to the physics-based forecasting methods. Both methods can forecast the decreasing seismicity in recent 
years. Our model can make forecast at different time windows (from 30 to 180 days) and has better resolution 
than the yearly forecast from physics-based models. In terms of spatial resolution, the physics-based models 
are better, as the performance of our model decreases if the grid size is smaller. Our model could also identify 
the triggering mechanisms independently from a set of input features, which suggests that the application of 
machine learning methods could be used to study the physics behind observations. On the other hand, we have 
seen model improvements by adding physics-based parameters, e.g., pore pressure and poroelastic stress. The 
performance of seismic forecasting may be further improved using physics-informed machine learning models.

Physical mechanism of induced seismicity.  The feature importance analysis suggests that physics-
based parameters are more important than operational and geological parameters, because the modeling of pore 
pressure and poroelastic stress incorporates the injection rate, injection depth, and other hydrogeologic param-
eters. These results are consistent with the previously known mechanism for induced seismicity that the increase 
of pore pressure reduces effective normal stress and promotes fault failure. The causal relationship between pore 
pressure diffusion and seismicity has been examined by both observations4,22,23 and modeling2,5. The effect of 
poroelastic stress on induced seismicity becomes more significant at relatively far distance6–8.

Among the physical parameters, the pore pressure rate and poroelastic stressing rate are the two most 
important parameters, with much higher ranking than absolute values of pore pressure and poroelastic stress. 
Studies8,24 have shown good agreement between observation and forecast seismicity rate using stressing rates 
based on rate-and-state model25. Their results suggested that variable injection rates that caused large stressing 
rate changes led to higher seismicity rate. Our machine learning analysis obtains consistent conclusion (stress-
ing rate is more important) and similar forecasting performances. These results suggest promising applications 
of machine learning techniques in extracting the physical mechanism of induced seismicity and forecasting 
induced seismicity rates.

Besides the identified physical features, the various relationship between input features and forecast results 
can statistically provide information about the triggering mechanisms. For example, the parameter grid plus is 
used to account for the correlations between earthquakes and injection at grid borders. Results show the adjusted 
R2 varies for different grid plus sizes from − 0.3

◦ to 0.3◦ . Grid plus of − 0.1
◦ and − 0.2

◦ generates the best results 
by enclosing the earthquakes at the grid borders with a larger grid of injection wells. The R2

adj starts to decrease 
if the grid plus is too large (e.g., 0.2◦ and 0.3◦ ), which suggests that at a larger distance (around 20–30 km), the 
wells should not be associated with the earthquakes within the grid. These findings are consistent with the spatial 
range of pore pressure diffusion influence from previous studies2,3.

In this paper, we compile the injection-related parameters in Oklahoma and use them to forecast seismicity 
rate in a Random Forest regression model. The model can forecast the first-order seismicity rate in Oklahoma. 
The model also identifies pore pressure rate and poroelastic stress rate as the most important features to forecast 
induced seismicity. The results demonstrate potential to use machine learning methods to forecast seismicity 
and to understand the physics behind the induced seismicity.

Methods
Earthquake data.  We use the earthquake catalog from January 2011 to December 2020 from the Oklahoma 
Geological Survey (OGS)26. The catalog has a completeness of magnitude ( Mc ) of 2.2 based on maximum cur-
vature of the frequency-magnitude distribution27 (Fig. S5 in the Supporting Information). Studies have shown 
evidence of earthquake interactions among clustered events in Oklahoma6,9–11. Since we do not account for 
earthquake interactions, we decluster the catalog by removing the aftershocks following the recently revised 
spatial and temporal windows proposed for Oklahoma earthquakes28. Figure 1 shows the declustered catalog 
with a magnitude cutoff of 2.2.

Figure 5.   Comparison of model performance. The left panel shows the mean absolute error (MAE), and the 
right panel shows the adjusted R2 . RF: Random Forest, Linear: least square Linear Regression, Dense: sequential 
model of three linear regression layers stacked, SVR: Support Vector Regression model, CNN: sequential model 
with a 1D Convolutional layer, RNN: sequential model with a long short-term memory layer.
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Wastewater injection and geological parameters.  We obtain the monthly injection data from 2011 to 
2019 from the Oklahoma Corporation Commission (OCC). We select wells with the cumulative injection vol-
ume since 2005 larger than 1000 bbl (Fig. 1). For each well, the spikes in injection volume larger than ten times 
of the average values are removed to avoid possibly wrong records. We also extract the basement depth at each 
injection location29 and calculate the distance from the injection depth to the basement. The final parameters 
include monthly injection rate, yearly (the most recent 1 year) and cumulative injection volume, injection pres-
sure (PSI), injection depth, basement depth, and distance from the injection depth to the basement. Since the 
injection data are not available for 2020 and 2021 at the time of the study, we assume the injection parameters 
stay constant after the last month in 2019.

Pore pressure and poroelastic stress data.  To include physics-based features from injections, we add 
pore pressure data (Fig. 1) and poroelastic stress data from hydrogeologic modeling. The pore pressure data5 are 
calculated for each month at 25,000 randomly selected points in Oklahoma and have been used in a seismo-
genic-index based model to successfully forecast statewide seismic hazards. The poroelastic data8 are computed 
at gridded points in central and western Oklahoma by assuming an optimal NW and NE fault orientation. The 
data have been used in seismicity forecast in a rate-and-state model8. We should mention that the pore pressure 
data and poroelastic stress data are derived from different modeling parameters and different assumptions about 
the injection rate. The former5 assumes the injection stays constant after March 2018, and the latter8 hypoth-
esizes an injection shut-in after April 2017. Fortunately, we use the tree-based model Random Forest which does 
not directly compare the absolute values of pore pressure and poroelastic stress, so we can treat them as two 
independent features.

Feature selection and forecast target.  We build a list of features from injection and physical param-
eters to forecast seismicity rate. First, the study area (inset figure in Fig. 1) is divided into uniform grids ( 0.6◦ to 
2.0

◦ with an increment of 0.1◦ ), and in each grid we search for injection wells, modeled pore pressure and poroe-
lastic stress data points for each month. The statistics, including sum, mean, maximum, minimum, different 
percentiles of the injection parameters (rate and pressure), geological parameters (depth), pore pressures, and 
poroelastic stress data in each grid in each month form the initial features. Then we remove the redundant fea-
tures that are highly correlated with each other and the features that do not show good correlation with the target 
(cross-correlation coefficient < 0.35 ). Next, to account for possible delayed response between input features 
and the target, we add history data (the feature difference between the current month and the previous months, 
Fig. S6 in the Supporting Information) to the feature list. Finally, we add a region number parameter (encoded 
to multiple columns of zeros and ones) to represent the geological features. Table 1 lists the selected features.

The forecast target is the earthquake number in the next time window (30, 60, 90, and 180 days). Considering 
that at the borders, some earthquakes might be associated with the injection wells outside the grid, we select a 
different grid size (referred to as grid plus, from − 0.3◦ to 0.3◦ , Fig. S7 in the Supporting Information) to search 
for earthquakes. A negative grid plus means that the grid for earthquake search is smaller than that in well search, 
and vice versa. We also apply a moving window of one-fourth of the grid size to obtain more data points for 
spatial variations (Fig. S8 in the Supporting Information).

Random Forest model.  We use a machine learning technique—Random Forest (RF) to forecast the seis-
micity rate. The RF model makes predictions of the target variable (seismicity rate) based on a list of input 
features30–32 (Table 1). We split the data into training (2011.01–2015.05) and test (2015.06–2020.12) dataset. The 
training dataset covers the seismicity onset and peak, and the test dataset starts about 1 month following the 
peak. We use grid search with 3-fold validations to optimize the hyper-parameters of the RF model. The best-fit 

Table 1.   The list of selected input features for Random Forest forecast. The complete input features also 
include the history data of the features denoted by asterisk (*).

Pore pressure rate* Pore pressure rate (mean), pore pressure rate (max), pore pressure rate (variance), pore pressure rate 
(20th percentile), pore pressure rate (gradient between minimum and maximum values in space)

Pore pressure* Pore pressure (mean), pore pressure (max)

Poroelastic stress rate (PES rate)* PES rate (mean), PES rate (max), PES rate (variance), PES rate (20th percentile), PES rate (gradient 
between minimum and maximum values in space)

Poroelastic stress (PES)* PES (mean)

Injection rate* Monthly injection volume (sum)

Injection PSI* Monthly injection pressure (skewness)

Cumulative volume* Cumulative injection volume (20th percentile)

1 year injection volume* 1 year injection volume (max), 1 year injection volume (40th percentile)

Injection depth Well depth (mean), well depth (max), well depth (min), well depth (variance)

Basement depth Basement depth (mean), basement depth (max), basement depth (min), basement depth (variance)

Distance to basement Distance (mean), distance (max), distance (min), distance (variance)

Region parameters Grid number 0–31 to represent different locations
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model has the hyper-parameters as follows, tree number of 20, maximum depth of 5, the minimum number of 
samples to split of 2, and the minimum number of samples for a leaf node of 4. The model is then used to make 
forecast for the test data. A metric of adjusted R2 score ( R2

adj ) is selected to measure how well the model predic-
tions approximate the observations. The R2

adj is defined as follows,

where n is the total sample size, k is the number of independent features, and R2 is defined as,

where ȳ is the mean of the observed seismicity rate yi , fi is the corresponding prediction of yi . The R2 also rep-
resents how well the predictions fit the observation data and tends to increase with the number of features. The 
adjusted R2 compensates for the addition of variables and only increases if the new variable enhances the model 
above what would be obtained by probability. So the adjusted R2 is used to prevent data over-fitting and unwar-
ranted high R2 value from including too many features. An R2

adj value equal to one implies perfect prediction of 
the observation data, and a value less than or equal to 0 indicates a model that has no predictive value.

We also calculate the permutation-based feature importance. This method will randomly shuffle each feature 
and compute the change in the model’s performance. The features which impact the performance the most are 
the most important one. The importance values are between 0 and 1, with values close to 1 meaning the high-
est importance. The rank of the features helps understand the physics behind the induced seismicity. For each 
category of features, we sum the contributions of its all related statistical features (e.g., sum and mean) together.

Received: 1 October 2021; Accepted: 24 May 2022
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