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PathwayTMB: A pathway-based tumor mutational
burden analysis method for predicting
the clinical outcome of cancer immunotherapy
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Immunotherapy has become one of the most promising ther-
apy methods for cancer, but only a small number of patients
are responsive to it, indicating that more effective biomarkers
are urgently needed. This study developed a pathway analysis
method, named PathwayTMB, to identify genomic mutation
pathways that serve as potential biomarkers for predicting
the clinical outcome of immunotherapy. PathwayTMB first cal-
culates the patient-specific pathway-based tumor mutational
burden (PTMB) to reflect the cumulative extent of mutations
for each pathway. It then screens mutated survival benefit-
related pathways to construct an immune-related prognostic
signature based on PTMB (IPSP). In a melanoma training
set, IPSP-high patients presented a longer overall survival
and a higher response rate than IPSP-low patients. Moreover,
the IPSP showed a superior predictive effect compared with
TMB. In addition, the prognostic and predictive value of
the IPSP was consistently validated in two independent valida-
tion sets. Finally, in a multi-cancer dataset, PathwayTMB
also exhibited good performance. Our results indicate that
PathwayTMB could identify the mutation pathways for pre-
dicting immunotherapeutic survival, and their combination
may serve as a potential predictive biomarker for immune
checkpoint inhibitor therapy.
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INTRODUCTION
With the advent of the era of precision medicine, immunotherapy
with immune checkpoint inhibitors (ICIs) is one of the most prom-
ising therapy methods for a range of tumors. However, only a minor-
ity of patients benefit from immunotherapy. Thus, there is an urgent
need to discover biomarkers that allow for more precise identification
of patients who can benefit from ICI treatment.

Accumulating evidence indicates that high tumor mutational burden
(TMB) is a leading candidate biomarker to predict the immuno-
therapy response,1,2 and a recent study confirmed that TMB can be
used as a potential biomarker of benefit to non-small cell lung cancer
(NSCLC) patients treated with nivolumab plus ipilimumab.3 Howev-
er, the tumor heterogeneity limits its clinical application. Moreover,
Molecular The
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Prasad and Addeo reported that the US Food and Drug Administra-
tion approval of pembrolizumab for patients with 10 mut/Mb was an
unwise decision because of the high cost and the arbitrariness of the
cutoff of 10mut/Mb.4McGrail et al. reported that their research failed
to support the application of TMB as a biomarker for treatment with
ICIs in all solid cancer types,5 and TMB remains a controversial
biomarker in some cancer types.6 Programmed death ligand-1
(PD-L1) expression is another potential biomarker, but Brahmer
et al. performed a clinical trial of immunotherapy, and their results
showed that the PD-L1 expression level was neither prognostic nor
predictive of efficacy in squamous-cell NSCLC patients treated with
nivolumab.7 Moreover, the tumor heterogeneity and dynamic
changes have also limited the clinical application of PD-L1 expres-
sion.8 Thus, there is an urgent need to identify more effective and pre-
cise biomarkers for immunotherapy.

Mounting evidence shows that specific gene or pathway mutations
are related to the clinical outcome of immunotherapy.9,10 For
example, the ZFHX3 mutation was found to be a protective
biomarker for ICIs in NSCLC.11 Pan et al. developed a 52-gene mu-
tation signature that could predict immunotherapy benefits in pa-
tients with NSCLC.12 Furthermore, recent research has revealed
that mutations tend to occur within a core group of pathways.13

Wang et al. demonstrated that co-mutations in the DNA damage
repair (DDR) pathways could serve as potential biomarkers for ICI
treatment.10 Although they provided a potentially convenient
approach for the clinical practice of immunotherapy, they only
focused on the DDR pathways and neglected the other important
pathways that may be associated with cancer progression and clinical
outcome. Mutations in the important pathways, such as signaling
rapy: Nucleic Acids Vol. 34 December 2023 ª 2023 The Authors. 1
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pathways that control cell-cycle progression, apoptosis, and cell
growth, are common hallmarks of cancer.14 Mutations in these path-
ways may not only produce neoantigens but may also functionally
affect the outcome of immunotherapy.12 Therefore, there is an urgent
need to identify the key pathways whose mutations may influence the
response to immunotherapy.

Here, we developed a pathway analysis method named PathwayTMB
to identify the pathways with genomic mutations that serve as poten-
tial biomarkers for ICIs. PathwayTMB first defines the patient-spe-
cific pathway-based TMB (PTMB) to reflect the cumulative extent
of mutations for each pathway. We screened the survival benefit-
related pathways based on PTMB and constructed an immune-
related prognostic signature based on these pathways (IPSP) to pre-
dict the response to immunotherapy and the clinical outcome. In a
melanoma cohort, we identified a three-pathway IPSP, and IPSP-
high patients presented a longer overall survival (OS) and a higher
objective response rate (ORR) than IPSP-low patients. The predictive
power of IPSP with respect to the clinical benefits of immunotherapy
was found to be superior to that of TMB. Moreover, the prognostic
and predictive value of IPSP was consistently validated in two inde-
pendent validation cohorts. To test if the PathwayTMBmethod could
predict immunotherapy responsiveness in other cancer types, we
applied the method to a multi-cancer cohort and obtained promising
results. Finally, we implemented PathwayTMB as a freely available
R-based package to expand its usage (https://CRAN.R-project.org/
package=pathwayTMB).
RESULTS
Construction of the immune-related prognostic signature based

on PTMB

We developed the PathwayTMB method to identify potential bio-
markers for predicting the clinical outcome of immunotherapy. A
detailed flowchart of the PathwayTMB method is shown in Figure 1.
In the training cohort of 104 metastatic melanoma patients treated
with CTLA-4 inhibitors,15 the genes mutated in at least 1% of cancer
patients were retained. Next, the survival benefit-related mutations
were identified and mapped to the pathways (see materials and
methods). To obtain the prognostic-related mutated pathways, we
first calculated the patient-specific PTMB to reflect the cumulative
extent of TMB at the pathway level. Through the Wilcoxon rank-
sum test and fold change (FC) values, 32 differential PTMB pathways
between alive and deceased samples were identified with p value <0.01
and |log2(FC)| > 1 (Figure 2A). We then applied random forest with
nested cross-validation to select the important survival-related path-
ways based on PTMB by calculating the important score for each
pathway (see materials and methods), and seven pathways were ob-
tained. Finally, the LASSO-Cox regression model was constructed
and the log rank test was performed to find the most critical prog-
nosis-related significant pathways (Figure 2B). We thus obtained
three candidate pathways, namely, the JAK-STAT signaling pathway,
signaling pathways regulating pluripotency of stem cells (PSC), and
the adipocytokine signaling pathway (Table S2).
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To analyze if mutations in these three candidate pathways could pre-
dict ICI treatment efficacy, we first classified each pathway as muta-
tion or wild type (WT) based on the presence or absence of a pathway
mutation (at least one gene mutated in the pathway) and then divided
104 metastatic melanoma patients of the training cohort into the
following three subgroups: (1) those without mutations in the three
pathways (WT group), (2) those with only one of the three pathways
mutated (single mutation group), and (3) those with two or more of
the three pathways mutated (compound mutation group). Through
comparing the OS among the three subgroups (Figure 2C), our results
showed that the patients in the compound mutation group showed
significantly better prognosis than the single mutation and WT
groups (Kaplan-Meier survival analysis, log rank test compound vs.
single, p = 1.14e�03; compound vs. WT, p = 9.85e�03). Therefore,
the three mutation pathways may jointly influence the clinical
outcome of immunotherapy.

To predict the clinical outcome of immunotherapy by using the
three pathways jointly, a risk model defined as IPSP was calculated us-
ing a formula derived from the PTMBs of the three pathways
weighted by their multivariate Cox proportional hazards regression
coefficient: IPSP score = (0.020 � JAK-STAT signaling pathway) +
(0.094� adipocytokine signaling pathway) + (0.043� signaling path-
ways regulating PSC). The median value of the IPSP score was used to
separate the patients into the IPSP-high (>0.162) and IPSP-low (%
0.162) groups in the training cohort. The Kaplan-Meier survival
curves showed that patients in the IPSP-high group had significantly
longer OS than those in the IPSP-low group (median OS,
21.55 months vs. 6.93 months, log rank test, p < 0.0001; Figure 2D).
Then, univariable and multivariable analyses of clinicopathological
factors (TMB, sex, age, and stage) in the training cohort for OS
were performed. The results showed that the IPSP score could serve
as an independent prognostic factor for OS after multivariable adjust-
ment by clinicopathological variables (Table 1).

Prediction of clinical benefit from immunotherapy based on

IPSP

Recently, TMB has been proposed as a potential biomarker for ICI
therapy inmetastatic melanoma.16We thus evaluated the relationship
between the pathway mutation signature and TMB in predicting the
patient response to ICI treatment. For each cohort, we calculated the
TMB as the total number of non-synonymous somatic mutations in
the coding region per megabase.17 Patients with mutations in two
or more candidate pathways (compound mutation group) possess
significantly higher average TMB than the single mutation group
and the WT group (Wilcoxon rank-sum test, p = 0.041 and p =
2e�08; Figure 3A). It was also observed that IPSP-high patients
had a significantly higher average TMB than IPSP-low patients (Wil-
coxon rank-sum test, p = 1.20e�04; Figure 3B). Moreover, IPSP
showed a significant positive correlation with TMB (Pearson correla-
tion R = 0.49, p = 8.4e�07; Figure S1A).

Wenext compared the relative predictive powers of the IPSPvs. TMB in
themetastaticmelanomapatient cohort. According to themedian value
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Figure 1. Flowchart of the PathwayTMB method.
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of the TMB, the patients were classified into a TMB-high and a TMB-
low group. TMB-high patients seem to have a clear survival benefit
comparedwith TMB-low patients, although this difference was not sta-
tistically significant (Figure S1B). To compare the IPSP with TMB, we
stratified patients with high or low TMB based on the IPSP and
compared their OS levels (Figure 3C). We observed that IPSP-high pa-
tients with low TMB (median OS, 21.23 months) had a significant sur-
vival advantage comparedwith IPSP-lowpatientswith either highTMB
(median OS, 5.58 months) or low TMB (median OS, 7.43 months) (log
rank test, IPSP-high and TMB-low vs. IPSP-low and TMB-high, p =
3.31e�03; IPSP-high and TMB-low vs. IPSP-low and TMB-low, p =
9.96e�03), which seems to contradict the previous results that patients
with high TMB levels had better immunotherapy efficacy. But that may
not be the case because previous studies indicated that high tumor
mutational burden failed to predict immune checkpoint blockade
response across all cancer types,5,18,19 suggesting even tumors with
low TMB levels may respond to immunotherapy. These findings
demonstrated that our PathwayTMB approach can identify potential
immunotherapy responders in patients with low TMB levels, revealing
the superiority of the IPSP in predicting ICI treatment benefits
compared with TMB in patients with metastatic melanoma.

We further tested if the IPSP could predict the response of immuno-
therapy in patients with metastatic melanoma. A significantly higher
Molecular Therapy: Nucleic Acids Vol. 34 December 2023 3

http://www.moleculartherapy.org


Figure 2. Construction of the immune-related

prognostic signature based on PTMB

(A) Dot plot of differential PTMB pathways between

deceased and alive samples (p < 0.01 and |log2(FC)| > 1).

(B) Plot of 10-fold cross-validation via minimum criteria for

selection of the optimal value of tuning parameter. The

two dotted vertical lines are drawn at the optimal values

by minimum criteria (right) and 1-SE criteria (left). (C)

Kaplan-Meier survival curves of OS comparing the three

subgroups with different pathway mutation signature

components from the melanoma training cohort. (D)

Kaplan-Meier survival curves of OS comparing the IPSP-

high and IPSP-low groups from the melanoma training

cohort.
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response rate was displayed in the IPSP-high group compared with
the IPSP-low group (25% vs. 7.7%, chi-squared test, p = 0.03; Fig-
ure 3D). Although the TMB-high group also showed a higher
response rate compared with the TMB-low group, this difference
was not significantly different (21.2% vs. 11.5%, chi-squared test,
p = 0.29; Figure 3E). Moreover, receiver operating characteristic
(ROC) curve analysis revealed that the IPSP has a better predictive
power of the response to immunotherapy than TMB (area under
the ROC [AUROC] of IPSP = 0.70 vs. AUROC of TMB = 0.59;
Figure 3F).

Validation of the predictive value of IPSP in the independent

validation cohorts

To validate the predictive value for immunotherapy of the IPSP
model, we collected two independent immunotherapy cohorts of
metastatic melanoma patients. The first validation cohort was from
the Miao et al. study,20 including 145 metastatic melanoma patients
treated with CTLA-4 inhibitors. To test if the IPSP could predict
the prognosis of patients treated with other inhibitors, we also
collected data from a second validation cohort from the Hugo et al.
study21 including 37 metastatic melanoma patients treated with
PD-1 inhibitors. Using the IPSP cutoff value obtained from the
4 Molecular Therapy: Nucleic Acids Vol. 34 December 2023
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training cohort, the patients in both cohorts were
divided into an IPSP-high group and an IPSP-
low group. For the Miao et al. cohort, 99 of 145
patients were classified as the IPSP-high group,
and their OS was significantly longer than that
of the IPSP-low group (median OS, 20.66months
vs. 8.01 months; log rank test, p = 0.0041;
Figure 4A). For the Hugo et al. cohort, IPSP-
high patients (n = 28) had a better OS compared
with IPSP-low patients (n = 9) (median OS,
20.8 months vs. 10.7 months; log rank test, p =
0.011; Figure 4B). However, no significant associ-
ation was found between the TMB level and the
OS in both validation cohorts (log rank test,
p = 0.10 for the Miao et al. cohort; p = 0.17 for
the Hugo et al. cohort; Figures S1C and S1D).
Moreover, through multivariable adjustment by
clinicopathological variables, the IPSP score was shown to be an inde-
pendent prognostic factor for OS in these two patient cohorts
(Table S3). These results validated the predictive efficacy of the
IPSP for OS in the independent patient cohorts treated with
CTLA-4 or PD-1 inhibitors.

We next tested if the IPSP could predict the response to immuno-
therapy of patients in the two independent validation sets. In the
Miao et al. cohort, IPSP-high patients displayed higher response rates
than IPSP-low patients (28.3% vs. 9.5%, chi-squared test, p = 0.03
Figure 4D), which also showed a better prediction result than TMB
(TMB-high vs. TMB-low, 28.2% vs. 17.1%, chi-squared test, p =
0.17; Figure S1E). Similarly, in the Hugo et al. cohort, the IPSP-
high patient group also showed a remarkably higher response rate
than the IPSP-low patient group (60.7% vs. 33.3%, chi-squared test
p = 0.29; Figure 4E). This result was not statistically significant
possibly because of the small sample size of this dataset. In spite o
this, the IPSP showed a better prediction result of the immunotherapy
response than TMB (TMB-high vs. TMB-low, 57.9% vs. 50.0%, chi-
squared test, p = 0.88; Figure S1F). Finally, through the ROC curve
analysis, the predictive power of the response to immunotherapy o
IPSP was demonstrated to be superior to that of TMB in the Miao



Table 1. Univariable and multivariable Cox regression analyses of clinicopathological factors in melanoma training cohorts for overall survival

Variable

Univariate analysis Multivariate analysis

HR 95% CI p value HR 95% CI p value

IPSP (high vs. low) 0.37 0.23–0.59 <0.01 0.29 0.18–0.49 <0.01

TMB (high vs. low) 0.91 0.58–1.42 0.67 1.12 0.69–1.81 0.65

Sex (female vs. male) 1.20 0.73–1.95 0.47 1.31 0.76–2.28 0.33

Age (R65 vs. < 65) 1.16 0.75–1.82 0.37 1.43 0.85–2.40 0.18

M_stage (M1 vs. M0) 4.53 1.42–14.40 <0.01 5.25 1.62–16.99 <0.01

HR is the hazard ratio of cox proportional-hazards regression model; 95% CI is the 95% confidence interval of cox proportional-hazards regression model; p value is the statistic
significance p vale of cox proportional-hazards regression model. The p value in bold indicates that the p value is statistically significant.
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et al. cohort (AUROC = 0.66 for IPSP vs. AUROC = 0.63 for TMB)
and the Hugo et al. cohort (AUROC = 0.64 for IPSP vs. AUROC =
0.58 for TMB) (Figure S2).

Moreover, in order to explore whether the IPSP model was cancer-
specific, we applied the IPSP model trained by the melanoma cohort
to the NSCLC cohort, which was obtained from the Hellmann et al.
study.22 Our analysis showed a significant difference in patient prog-
nosis and immunotherapy response between IPSP-high and IPSP-low
groups in the Hellmann et al. cohort (median OS, 13.34 months vs.
4.11 months, log rank test, p = 0.033; ORR, 47.2% vs. 21.9%, chi-
squared test, p = 0.05; Figure S3), indicating that the IPSP model
was not cancer-specific.

To further test if IPSP could serve as a predictive or prognostic factor for
melanoma patients who do not receive immunotherapy, we performed
survival analysis in the skin cutaneous melanoma (SKCM) cohort of
The CancerGenomeAtlas (TCGA). According to the IPSP cutoff value
obtained from the training cohort, significant differences in OS were
observed between the IPSP-high and IPSP-low groups (log rank test,
p = 0.014; Figure 4C), suggesting that the IPSP is not only a predictor
of the response to immunotherapy but also a prognostic marker.

Comparison of the IPSP signature with other signatures

To further verify the performance of our PathwayTMB app-
roach in predicting immunotherapy benefits, we compared our
PathwayTMB method with the Long et al. method23 and the Wang
et al. method.10 Long et al. developed a mutational signature to pre-
dict the prognosis of patients treated with ICIs, while Wang et al.
found that co-mutations in the DDR pathways could serve as poten-
tial biomarkers for ICI treatment.

We first applied the mutational signature developed by Long et al. in
our melanoma training cohort and two independent validation co-
horts, and then patients in each cohort were defined as High-risk
and Low-risk groups. In the melanoma training cohort (Van Allen
et al.15 cohort), there was no significant difference found in the patients’
OS and immunotherapy response between High-risk and Low-risk
groups (median OS, 10.55 months vs. 8.33 months, log rank test, p =
0.078; ORR, 16.67% vs. 15.38%, chi-squared test, p = 1; Figures S4A
and S4B). As for the Miao et al. cohort, patients with low-risk scores
(Low-risk) had a significantly better prognosis than those with high-
risk scores (High-risk), but no significant difference was found in
immunotherapy response (medianOS, 26.70months vs. 14.50months,
log rank test, p = 0.04; ORR, 23.89% vs. 26.47%, chi-squared test, p =
0.82; Figures S4C and S4D). As we excepted, in the Hugo et al. cohort,
the patients’ prognosis and immunotherapy response also did not show
significant differences betweenHigh-risk and Low-risk groups (median
OS, 31.20 months vs. 27.40 months, log rank test, p = 0.38; immuno-
therapy response, 59.30% vs. 40%, chi-squared test, p = 0.46;
Figures S4E and S4F). However, our IPSP signature displayed excellent
prognostic and predictive power in all these three melanoma cohorts
(Figures 2D, 3, and 4). Moreover, we also compared the performance
of our PathwayTMB method with the Wang et al. method. We then
applied the Wang et al. method to the above three melanoma cohorts,
and our results showed that co-mutations in the DDR pathways
failed to predict the clinical benefits of ICI treatment in the melanoma
training cohort and two independent validation cohorts (Figures S4G–
S4L). Altogether, these findings suggested that the PathwayTMB
outperforms the Long et al. and Wang et al. methods in predicting
the clinical outcomes of immunotherapy.

Association of IPSP with tumor immune-related features

According to the above results, we hypothesized that the IPSP may be
an indicator of tumor immune-related features. We first investigated
the correlations between the IPSP and immune-related pathways in
SKCM samples from TCGA. The SKCM samples were stratified into
an IPSP-high group and an IPSP-low group based on the IPSP. The
gene differential expression levels between the IPSP-high and IPSP-
low groups were calculated with the Student’s t test, and a ranked
gene list was constructed. Then, the gene set enrichment analysis
(GSEA) method was applied to identify the significantly enriched
pathways in IPSP-high samples (Figure S5). With false discovery
rate <0.05, the results showed that several DDR pathways, such as
base excision repair, homologous recombination, mismatch repair,
and nucleotide excision repair, were significantly enriched in the
IPSP-high group (Figure 5A). The DDR pathways are known to be
important determinants of tumor immunogenicity, whose defi-
ciencies may result in a durable clinical benefit from ICIs.10 These
findings indicate that the IPSP is associated with the DDR pathways
in melanoma and partially explain the correlation between the IPSP
and immunotherapy benefits.
Molecular Therapy: Nucleic Acids Vol. 34 December 2023 5
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Figure 3. Prediction of clinical benefit with IPSP in the melanoma training cohort

(A) Comparison of TMB among the three subgroups with different pathway mutation signature components. (B) Comparison of TMB between IPSP-high and IPSP-low

groups. Statistical significance was tested by rank-sum Wilcoxon test. (C) Kaplan-Meier survival analysis of OS among patients within each of the four indicated subgroups

(IPSP-high and TMB-low, IPSP-high and TMB-high, IPSP-low and TMB-low, IPSP-low and TMB-high) from the melanoma training cohort. (D) Comparison of the objective

response rate between the IPSP-high and IPSP-low groups from the melanoma training cohort. (E) Comparison of the objective response rate between the TMB-high and

TMB-low groups from the melanoma training cohort. Statistical significance was tested by chi-squared test. (F) ROC curves of the IPSP and TMB to predict immunotherapy

response from the melanoma training cohort.
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A previous study suggested that genemutations not only generate neo-
antigens that might be recognized by the immune system but may also
influence the biology of the tumors such as altered tumor immune
microenvironment.12 We thus examined the relationships between
the IPSP and tumor immune microenvironment features in metastatic
melanoma patients. The CIBERSORT algorithm24 was used to esti-
mate the abundances of TIICs with gene transcriptomic data from
the TCGA-SKCM samples. Compared with IPSP-low tumors, IPSP-
high tumors were more infiltrated by M1 Macrophages, plasma cells,
6 Molecular Therapy: Nucleic Acids Vol. 34 December 2023
CD4+ memory-activated T cells, and follicular helper T (Tfh) cells,
but had a low number of regulatory T cells (Tregs) (Figure 5B). Previ-
ous research confirmed that M1 Macrophages can kill tumor cells and
inhibit tumor cell growth through phagocytosis25 and that Tfh cells
play key roles in enhancing the immune response.26 Conversely, Tregs
were proposed to be a barrier to anti-tumor immunity, which has been
confirmed to suppress immune activity and whose malfunction has
been associated with cancer progression and immunological disor-
ders.27,28 These observations indicate that the IPSP is positively



Figure 4. Validation of the predictive value of IPSP in the independent cohorts

(A) Kaplan-Meier survival analysis of OS comparing the IPSP-high and IPSP-low groups from the Miao cohort. (B) Kaplan-Meier survival analysis of OS comparing the IPSP-

high and IPSP-low groups from the Hugo cohort. (C) Kaplan-Meier survival analysis of OS comparing the IPSP-high and IPSP-low groups from TCGA-SKCM cohort. (D)

Comparison of the objective response rate between the IPSP-high and IPSP-low groups from the Miao cohort. (E) Comparison of the objective response rate between the

IPSP-high and IPSP-low groups from the Hugo cohort.
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correlated with some immunopromoting cells and negatively corre-
lated with immunosuppressive cells, and thus IPSP-high patients are
more inclined to respond to immunotherapy.

Analysis of the pathway signatures in IPSP

In the melanoma training cohort, IPSP included three pathway signa-
tures: the JAK-STAT signaling pathway, the adipocytokine signaling
pathway, and signaling pathways regulating PSC. The JAK-STAT
signaling pathway is a critical cytokine pathway involved in prolifer-
ation, and the immune and inflammatory responses, and is thus
closely related to cancer.29 The adipocytokine signaling pathway re-
fers to a cascade of events involving the adipocytokines in the body,
which may participate in tumor growth and metastasis by secreting
signaling factors (such as adipokines, proinflammatory cytokines,
and extracellular matrix constituents) and acting as energy storage
for embedded cancer cells.30 Meanwhile, signaling pathways regu-
lating PSC plays a critical role in maintaining the stemness and undif-
ferentiated state of cancer stem cells, such as epithelial-to-mesen-
chymal transition linked to cancer progression and metastasis.31

These studies showed that the three pathways may play an important
role in tumorigenesis and development either individually or by
interacting. Besides, our previous results suggested that IPSP-high pa-
tients were significantly enriched in DDR pathways, which are inti-
mately connected to the emission of immunomodulatory signals.32

Altogether, these findings indicated that the candidate pathways
and the dysregulated pathways may influence tumorigenesis and
development by co-regulating anti-tumor immune responses in
patients.
Molecular Therapy: Nucleic Acids Vol. 34 December 2023 7
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Figure 5. Correlation between IPSP score and

immune-related features

(A) GSEA plot of important pathways in comparison be-

tween the IPSP-high and IPSP-low groups. (B) Compari-

son of TIICs relative infiltrated abundance between the

IPSP-high and IPSP-low groups. Statistical significance

was tested by rank-sum Wilcoxon test.
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To further explore the correlation among the three pathways, a pairwise
analysis of co-occurrenceormutual exclusionwasperformed according
to the pathway mutation (at least one gene mutated in the pathway) or
WT status. We applied the “maftools” package to implement this pro-
cess.33 The results showed that mutations in these pathways generally
co-occurred (Figure 6A), highlighting that the three pathways in the
IPSPmay interact or influence eachother toplay a role in tumorigenesis
and development.We next tested the genemutations in the three path-
ways. For each pathway, the top 10 genes in terms ofmutation rate were
involved, and the waterfall plot showed that IPSP-high patients possess
more mutations in both genes and pathways compared with IPSP-low
patients (Figure 6B). As expected, more IPSP-high patients respond to
immunotherapy. Moreover, similar results were observed in both the
Miao et al. and Hugo et al. cohorts (Figure S6).

We further mapped the mutated genes to the pathways. We took the
JAK-STAT signaling pathway as an example, which participates in
8 Molecular Therapy: Nucleic Acids Vol. 34 December 2023
various signal transduction processes. We
observed that a number of genes are mutated
(Figure 6C). PTPN11 was the most frequently
altered gene (10.5% across all samples), followed
by OSMR (9.5%), mTOR (8.6%), and IL2RB
(8.6%) (Figure 6C). It was observed that
PTPN11 mutations are enriched in tumors
responsive to PD-1 inhibitor therapy in multiple
cancers.34 mTOR is often activated in tumors,
promoting tumor growth by regulating the
differentiation and function of immune cells; its
mutation plays a positive role in the exploration
of new immunotherapeutic strategies.35 Although
their mutation frequencies weremodest, the com-
bination of some of these mutations may facilitate
the response to immunotherapy.

Application of the PathwayTMB method to

the multi-cancer cohort

To further test if the PathwayTMB method
could be used in other cancer types, we applied
it to a multi-cancer cohort obtained from
the cBioPortal database (https://www.cbioportal.
org/).20 Patients in the cohort includedmelanoma,
NSCLC, head andneck cancer, and bladder cancer
patients, whowere all treatedwith ICIs (Table S1).
We first calculated the patient-specific PTMB by
mapping the somatic mutation data to the
pathway. Based on the PTMB, nine survival benefit-related pathways
were identified (Table S4), including the mTOR signaling pathway,
theHippo signaling pathway, and the cytokine-cytokine receptor inter-
action pathway, which are all associated with cancer immunity. For
example, the mTOR signaling pathway is often activated in tumors
and regulates cell proliferation and immune cell differentiation, which
is a hot target in tumor therapy research.35 The Hippo signaling
pathway has critical functions in cancer immunity, innate immune re-
sponses against pathogens, and autoimmune diseases.36 The cytokine-
cytokine receptor interaction pathway is the major regulator of innate
and adaptive immunity.37 With these pathways, an IPSP was finally
constructed. The results showed that the IPSP-high patient group
had a better OS than the IPSP-low patient group (median OS,
16.71 months vs. 6.94 months, log rank test, p < 0.001; Figure 7A). It
also showed that the IPSP had a superior prognostic value compared
with TMB in the cohort (median OS, 14.61 months vs. 9.61 months,
log rank test, p = 0.18; Figure S7A). We then stratified patients with

https://www.cbioportal.org/
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Figure 6. Analysis of the pathway signatures in IPSP

(A) Co-occurrence andmutual exclusivity plots among the three candidate mutation pathways in the IPSP signature. Statistical significance was tested by Fisher’s exact test,

’.’ p < 0.05, ’*’ p < 0.01. (B) Waterfall plot of the top 10 genes in terms of mutation rate were involved in each candidate mutation pathway. (C) Altered genes and their

functional relationship in the JAK-STAT pathway. Shades of red indicate gene mutation frequency.
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high or low TMB based on the IPSP and compared their OS levels
(Figure 7B), and observed that IPSP-high patients with low TMB had
a significant survival advantage compared with IPSP-low patients
with either high TMB or low TMB (log rank test, IPSP-high and
TMB-low vs. IPSP-low and TMB-high, p = 1.25e�05, IPSP-high and
TMB-low vs. IPSP-low and TMB-low, p = 8.80e�04).

Moreover, a higher response rate to immunotherapy was observed in
the IPSP-high patient group than in the IPSP-low patient group (43%
vs. 13.2%, chi-squared test p = 5.57e�07; Figure 7C). This result was su-
perior to the response rate to immunotherapy of the TMB-high groups
comparedwith theTMB-low groups (39.7%vs. 16.5%, chi-squared test,
p = 1.13e�04; Figure 7D). Finally, we compared the predictive power of
the response to immunotherapy of IPSP scores and TMB throughROC
curve analysis, and PSP scores showed a better predictive effect
(AUROC of IPSP = 0.74 vs. AUROC of TMB = 0.66; Figure 7E). These
results indicate that ourmethod couldfindgenomicmutationpathways
that may serve as potential biomarkers for immunotherapy.
Molecular Therapy: Nucleic Acids Vol. 34 December 2023 9
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Figure 7. Application of the PathwayTMB method to the multi-cancers cohort

(A) Kaplan-Meier survival analysis of OS comparing the IPSP-high and IPSP-low groups from the multi-cancers cohort. (B) Kaplan-Meier survival analysis of OS among

patients within each of the four indicated subgroups (IPSP-high and TMB-low, IPSP-high and TMB-high, IPSP-low and TMB-low, IPSP-low and TMB-high) from the multi-

cancers cohort. (C) Comparison of the objective response rate between the IPSP-high and IPSP-low groups from the multi-cancers cohort. (D) Comparison of the objective

response rate between the TMB-high and TMB-low groups from themulti-cancers cohort. (E) ROC curves of the IPSP and TMB to predict immunotherapy response from the

multi-cancers cohort.
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DISCUSSION
Immunotherapy with ICIs has become one of the most promising
therapy methods for a range of tumors. However, only a small pro-
portion of patients respond to ICIs, and thus there is an unmet
need to discover effective biomarkers for the precise identification
of patients who can benefit from ICI treatment. Genomic mutations
in cancer have been proposed to be associated with the clinical
outcome of immunotherapy. However, Boca et al. revealed that
genomic mutation landscapes in human cancers are complex and het-
erogeneous, but mutations tend to occur within a core group of path-
ways.13 Biological pathways were reported to have key intracellular
roles and to be involved in mechanisms that dictate disease states,38
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drug responses,39,40 and altered cellular function.41,42 We acknowl-
edge that gene mutations in the pathway can not only produce
neoantigens but may also functionally affect the outcome of immuno-
therapy.12,43 Therefore, investigation of genomic mutation pathways
may lead to the discovery of effective biomarkers for immunotherapy.

In this study, we developed a novel method, named PathwayTMB, to
identify genomic mutation pathways that may serve as potential bio-
markers for predicting the clinical outcome of immunotherapy. In
PathwayTMB, we innovatively proposed a novel definition, PTMB,
to reflect the cumulative extent of mutations in the pathways. For
each pathway, PTMB considers not only the number of mutations
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but also the length and number of genes in the pathway. PTMB is
calculated by summing up the gene mutation density across all the
genes belonging to the pathway and then dividing by the number
of genes in the pathway. Larger PTMB values indicate that a pathway
is enriched inmutant genes to a greater extent, whichmay correspond
to more T cell-recognized tumor neoantigens and lead to stronger
anti-tumor immune responses. Thus, PTMB may provide new in-
sights to improve cancer immunotherapies.

In the metastatic melanoma training cohort, we mapped the mutations
to the genes in the pathways and calculated the patient-specific PTMB
for each pathway. Based on the PTMB, we screened three survival
benefit-related pathways, and their combination could serve as a strong
prognostic factor for metastatic melanoma patients treated with ICIs
(Figure 2C). Then, we constructed an IPSP with these pathways, and
IPSP-high patients presented a higher ORR and longer OS than IPSP-
low patients in the training cohort. The prognostic and predictive value
of IPSPwas validated in two independent immunotherapy cohorts. The
IPSP was also shown to be superior to TMB in predicting the clinical
benefits of therapy with ICIs in these cohorts. To test if PathwayTMB
could identify potentialmutationpathways inother cancer types treated
with ICIs, we applied it to a multi-cancer cohort and obtained nine sur-
vival benefit-related pathways. An IPSP constructed with these path-
ways also showed good performance in predicting the clinical outcome
of immunotherapy. To facilitate the use of the PathwayTMB method,
we implemented it as a freely available R-based package (https://
CRAN.R-project.org/package=pathwayTMB).

The advantage of the IPSP is that it increases cost-effectiveness by of-
fering a smaller panel of genes in the pathways that can be easily
translated into an easy-to-use clinical assay. As ICI treatment datasets
including both genome sequencing data and survival data are rare,
our method should be further validated in more cancer patient co-
horts treated with immunotherapy in the future.

To sum up, PathwayTMB, which can be used to identify mutation
pathways that serve as predictors of the response to ICIs, provides a
convenient approach for future clinical practice of immunotherapy.

MATERIALS AND METHODS
Data source

We collated data from previously published clinical cohorts of cancer
patients who were treated with ICIs. Detailed information regarding
all of the cohorts included in this study is summarized in Table S1.
The training cohort was composed of 104 metastatic melanoma pa-
tients treated with cytotoxic T-lymphocyte-associated protein-4
(CTLA-4) inhibitors, which was obtained from the Van Allen et al.
study.15 Moreover, two independent cohorts were collected to vali-
date the model derived from the training cohort. The first validation
cohort was from the Miao et al. study,20 and we extracted data from
145 metastatic melanoma patients treated with CTLA-4 inhibitors.
The second validation cohort, extracted from the Hugo et al. study,21

included 37 metastatic melanoma patients treated with PD-1 inhibi-
tors. To further test if our PathwayTMB method could be applied to
other cancer types, we collected a multi-cancer cohort from the Miao
et al. study, including 249 NSCLC, melanoma, head and neck cancer,
and bladder cancer patients treated with CTLA-4 or PD-1/PD-L1 in-
hibitors.20 Patients from the above cohorts were available for whole-
exome sequencing (WES), OS, and ORR for immunotherapy. The
ORR was assessed by the Response Evaluation Criteria In Solid
Tumors (RECIST) v1.1. Patient outcome was characterized as
response (complete response [CR]/partial response4) or nonresponse
(stable disease [SD]/progressive disease [PD]).

To investigate whether our pathway-based predictive model devel-
oped using immunotherapy data can also be employed to predict
prognosis for non-immunotherapy patients, we downloaded somatic
mutation and survival data from TCGA database for SKCM.

We downloaded the pathway data from the Kyoto Encyclopedia
of Genes and Genomes database (KEGG; https://www.kegg.jp/).44

The KEGG database is composed of metabolic and non-metabolic
pathways. Non-metabolic pathways include genetic information
processing, signaling pathways, and cellular processes, which control
important biological processes such as cell proliferation, growth, and
apoptosis. Compared with metabolic pathways, non-metabolic path-
ways may tend to be stimulated by the external environment, such as
immunotherapy with ICIs. Thus, we only analyzed the non-metabolic
pathways in our studies. We downloaded the XML format files of 157
non-metabolic pathways from the KEGG database and extracted gene
sets from these pathways.

Identification of mutated genes correlated with survival benefits

For somatic mutation data, we converted MAF format data into a
binary mutation matrix, in which each row represents a gene and
each column represents a sample. For a given sample, a gene with
one or more mutations was assigned a 1; otherwise, it was assigned
a 0. In our study, we only extracted the non-silent somatic mutations
in gene-coding regions, including missense, nonsense, insertion, dele-
tion, and splice mutations. Non-silent mutations are coding
sequencing mutations that cause a change in the amino acid sequence
of proteins, which are then processed to neoantigens and presented
into T cells by the major histocompatibility complex (MHC) protein
on the surface of cancer cells, thereby destroying the cancer cells.45

The genes with a mutation frequency of at least 1% in all of the sam-
ples were retained. Then Fisher’s exact test was performed to identify
genes correlated with survival benefits by comparing the gene muta-
tion status (mutation and WT) with survival status (alive and
deceased). We selected genes with odds ratio >1 where the gene mu-
tation frequency was higher among the surviving patients than that
among the deceased patients (at the end of the clinical observation
period).

Calculation of the PTMB for each patient

Recent research has shown that mutations tend to occur within a core
group of pathways, which led to the idea that an analysis of pathways
or gene sets may provide more information about the pathways
altered in cancers than an analysis of individual genes.13 Thus, we
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defined a PTMB to reflect the patient-specific cumulative extent of
mutations for each pathway. For pathway i in patient j, we calculated
PTMBij by summing up the gene mutation density across all of the
survival-benefit genes belonging to the pathway and then dividing
by the number of genes in the pathway, even the survival-benefit
genes were involved in multiple pathways. The formula is as follows:

PTMBij =

P
k˛ I

mutkj
Lk

Ni
(Equation 1)

Where I is a gene list of survival-benefit genes involved in pathway i;
mutkj is the number of mutations in gene k for sample j, Lk is the
length of gene k, and Ni represents the total number of genes
involved in pathway i. Thus, PTMB takes into account not only
the number of mutations but also the length and number of genes
in the pathways, which reflects the cumulative extent of TMB at the
pathway level. As PTMB was calculated in the context of mutated
genes related to survival benefit, it may be used to predict the
response to immunotherapy or survival. Through the above process,
we obtained PTMB profiles with rows as pathways and columns as
samples.
Construction and validation of the pathway risk model based on

PTMB

To test whether the PTMB could predict the immunotherapy
response and clinical outcome of patients, we first performed the
differential analysis of PTMB between the alive and deceased
samples. The Wilcoxon rank-sum test and FC values were used
to identify the pathways with differential PTMB. P value <0.01 and
|log2(FC)| > 1were considered as the cutoff values for determining
the significant differential PTMB pathways. Next, random forest anal-
ysis with nested cross-validation was performed to select the most
important survival-related pathways based on PTMB by calculating
the importance score for each pathway via the “caret” package in R.
The pathways of differential PTMB were selected as the input
variable, and the patients’ survival status was selected as the outcome
(binary variables, alive or deceased [0 or 1]). Then, for the pathways
obtained from the random forest algorithm, a LASSO-Cox regression
model was constructed and the log rank test was performed to find the
most critical prognosis-related pathways. Finally, a risk model defined
as IPSP was calculated for each patient using a formula derived from
the PTMB of the prognosis-related pathways. The IPSP formula is as
follows:

IPSP score =
X

i˛ S

biPTMBi (Equation 2)

where S is the set of prognosis-related pathways, PTMBi is the PTMB
of pathway i, and bi is the regression coefficient of a multivariate Cox
proportional hazards regression model estimated on PTMBi and the
OS data. All of the patients in the training cohort were then divided
into an IPSP-high group and an IPSP-low group based on the median
of the IPSP scores. Kaplan-Meier survival analysis and the log rank
test were further performed to evaluate the power of prognostic
classification. Furthermore, the performance of the model to predict
12 Molecular Therapy: Nucleic Acids Vol. 34 December 2023
the response to immunotherapy and the clinical outcome was
quantified by the AUROC. We developed an R-based package to
implement the above flow (https://CRAN.R-project.org/package=
pathwayTMB).

Correlation analysis of IPSP with immune-related features

To investigate the correlations between IPSP score and immune-
related features, we downloaded 447 SKCM samples from TCGA
with both RNA-sequencing and WES data. For gene expression
data, FPKM-normalized profiles were used. We first applied a
recently described deconvolution algorithm (CIBERSORT)24 to
infer the relative infiltration abundance of 22 tumor-infiltrating im-
mune cells (TIICs) using gene expression profiles. The Wilcoxon
rank-sum test was performed to investigate the significantly differ-
entially infiltrated TIICs between the IPSP-high and IPSP-low
groups. To further test the immune function associated with the
IPSP score, we used GSEA to identify the significant immune-
related dysregulated pathways. Specifically, a ranked list of genes
was constructed based on the gene differential expression levels
(T-score) between the IPSP-high and IPSP-low patient groups.
The KEGG pathways were then mapped to the ranked list, and
the R package “clusterProfiler”46 was applied to implement the
GSEA method.

Statistical analysis

Statistical analysis was performed with R version 4.1.0 software. Cat-
egorical variables were compared using the chi-squared test and
continuous variables were compared using the Wilcoxon rank-sum
test. All tests were two-sided and a p value of less than 0.05 was
considered as the threshold for significance.

DATA AND CODE AVAILABILITY
Data are available in a public, open access repository. Three cohorts of
patients with melanoma treated with immunotherapy are available
from the cBioPortal database (https://www.cbioportal.org/). TCGA
melanoma patients with somatic mutation and survival data are avail-
able from theGDCTCGAdata portal (https://portal.gdc.cancer.gov/).
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