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Background: In the era of precision therapy, early classification of breast cancer (BRCA) molecular 
subtypes has clinical significance for disease management and prognosis. We explored the accuracy of 
machine learning (ML) models for early classification of BRCA molecular subtypes through a systematic 
review of the literature currently available. 
Methods: We retrieved relevant studies published in PubMed, EMBASE, Cochrane, and Web of Science 
until 15 April 2022. A prediction model risk of bias assessment tool (PROBAST) was applied for the 
assessment of risk of bias of a genomics-based ML model, and the Radiomics Quality Score (RQS) was 
simultaneously used to evaluate the quality of this radiomics-based ML model. A random effects model was 
adopted to analyze the predictive accuracy of genomics-based ML and radiomics-based ML for Luminal A, 
Luminal B, Basal-like or triple-negative breast cancer (TNBC), and human epidermal growth factor receptor 
2 (HER2). The PROSPERO of our study was prospectively registered (CRD42022333611).
Results: Of the 38 studies were selected for analysis, 14 ML models were based on gene-transcriptomic, 
with only 4 external validations; and 43 ML models were based on radiomics, with only 14 external 
validations. Meta-analysis results showed that c-statistic values of the ML based on radiomics for the 
identification of BRCA molecular subtypes Luminal A, Luminal B, Basal-like or TNBC, and HER2 were 
0.76 [95% confidence interval (CI): 0.60–0.96], 0.78 (95% CI: 0.69–0.87), 0.89 (95% CI: 0.83–0.91), and 0.83 
(95% CI: 0.81–0.86), respectively. The c-statistic values of ML based on the gene-transcriptomic analysis 
cohort for the identification of the previously described BRCA molecular subtypes were 0.96 (95% CI: 
0.93–0.99), 0.96 (95% CI: 0.93–0.99), 0.98 (95% CI: 0.95–1.00), and 0.97 (95% CI: 0.96–0.98) respectively. 
Additionally, the sensitivity of the ML model based on radiomics for each molecular subtype ranged from 0.79 
to 0.85, while the sensitivity of the ML model based on gene-transcriptomic was between 0.92 and 0.99. 
Conclusions: Both radiomics and gene transcriptomics produced ideal effects on BRCA molecular subtype 
prediction. Compared with radiomics, gene transcriptomics yielded better prediction results, but radiomics 
was simpler and more convenient from a clinical point of view. 
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Introduction

Breast cancer (BRCA) has overtaken lung cancer to become 
the world’s most prevalent malignant tumor and the top 
cause of death for women; the number of deaths accounts 
for 6.6% of all cancer deaths (1). Statistically, the number 
of BRCA cases constituted one-third of the total female 
cancer victims in 2022 (2). With increasing populations 
and increased risk factors, the burden of BRCA is rising 
substantially worldwide. Based on the incidence trend of 
BRCA predicted by the GLOBOCAN database, there 
will be an estimated 9.1 million new cases by 2070 (3).  
Early screening and accurate diagnosis are currently 
regarded as the most effective management of BRCA (4). 
Core needle biopsy or fine-needle aspiration biopsy is 
extensively used to detect BRCA, and for suspicious cases, 
tissue biopsy is used to confirm relevant features. However, 
as high as 31% of BRCA cases are misdiagnosed using the 
described methods (4). The heterogeneity in the molecular 
characteristics and cellular composition of BRCA is 
well known, and increasingly studies have indicated the 
significance of BRCA molecular subtypes in the diagnosis, 
treatment, and prognosis of the disease (5-7). The 
establishment of molecular profiles of adenocarcinomas 
has generated common molecular subtypes [Luminal A, 
Luminal B, Basal-like, and human epidermal growth factor 
receptor 2 (HER2)], which has enabled the phenotypic 

heterogeneity of BRCA subtypes to be determined and also 
personalized management regimens using subtype-specific 
indications (8). Luminal A and B are two relatively mild 
molecular subtypes of BRCA with better prognoses, and 
both are sensitive to endocrine therapy. The level of Ki67-
labeled standardized proliferation is the most significant 
feature to distinguish the two (9). HER2-positive 
BRCA is characterized by its high invasiveness and high 
recurrence, with increased incidence year by year. Studies 
have indicated an association of its high recurrence with 
activation of the PI3K-Akt-mTOR signaling pathway and 
the stimulation of glycolysis (10). Immunohistochemistry 
and FISH are widely applied in HER2 molecular 
subtyping, and new detection assays are emerging. Among 
them, the more applicable methods include quantum dot-
based probes, mass spectrometry, and next-generation 
sequencing (11). 

Heterogeneity is associated with shorter disease-
free survival and overall survival outcomes (12). Recent 
studies have reported that BRCA also presents metastatic 
heterogeneity, which is inseparable from its receptor  
status (13), and the receptor status determines the 
molecular subtype of BRCA. Single-cell gene expression  
analysis (14), genome and transcriptome analyses (15), 
and lineage tracing (16) can all be utilized to explore 
the underlying molecular mechanisms, allowing more 
systematic and in-depth research on the molecular 
heterogeneity of BRCA. Parker et al. have developed five 
intrinsic subtypes using 50 genes (PAM50), which are 
consistent with the molecular subtypes of BRCA predicted 
by hierarchical clustering and microarray analyses (17), 
and they are of great significance in clinical diagnosis and 
prognostic prediction. Achieving more accurate predictive 
performance with fewer but more representative genes is 
also the goal of researchers. Interestingly, the molecular 
characteristics of each subtype can also be dynamically 
changed. For example, triple-negative BRCA itself is 
multi-heterogeneous, with basal-like characteristics in 
one of its four specific subtypes (18). This indicates that 
being able to predict changes in the BRCA molecular 
subtype will assist in identifying novel therapeutic targets 
and the transformation of refractory BRCA to treatable 
BRCA. Despite intrinsic molecular subtypes providing the 
principle biological classifications of BRCA, the subtype 
assignment of individuals is influenced by the techniques 
used, as well as the study cohort composition. How to 
efficiently and precisely predict molecular subtypes of 
BRCA has emerged as an ongoing focus of study of BRCA 

Highlight box

Key findings 
• Data from this systematic review and meta-analysis support 

radiomics and gene-transcriptomic ML model analyses, which have 
ideal predictive accuracy in determining early the BRCA molecular 
subtypes.  

What is known and what is new? 
• Machine learning models are increasingly being used to predict the 

molecular subtypes of breast cancer. However, its application is still 
controversial.

• This paper comprehensively analyzes the application value of the 
machine learning prediction model based on radiomics and gene 
transcriptomics in predicting the molecular subtypes of breast 
cancer.

What is the implication, and what should change now?
• Our study confirmed the application value of machine learning in 

predicting the molecular subtypes of breast cancer and providing 
favorable evidence for finding new ways to improve the clinical 
treatment of breast cancer, also promoting the development of 
modern precision medicine.



Annals of Translational Medicine, Vol 10, No 24 December 2022 Page 3 of 17

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(24):1394 | https://dx.doi.org/10.21037/atm-22-5986

at the molecular level.
Specific treatment for different tumor types has always 

been a challenge, and great efforts have been made to 
maximize efficacy and minimize the toxicity of therapies. 
Therefore, improvement in cancer classification is key to 
advances in cancer treatment. Progress has been achieved 
in classification prediction technology through the use of 
machine learning (ML), which integrates computer science, 
statistics, and biomedical research (19). ML based on the 
algorithm of the input data as the premise applies computer 
analysis to identify data attributes and trends, and learns 
from previous experience to predict output values with a 
certain degree of accuracy, and as a semi-automated process 
is both cost- and labor-saving. It is classified into supervised 
learning and unsupervised learning. The former finds a 
pattern in the training set to perform known classification 
and regression of the data set, and the latter clusters and 
reduces the dimensionality with the data set only (20). ML 
can handle large-scale, complex, and diverse data, which is 
attributed to the formulation of algorithms. The algorithms 
used for ML in the medical field include support vector 
machine (SVM), neural network (NN), deep learning, 
and latent variable models (21). ML has been applied in 
drug research and development (22), robotic surgery and 
decision-making (23), and imaging diagnosis (24), and 
multiple current studies have pointed out that ML is vitally 
significant in cancer research, especially cancers of the lung, 
colorectum, and prostate (14,25-27). ML has also attracted 
widespread attention for BRCA diagnosis and management, 
such as BRCA tumor identification (28), BRCA neoadjuvant 
efficacy prediction (29), and BRCA medical imaging 
analyses (radiomics analysis and histopathological image 
analysis) (30,31). 

Radiomics is an emerging field of medical imaging, based 
on extracting and quantifying high-throughput feature 
information from medical images that fail in identification 
using traditional imaging examination methods. It builds 
a bridge between medical imaging and personalized 
diagnosis and treatment, and it has the potential to become 
an alternative to invasive biopsy (32). However, genetic 
expression evaluation remains the gold standard (32). How 
to efficiently extract differentially expressed genes from 
gene databases and assess their impact on prognosis remain 
to be solved. Meanwhile, exploring more convenient, 
noninvasive, and accurate genetic detection methods and 
tumor markers is also a current research focus, leading 
to various ML models of gene transcriptomics for BRCA 
being developed. Such models have the potential to 

improve biomarker identification of the diverse BRCA 
molecular subtypes, thereby offering novel insight into the 
differential pathogenesis of these subtypes and the selection 
and research of more targeted personalized and systemic 
treatment regimens. Hence, for clinicians, ML models 
based on radiomics and gene transcriptomics are helpful 
and significant in improving diagnostic performance and 
developing reasonable diagnosis and treatment protocols. 
Nevertheless, the predictive accuracy of current ML models 
in identifying BRCA molecular subtypes differs due to 
their diverse mathematical algorithms and the differences 
in the classifications of modeling variables. Many studies 
have shown that meta-analysis is of great significant in 
determining the prediction accuracy of ML models (33,34). 
Therefore, we conducted this systematic review to analyze 
the accuracy of various ML models in the identification of 
BRCA molecular subtypes based on the same classification 
of modeling variables. 

Given the potential of ML in BRCA molecular subtype 
prediction, this meta-analysis was conducted to explore 
its application significance of ML, and to provide some 
practical reference for accurate diagnostic auxiliary system 
and medically intelligent diagnosis of BRCA. Furthermore, 
we also compared the prediction accuracy between 
radiomics-based and genomics-based ML. We present 
the article in accordance with the MOOSE reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-5986/rc).

Methods

This project was prospectively registered with PROSPERO 
(CRD42022333611). 

 Literature search

We searched the PubMed, Embase, Cochrane, and Web 
of Science databases from inception to April 15, 2022. 
No restrictions were set on region or language, and the 
retrieval method used subject headings plus free words. 
Subject headings included Breast Neoplasms and Machine 
Learning. More search strategies are shown in Table S1. 

Inclusion and exclusion criteria

We formulated the criteria for inclusion and exclusion of 
studies according to the PICO principle. Inclusion criteria 
included: (I) subjects had pathologically confirmed BRCA 

https://atm.amegroups.com/article/view/10.21037/atm-22-5986/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-5986/rc
https://cdn.amegroups.cn/static/public/ATM-22-5986-supplementary.pdf
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with relevant molecular subtypes as previously described 
[Luminal A, Luminal B, HER2 overexpression (Basal-
like) and normal]; (II) interventions: (i) ML studies for 
classifying BRCA molecular subtypes based on radiomics 
[i.e., mammography (MMG), digital breast tomosynthesis 
(DBT), ultrasound (US), computed tomography, and 
magnetic resonance imaging (MRI)], genometrics or 
other pathological data; (ii) original research designs 
were cohort studies, case-control and nested case-control 
studies, or case–cohort studies; (III) the comparison is 
between different molecular subtypes; (IV) outcomes: the 
classification performance of the constructed ML model 
was assessed, and the assessment indicators included one of 
the following: c-statistic, sensitivity, specificity, calibration 
curve, accuracy, F1 score, and confusion matrix. 

Exclusion criteria were: (I) subjects did not have any of 
the molecular subtypes as stated in the inclusion criterion; 
(II) interventions: (i) only difference analysis was performed 
rather than the construction of an integrated ML model, 
(ii) studies with small overall samples; (III) outcomes: 
classification performance of the constructed ML model 
was not evaluated.

Literature screening and data extraction

We imported the retrieved literature into Endnote, and 
after ruling out duplicate articles, the original studies that 
satisfied the criteria were initially screened using titles and 
abstracts. Selected studies were downloaded for subsequent 
analysis by intensive reading, and the final included studies 
for this research were determined. 

A standard information extraction spreadsheet was 
created prior to data extraction, which included article 
title, author names, publication year, countries of authors, 
research type, sample source, molecular subtypes, number 
of samples for training set subtype detection, the total 
number of samples for the training set, external validation, 
samples for testing set subtype detection, overall samples 
for external validation, model types, model overfitting 
considerations (bootstrap/k-fold cross-validation), and 
outcome indicators. 

Literature screening and data extraction were performed 
independently by Yiwen Zhang and Guofeng Li, and post-
technical cross-validation was performed. Two investigators, 
Yuzhuo Bai and Wenqing Bian, assisted when there were 
discrepancies between the first two reviewers. 

Quality assessment

Because we adopted gene-transcriptomic and radiomics 
ML models, we used the Radiomics Quality Score (RQS) 
[28975929] and PROBAST [PMID: 31585960] for quality 
assessment of the ML models. 

The RQS assesses the quality from the image extraction 
process to the ML construction process, with 16 assessment 
items and 36 points in total. The items of the Prospective 
study registered in a trial database and the Validation are 
very strict, with 7 and 5 points at most, respectively. If 
there was no external validation, a penalty of 5 points was 
given plus no points awarded, which was very severe for 
radiometrics. Additionally, due to the extraction process of 
radiomics generating a large number of predictor variables, 
the assessment of the Feature reduction or adjustment for 
multiple testing was also very severe. If neither measure was 
implemented, a penalty of 3 points was given plus no points 
awarded. 

We assessed the quality of the gene- transcriptome ML 
model using PROBAST, which contains a large number of 
items involving four distinct aspects: subjects, predictors, 
outcomes, and statistical analysis, reflecting the overall risk 
of bias and overall usability. The four domains consisted 
of 2, 3, 6, and 9 questions with specificity, respectively, 
each with 3 responses (yes/maybe yes, no/maybe no, and 
no information). A domain is considered to be at high 
risk if it contains at ≥1 question with a response of no 
or maybe no. A low-risk domain is determined when it 
contains all responses with yes or maybe yes. If each aspect 
is determined as low risk, the overall risk of bias is rated as 
low, whereas ≥1 domain is considered as high risk, and the 
overall risk of bias is judged as high. 

Risk of bias assessment/quality assessment was performed 
by two independent investigators, with post-technical cross-
validation. A third investigator assisted in judgment when 
discrepancies arose between the first two reviewers. 

Outcome indicators

In our systematic review, the outcome indicators were 
c-statistic, reflecting the accuracy of the ML model, and 
the sensitivity and specificity summed by true positive (TP), 
false positive (FP), false negative (FN), and true negative 
(TN). Of these, TP, FP, FN and TN in the original studies 
can be extracted using the following methods: Method 1—
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direct report of the original studies (e.g., multi-classification 
confusion matrix); Method 2—extract the sensitivity and 
specificity of the original studies, and combine the number 
of cases with corresponding molecular subtypes and the 
total number of samples; Method 3—original research 
provided receiver operating characteristic (ROC) curves, 
in light of the principle of the optimal Youden index, the 
sensitivity and specificity were extracted using Origin 2020 
software as per Method 2. 

 Statistical analysis

A meta-analysis was conducted on the indicators (c-statistic, 
sensitivity, and specificity) to assess the ML models. If 
c-statistic was depleted 95% confidence interval (CI) and 
standard error (SE), we referred to the study of Debray 
et al. (35) to estimate its SE. Given the differences among 
the variables included in each ML model and inconsistent 
parameters, For the c-statistic, the random effects model 
was preferred for meta-analyses. A bi-variable mixed-
effect model was used for meta-analysis of sensitivity and 
specificity. The current meta-analysis was implemented 
using R4.2.0 (R development Core Team, Vienna, http://
www.R-project.org). 

Results

Literature search

Our literature search initially identified 3,421 articles from 
the PubMed, Embase, Cochrane, and Web of Science 
databases. After deleting 1,093 duplicate articles, 2,328 
articles were screened out based on their titles and abstracts, 
leaving 98 potentially eligible articles. Of them, 10 did not 
have full text available. No eligible articles were found after 
searching the references of the remaining 88 articles. After a 
full-text review of the provisionally eligible articles, 50 were 
excluded either due to the lack of BRCA molecular subtype 
or unclear sample size, and so 38 articles were finally 
included in this study for subsequent systematic review and 
meta-analysis (Table 1 and Table 2). The screening processes 
are shown in Figure 1. 

Characteristics of the included studies 

The 38 included studies recruited 17,913 BRCA patients, 
with 57 ML models, which were mainly multi-classification 
models, covering molecular subtypes Luminal A, Luminal 

B, HER2 overexpression, triple negative, and normal. In 28 
studies (43 ML models) the BRCA molecular subtypes were 
identified based on a radiomics ML, and the remaining 11 
studies (14 ML models) identified the molecular subtypes 
by gene transcriptomics ML. There were 22 case-control 
studies, 3 cohort studies, and 13 retrospective studies. 
Among all studies, the training sets of 7 studies adopted 
≥2 tools for validation, there were 9 articles covering the 
4 molecular subtypes, 5 articles classified HER2 subtype 
only, 5 classified the triple-negative breast cancer (TNBC) 
subtype, and 5 covered the HER2 + TNBC subtypes. The 
testing sets of 3 articles used dual-tool analysis, there were 
4 articles covering the 4 molecular subtypes, 3 articles 
classified the HER2 subtype only, and 1 for the TNBC 
subtype. The number of registrations in the training set 
of the validation gene transcriptomics group was 3,019; 4 
studies performed external validation, and the total sample 
size for external validation was 2,849. The number of 
registrations in the training set of the radiomics group was 
4,048; 13 studies conducted external validation, and the 
total sample size was 2,610. In the training set, 9 studies 
used the logistic regression (LR) model, 7 used the SVM 
model, 3 used the Naive Bayes (NB) model, 5 used the 
random forest (RF) model, and 4 used the artificial neural 
network (ANN) model; in the testing set, 4 studies used the 
LR model, 2 used the ANN model, 4 used the SVM model, 
and 1 used the RF model. 

Quality assessment 

Among the 14 ML models based on genomics, we assessed 
the quality of studies as per PROBAST. The assessment 
results revealed that the risk of bias was mostly caused by 
the lack of external validation and the small number of 
modeling samples, which was reflected in the statistical 
analysis of PROBAST assessment (Figure 2). Among the 43 
ML models based on radiomics, only 14 (32.56%) models 
conducted external validation, and there was no clearly 
described Prospective study registered in a trial database. 
Comprehensive assessment results of other items showed an 
average score of 14.6 for 43 models (standard deviation: 5.3). 

Value of ML for predicting BRCA molecular subtype

C-statistic
Meta-analyses of the c-statistic were conducted using a 
random effects model, which revealed that the c-statistic 
values by radiomics ML for Luminal A, Luminal B, Basal-

http://www.R-project.org
http://www.R-project.org
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Table 1 Basic characteristics of included articles

First author
Publication 

year
Country/
Region

Study design Molecular subtype Type of model
Model 

evaluation 
metric

Ma M (36) 2022 China Cohort TNBC, HER2 Support vector machines, 
random forest

Radiomics

Leithner D (37) 2020 USA Database research HER2, luminal A, luminal B, TN Artificial neural network Radiomics

Chen L (38) 2019 China Database research Basal, HER2, luminal A,  
luminal B

Support vector machines, 
random forest

Gene

Zhao Y (39) 2020 USA Database research Basal, HER2, luminal A,  
luminal B

Random forest Gene

Huang CC (40) 2013 Taiwan UNC Microarray 
database research

Basal, HER2, luminal A,  
luminal B

Logistic regression, least 
square method

Gene

Yu Z (41) 2020 China TCGA database 
research

Basal, HER2, luminal A,  
luminal B, Normal-like

Naive Bayes, random forest, 
support vector machines

Gene

Liu T (42) 2022 China TCGA-BRCA 
database research

Basal, HER2, luminal A,  
luminal B

Logistic regression, fusion 
model, CNN, DNN

Gene

Adabor ES (43) 2019 USA Case-control HER2 Naive Bayes, random forest Gene

Huang Y (44) 2021 China Database research HER2 Support vector machines, 
logistic regression 

Radiomics

Lopez-Rincon A (45) 2020 Netherlands Database research TN Gradient boosting, random 
forest, logistic regression, 
passive aggressive, 
SGDClassifier, support vector 
machines (linear), ridge 
regression

Gene

Wu J (46) 2021 USA Database research TNBC K-Nearest neighbors, Naive 
Bayes, deep learning, support 
vector machines

Gene

Mohaiminul Islam M 
(47)

2020 Canada METABRIC 
database research

Basal, HER2, luminal A,  
luminal B

Support vector machines, 
random forest

Gene

Wilson TR (48) 2014 USA Database research HER2 Random forest Gene

Seo MK (49) 2020 Korea Database research Basal, HER2, luminal A,  
luminal B

Random forest Gene

Couture HD (50) 2018 USA Case-control Basal, HER2, luminal A,  
luminal B Normal-like

Deep learning Radiomics

Fan M (51) 2017 China Cohort HER2, luminal A, luminal B 
Basal-like

Logistic regression Radiomics

Jiang M (52) 2021 China Database research TN, HER2, luminal A,  
luminal B

Artificial neural network Radiomics

Moon WK (53) 2015 South Korea Case-control TNBC Support vector machines Radiomics

Talari ACS (54) 2019 UK Case-control TNBC, HER2, luminal A,  
luminal B

Linear discriminant method Radiomics

Nie Z (55) 2021 China Case-control HER2 Radiomics

Zhou J (56) 2019 China Case-control HER2 Logistic regression Radiomics

Table 1 (continued)
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Table 1 (continued)

First author
Publication 

year
Country/
Region

Study design Molecular subtype Type of model
Model 

evaluation 
metric

Fan M (57) 2019 China Case-control Basal, HER2, luminal A,  
luminal B

Random forest Radiomics

Wu M (58) 2011 China Case-control Basal, HER2, luminal A,  
luminal B

Deep learning Radiomics

Zhou J (59) 2021 China Case-control HER2 Support vector machines Radiomics

Wu T (60) 2019 China Case-control TN Logistic regression Radiomics

Ma W (61) 2019 China Case-control TNBC, HER2, Lum Naive Bayes Radiomics

Wang W (62) 2022 China Case-control TN, luminal A + B Logistic regression Radiomics

Wu J (63) 2017 China Case-control Basal, luminal A, luminal B Logistic regression Radiomics

Wu M (64) 2019 China Case-control Basal, HER2, luminal A,  
luminal B

Deep learning Radiomics

Xie T (65) 2019 China Case-control TN Support vector machines Radiomics

Yang X (66) 2020 China Case-control HER2 Logistic regression Radiomics

Zhang X (67) 2021 China Case-control HER2, TN Artificial neural network Radiomics

Zhang Y (68) 2021 USA Case-control HER2, TN Artificial neural network Radiomics

Zhou J (69) 2019 China Case-control HER2 Support vector machines Radiomics

Saha A (70) 2018 USA Case-control TN, HER2, luminal A,  
luminal B

Random forest Radiomics

Sutton EJ (71) 2016 USA Case-control TN Support vector machines Radiomics

Wang F (72) 2022 China Case-control luminal A+B Support vector machines Radiomics

Wang J (73) 2015 Japan Case-control TN Support vector machines Radiomics

BRCA, breast cancer; TNBC, triple negative breast cancer; HER2, HER2-overexpressed subtypes of breast cancer molecules; CNN, 
convolutional neural network; DNN, deep neural network.

like or TNBC, and HER2 subtypes were 0.76 (95% CI: 
0.60–0.96), 0.78 (95% CI: 0.69–0.87) 0.87 (95% CI: 0.83–
0.91), and 0.83 (95% CI: 0.81–0.86), respectively. 

The c-statistic values of the BRCA molecular subtypes 
identified by gene-transcriptomic ML were 0.96 (95% CI: 
0.93–0.99), 0.93 (95% CI: 0.91–0.95), 0.98 (95% CI: 0.95–
1.00), and 0.97 (95% CI: 0.96–0.98), respectively (Table 3, 
Figure 3). 

In the testing cohort, statistical analysis was conducted 
on the data available and the results showed that the 
predicted c-index values for molecular subtypes of BRCA 
exceeded 80% for both sets of the ML models. 

Sensitivity and specificity
A bivariate mixed-effects model was used for the meta-
analysis of TP, FP, FN, and TN, and the sensitivity of the 

ML method for each molecular subtype was summarized. 
The sensitivity and specificity of radiometrics ML for 
molecular subtype identification of Luminal A were 0.79 
(95% CI: 0.72–0.84) and 0.85 (95% CI: 0.73–0.92), for 
Luminal B were 0.84 (95% CI: 0.69–0.93) and 0.86 (95% 
CI: 0.64–0.96), for Basal-like or TNBC were 0.82 (95% CI: 
0.75–0.87) and 0.86 (95% CI: 0.78–0.91), for HER2 were 
0.84 (95% CI: 0.81–0.87) and 0.83 (95% CI: 0.71–0.90), 
and for Luminal subtypes (Luminal A + Luminal B) were 
0.79 (95% CI: 0.72–0.84) and 0.85 (95% CI: 0.73–0.92), 
respectively. 

The sensitivity and specificity of the gene-transcriptomic. 
ML for the identification of Luminal A were 0.89 (95% 
CI: 0.87–0.92) and 0.95 (95% CI: 0.89–0.98), for Luminal 
B were 0.79 (95% CI: 0.64–0.89) and 0.86 (95% CI: 0.91–
0.98), for Basal-like or TNBC were 0.97 (95% CI: 0.93–
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Table 2 Basic information of sample number of training set and validation set included in the study

First author
Publication 

year
No. of subtype samples in 

training set
No. of samples in 

training set
No. of subtype samples in 

validation set
Sample size for external 

validation

Ma M (36) 2022 NA 450 71, 64 150

Leithner D (37) 2020 8, 34, 6, 16 64 3, 15, 2, 7 27

Chen L (38) 2019 34, 37, 120, 63 254 NA NA

Zhao Y (39) 2020 NA NA 262, 208, 891, 423 1784

Huang CC (40) 2013 57, 35, 23, 12 139 57, 35, 23, 12 139

Yu Z (41) 2020 192, 82, 564, 207, 40 1085 NA NA

Liu T (42) 2022 127, 56, 326, 151 660 14, 6, 43, 21 84

Adabor ES (43) 2019 187 806 NA NA

Huang Y (44) 2021 25 137 NA NA

Lopez-Rincon A (45) 2020 139 183 NA NA

Wu J (46) 2021 110 1102 NA NA

Mohaiminul Islam M (47) 2020 116, 87, 464, 268 935 210, 153, 255, 224 842

Wilson TR (48) 2014 14 173 NA NA

Seo MK (49) 2020 15, 10, 38, 21 84 NA NA

Couture HD (50) 2018 179 571 NA 288

Fan M (51) 2017 7, 34, 8, 11 60 NA 36

Jiang M (52) 2021 NA 1275 18, 42, 116, 229 405

Moon WK (53) 2015 85 169 NA NA

Talari ACS (54) 2019 30, 30, 30, 30 120 NA NA

Nie Z (55) 2021 57 226 NA NA

Zhou J (56) 2021 63 244 16 62

Fan M (57) 2019 39, 37, 54, 80 210 NA NA

Wu M (58) 2011 40, 76, 96, 151 363 NA NA

Zhou J (59) 2021 53 200 23 106

Wu T (60) 2019 23 140 NA NA

Ma W (61) 2019 40, 141 227 NA NA

Wang W (62) 2022 42, 27, 11 84 43, 27, 11 84

Wu J (63) 2017 151, 96, 76, 40 363 NA NA

Wu M (64) 2019 134 134 NA NA

Xie T (65) 2019 60 177 57 162

Yang X (66) 2020 149, 118 684 NA 122

Zhang X (67) 2021 24, 10 99 19, 10 83

Zhang Y (68) 2021 63 244 16 62

Zhou J (69) 2019 82, 27, 305, 471 461 NA 461

Saha A (70) 2018 48 178 NA NA

Sutton EJ (71) 2016 110 220 43 80

Wang F (72) 2022 153 220 80 NA

Wang J (73) 2015 11, 4, 42, 27 84 NA NA
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0.98) and 0.99 (95% CI: 0.96–1.00), for HER2 were 0.92 
(95% CI: 0.85–0.96) and 0.96 (95% CI: 0.94–0.97), and for 
Luminal subtypes (Luminal A + Luminal B) were 0.86 (95% 
CI: 0.80–0.90) and 0.96 (95% CI: 0.92–0.97), respectively 
(Table 4, Figures 4,5). 

Discussion

This systematic review and meta-analysis indicated that ML 
based on radiomics and genomics can achieve satisfactory 
performance in predicting BRCA molecular subtypes. The 
accuracy of gene-transcriptomic ML was superior to that of 
radiomics ML, but the diagnostic accuracy of identification 
of BRCA molecular subtypes using radiological data analysis 
has theoretical support. We also found that ML was more 
accurate in identifying the Basal-like/TNBC subtype than 
other BRCA molecular subtypes. 

The gene transcriptome data analyzed in the present 
study clarified the ability of ML to identify the intrinsic 
biological subtypes of TNBC, HER2+, and luminal 
BRCA using whole-gene database analysis, with good 
accuracy. Genetic diagnosis is the gold standard for cancer 
diagnosis, and whole genomic amplification provides an 
opportunity to conduct in-depth investigations of the 
role of epigenetic processes in cancer. Unfortunately, as 
epigenome map and cancer sample data accumulates, 
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Table 3 Meta-analysis results of C-index, sensitivity, and specificity of molecular subtypes in the training set

Modeling variable Subtype n C-statistic n Sensitivity Specificity

Radiomics Luminal 12 0.77 [0.71, 0.83] 12 0.79 [0.72, 0.84] 0.85 [0.73, 0.92]

Luminal A 4 0.76 [0.60, 0.96] 5 0.76 [0.68, 0.82] 0.86 [0.62, 0.96]

Luminal B 4 0.78 [0.69, 0.87] 5 0.84 [0.69, 0.93] 0.86 [0.64, 0.96]

Mixed 4 0.76 [0.73, 0.80] 2 NA NA

Basal-like or TNBC 15 0.87 [0.83, 0.91] 19 0.82 [0.75, 0.87] 0.86 [0.78, 0.91]

HER2 16 0.83 [0.81, 0.86] 13 0.84 [0.81, 0.87] 0.83 [0.71, 0.90]

Gene Luminal 10 0.94 [0.92, 0.96] 16 0.86 [0.80, 0.90] 0.96 [0.92, 0.97]

Luminal A 5 0.96 [0.93, 0.99] 8 0.89 [0.87, 0.92] 0.95 [0.89, 0.98]

Luminal B 5 0.93 [0.91, 0.95] 8 0.79 [0.64, 0.89] 0.96 [0.91, 0.98]

Mixed NA NA NA NA NA

Basal-like or TNBC 5 0.98 [0.95, 1.00] 9 0.97 [0.93, 0.98] 0.99 [0.96, 1.00]

HER2 6 0.97 [0.96, 0.98] 11 0.92 [0.85, 0.96] 0.96 [0.94, 0.97]

TNBC, triple negative breast cancer; HER2, human epidermal growth factor receptor 2; NA, not available.

Luminal A 4 0.7603 [0.6024, 0.9597] 

Luminal B 4 0.7786 [0.6938, 0.8738] 

Mixed 4 0.7632 [0.7288, 0.7991] 

Basal-like or TNBC 15 0.8690 [0.8318, 0.9079] 

HER2 16 0.8329 [0.8096, 0.8568]

Model type Number of models C-index (95% CI) 
Training 
Radiomics

Gene

Luminal A 5 0.9559 [0.9252, 0.9877] 

Luminal B 5 0.9292 [0.9091, 0.9497] 

Basal-like or TNBC 5 0.9782 [0.9512, 1.0000] 

HER2 6 0.9742 [0.9649, 0.9836]

Validation

Radiomics

Luminal A 4 0.8333 [0.7151, 0.9712] 

Luminal B 3 0.8307 [0.7004, 0.9851] 

Mixed 2 0.8371 [0.7081, 0.9896] 

Basal-like or TNBC 5 0.8174 [0.7274, 0.9185] 

HER2 9 0.8177 [0.7749, 0.8629]

0.6 0.7 0.8 0.9 1.0

Figure 3 The C-statistic values of breast cancer molecular subtypes identified by gene-transcriptomic machine learning for Luminal A, 
Luminal B, Basal-like or TNBC, triple negative breast cancer; HER2, human epidermal growth factor receptor 2.
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Table 4 Meta-analysis results of C-index, sensitivity, and specificity of molecular subtypes in the validation set

Modeling variables Subtype n C-statistic n Sensitivity Specificity

Radiomics Luminal 9 0.84 [0.77, 0.91] 8 0.86 [0.71, 0.94] 0.76 [0.51, 0.91]

Luminal A 4 0.83 [0.72, 0.97] 3 NA NA

Luminal B 3 0.83 [0.70, 0.98] 3 NA NA

Mixed 2 0.84 [0.71, 0.99] 2 NA NA

Basal-like or TNBC 5 0.82 [0.73, 0.92] 2 NA NA

HER2 9 0.82 [0.77, 0.86] 7 0.66 [0.53, 0.77] 0.83 [0.70, 0.91]

Gene Luminal NA NA 8 0.76 [0.70, 0.81] 0.93 [0.91, 0.95]

Luminal A NA NA 4 0.80 [0.76, 0.84] 0.93 [0.91, 0.95]

Luminal B NA NA 4 0.69 [0.61, 0.76] 0.93 [0.89, 0.96]

Mixed NA NA NA NA NA

Basal-like or TNBC NA NA 4 0.94 [0.80, 0.98] 0.99 [0.97, 1]

HER2 NA NA 4 0.71 [0.65, 0.76] 0.96 [0.94, 0.97]

TNBC, triple negative breast cancer; HER2, human epidermal growth factor receptor 2; NA, not available.

Model type Number of models C-index (95% CI) 
Training 
Radiomics

Luminal A 4 0.76 [0.68, 0.82] 

Luminal B 4 0.84 [0.69, 0.93] 

Basal-like or TNBC 15 0.82 [0.75, 0.87] 

HER2 16 0.84 [0.81, 0.87] 

Gene 

Luminal A 8 0.89 [0.87, 0.92] 

Luminal B 8 0.79 [0.64, 0.89] 

Basal-like or TNBC 9 0.97 [0.93, 0.98] 

HER2 11 0.92 [0.85, 0.96]

Validation

Radiomics

Luminal A + B 4 0.86 [0.71, 0.94] 

HER2 11 0.66 [0.53, 0.77] 

Gene 

Luminal A 4 0.80 [0.76, 0.84] 

Luminal B 4 0.69 [0.61, 0.76] 

Basal-like or TNBC 4 0.94 [0.80, 0.98] 

HER2 4 0.71 [0.65, 0.76]

0.6 0.7 0.8 0.9 1.0

Figure 4 The sensitivity of breast cancer molecular subtypes identified by gene-transcriptomic and radiomics machine learning for Luminal 
A, Luminal B, Basal-like or TNBC, and HER2 subtypes. TNBC, triple negative breast cancer; HER2, human epidermal growth factor 
receptor 2.
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Model type Number of models C-index (95% CI) 
Training 
Radiomics

Luminal A 4 0.86 [0.62, 0.96] 

Luminal B 4 0.86 [0.64, 0.96] 

Basal-like or TNBC 15 0.86 [0.78, 0.91] 

HER2 16 0.83 [0.71, 0.90] 

Gene 

Luminal A 8 0.95 [0.89, 0.98] 

Luminal B 8 0.96 [0.91, 0.98] 

Basal-like or TNBC 9 0.99 [0.96, 1.00] 

HER2 11 0.96 [0.94, 0.97]

Validation

Radiomics

Luminal A + B 4 0.76 [0.51, 0.91] 

HER2 11 0.83 [0.70, 0.91] 

Gene 

Luminal A 4 0.93 [0.91, 0.95] 

Luminal B 4 0.93 [0.89, 0.96] 

Basal-like or TNBC 4 0.99 [0.97, 1.00] 

HER2 4 0.96 [0.94, 0.97]

0.6 0.7 0.8 0.9 1.0

Figure 5 Specificity of breast cancer molecular subtypes identified by gene-transcriptomic and radiomics machine learning for Luminal 
A, Luminal B, Basal-like or TNBC, and HER2 subtypes. TNBC, triple negative breast cancer; HER2, human epidermal growth factor 
receptor 2.

the analysis and utilization of such data become difficult. 
ML greatly improves efficiency due to its flexibility and 
learning ability to latent structures (74). For example, 
partial least squares (PLS) regression has been applied 
to BRCA intrinsic taxonomy and five distinct molecular 
subtypes were successfully identified (40). Wilson et al. used 
multiple model classifiers to determine estrogen receptor 
(ER), progesterone receptor (PR), and HER2 phenotypes 
and introduced a new median complement method, which 
is beneficial for the development of higher sensitivity and 
a lower FP rate (48). Additionally, ML helps scientists 
discover new biomarkers that can aid patient prognosis. As 
for the heterogeneity of BRCA, a single tumor marker is 
not sufficient. Many studies have focused on determining 
cancer prognosis and the subtypes of gene characteristics 
based on gene expression data, which are easily affected by 
noise signals, reducing accuracy (75). BRCA diagnosis is not 
limited to such parameters, with more genetic modification 
patterns, microRNAs and methylation and genetic variants 
being identified and potentially available. DNA methylation 
data are more stable than those of gene expression in 

cancer prognosis (76), and microRNA also shows several 
advantages in cancer prediction, prognosis, and therapeutic 
targets, and it can be obtained from body fluids thereby 
being noninvasive (77). Unfortunately, due to the existence 
of large number of differentially methylated genes and 
microRNAs, human verification is not yet available, but the 
present study showed how this can be effectively solved by 
using ML. For example, ML distinguished studies on Basal-
like/TNBC from other molecular subtypes using both 
microRNA data and gene methylation data analysis with 
a sensitivity and specificity of 87%, 80%, and 100%, and 
99%, respectively (38,45). This suggests a bright future for 
ML in the identification of BRCA molecular subtypes and 
also provides theoretical support for microRNA, especially 
gene methylation, as a predictor of BRCA prognosis. 

BRCA screening is typically conducted by a variety 
of medical diagnostic imaging methods, including US, 
X-ray radiography, and MRI. However, defects in imaging 
techniques lead to relatively low average sensitivity and 
specificity (≈70%) for clinical diagnosis (78,79). The 
ability of radiomics to analyze images to obtain various 
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quantitative features from single or multiple imaging 
patterns and highlight such characteristics that are not 
visible to the naked eye greatly enhances the discriminative 
and predictive potential of medical imaging. Presently, 
radiomics can not only differentiate between benign and 
malignant tumors, tumor types and grades, but also support 
the prediction of response to neoadjuvant chemotherapy 
and recurrence (80). Our study revealed that the sensitivity 
and specificity of radiomics-based ML models in predicting 
BRCA molecular subtypes were as high as 80%, and some 
even reached 90%. The therapeutic benefit was similar 
to that of the gene-transcriptomics ML models, which is 
effectively avoiding the invasive procedure of needle biopsy 
for traditional diagnosis of the BRCA molecular subtype. 
ML diagnosis also overcomes the issue of inexperience of 
radiologists, and takes full advantage of image analysis, such 
as subtype analysis of H&E-stained histological images of 
BRCA, distinguishing Basal-like from non-Basal-like BRCA 
molecular subtypes with 75–80% accuracy, thus reducing 
the high cost of RNA-based genomic testing (55). In our 
study, the number of included studies of radiomics was 
more than that of genomics, indicating that radiomics is an 
emerging field receiving extensive attention. It can be used 
to maximize information extraction from almost all of the 
medical imaging modalities. Twelve such studies involved 
MRI, which is known to have higher resolution than X-ray 
or US. MRI has the best specificity and sensitivity of all 
imaging tools available, and we can take advantage of this 
technique to develop more accurate ML models. It is worth 
noting that our study results indicated that the average 
c-index value of radiomics in the prediction of BRCA 
molecular subtypes was 0.796, while that for transcriptomics 
was 0.956, implying that further efforts should be made to 
improve the accuracy of radiometric prediction models. 

TNBC lacks the ER, PR, and HER2. It is characterized 
by young onset, high invasiveness, high recurrence rate, and 
poor prognosis (81). Studies have shown that neoadjuvant 
therapy for TNBC is highly effective and improves the 
pathological complete remission rate (82). The current 
study revealed that, regardless of gene-transcriptomic or 
radiomic analysis, ML was more effective in identifying 
Basal-like/TNBC BRCA, especially with the application of 
a radiomics ML model (Figure 3). As TNBC and Basal-like 
BRCA have many similarities in their clinical manifestation, 
histological morphology, and immunophenotype (83), and 
because of the limited number of study cases, we regarded 
Basal-like and TNBC as similar. However, further research 
has raised the question of whether Basal-like and TNBC 

can be compared (84). TNBC can be subdivided into several 
subtypes, and studies have shown that its spectrum of 
germline variation differs from other subtypes, and ethnic 
differences have been discovered (85). Using the promising 
effect of ML revealed in this research, we can develop more 
ML models to investigate the difference between Basal-like 
and TNBC subtypes, and distinguish the different subtypes 
of TNBC as a breakthrough in the treatment of refractory 
BRCA and precision treatment, such actively adopting 
neoadjuvant treatment preoperatively.

O u r  s y s t e m a t i c  r e v i e w  a n d  m e t a - a n a l y s i s 
comprehensively and systematically assessed the potential 
of gene transcriptome and radiomics-based ML models for 
predicting BRCA molecular subtypes, and demonstrated 
that the major advantage of ML is the ability to learn 
and develop algorithms without human intervention. 
Additionally, this research supported the application of 
virtual network deep learning and convolutional neural 
networks (CNN) to diagnose BRCA molecular subtypes 
using more fundamental artificial intelligence approaches. 
However, our study also has several limitations. The 
number of samples was small and there needs to be further 
continuous mining of relevant research to prove the 
accuracy of ML predictions. It also lacked external validation 
and enough testing sets for validation. To further improve 
the accuracy of ML for identifying molecular subtypes of 
BRCA, we need to be aware of the following. First, the 
reduction of data noise before ML application can improve 
model accuracy. Studies have shown that dimensionality 
reduction through the number of principal components for 
cross-validation, and the use of noise reduction techniques 
can significantly improve model accuracy (31). In the 
existing research, the application of cross-validation is 
not yet comprehensive, and noise reduction technology 
needs to be further improved. Second, the indications used 
for ML model training should be increased and function 
models should be continuously fine-tuned. One task of 
an ML model is to propose some predictors or features, 
and the other is to determine a function that can be used 
to associate eigenvalues with disease prediction (class 
assignment) (86). Feature selection is the core of ML, and 
sufficient predictors guarantee improved accuracy of ML 
models, but this was limited by our lack of exploration of 
the mechanism of disease occurrence and development. 
Despite there being many options for functional models, the 
selection of optimal free parameter values to fit the model 
is not easy, implying that we need more training examples. 
This is both an opportunity and a challenge for ML to 
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predict the development of molecular subtypes of BRCA. 
The treatment of BRCA is developing in the direction of 
precision medicine, and ML models are of great significance 
for de-escalation therapy of minimally invasive techniques, 
surgery, and chemotherapy. 

Conclusions

Data from this systematic review and meta-analysis support 
radiomics and gene-transcriptomic ML model analyses, 
which have ideal predictive accuracy in determining early 
the BRCA molecular subtypes. However, compared with 
radiomics, gene transcriptomics yielded better results 
although radiomics is simpler and more convenient in 
operation from a clinical point of view. As the paradigm 
shifts to individualized medicine with minimally invasive 
techniques, prospective translational oncology research may 
focus on the development of radiomic techniques.
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