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Abstract

Computerized auscultation of lung sounds is gaining importance today with the availability

of lung sounds and its potential in overcoming the limitations of traditional diagnosis meth-

ods for respiratory diseases. The publicly available ICBHI respiratory sounds database is

severely imbalanced, making it difficult for a deep learning model to generalize and provide

reliable results. This work aims to synthesize respiratory sounds of various categories using

variants of Variational Autoencoders like Multilayer Perceptron VAE (MLP-VAE), Convolu-

tional VAE (CVAE) Conditional VAE and compare the influence of augmenting the imbal-

anced dataset on the performance of various lung sound classification models. We

evaluated the quality of the synthetic respiratory sounds’ quality using metrics such as Fré-

chet Audio Distance (FAD), Cross-Correlation and Mel Cepstral Distortion. Our results

showed that MLP-VAE achieved an average FAD of 12.42 over all classes, whereas Convo-

lutional VAE and Conditional CVAE achieved an average FAD of 11.58 and 11.64 for all

classes, respectively. A significant improvement in the classification performance metrics

was observed upon augmenting the imbalanced dataset for certain minority classes and

marginal improvement for the other classes. Hence, our work shows that deep learning-

based lung sound classification models are not only a promising solution over traditional

methods but can also achieve a significant performance boost upon augmenting an imbal-

anced training set.

1. Introduction

The inception of deep learning has paved the way for many breakthroughs in science, medi-

cine, and engineering. Deep learning is rapidly developing in the field of acoustics, providing

many compelling solutions to problems like Automatic Speech Recognition [1], sound synthe-

sis [2], acoustic scene classification [3], generative music [4], acoustic event detection [5], and

many more. The increase in access to data generated by health care and the development of

deep learning techniques has proved to be prosperous. Deep Learning can be used to unravel
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the clinically pertinent information from the dataset provided by hospitals, which can be then

used for decision making, treatment, and prevention of health conditions.

For efficacious training of neural networks, sufficient data is required. In the case of a low

data scheme, the parameters are underdetermined, and the networks generalize poorly. Data

Augmentation techniques enhance the generalizability of the deep learning model by using the

original data efficiently. Standard data augmentation techniques like random translations,

flips, and rotations, and the addition of Gaussian noise generates authentic but very little data.

Variational Autoencoders have been used to generate synthetic samples and improve the

performance of the classifiers [6, 7]. The creation of synthetic data for minority classes can be

useful for many reasons. The first reason for creating synthetic samples is to avoid the usage of

original samples for privacy reasons. It is highly possible that working directly on the database

containing the original samples can be misused or breached. The second reason is oversam-

pling of the minority classes. In real-life scenarios, there is always a possibility of certain classes

being underrepresented.

Respiratory diseases are a pathological condition that affects the tissues and organs which

consequently makes gas exchange difficult. Some of the factors contributing to respiratory dis-

eases are air pollution, tobacco smoke, occupational chemicals, dust, etc [8]. Respiratory dis-

eases are one of the leading causes of death and disability in the world. Improving respiratory

health not only entails reducing tobacco consumption or controlling the unhealthy air at the

workplace but also involves strengthening the health care system and detection of respiratory

disease via breathing sounds is a compelling addition.

2. Literature survey

2.1 Literature review on automated respiratory sounds auscultation

algorithms

The development of automated respiratory sound auscultation algorithms requires the pro-

curement of respiratory sounds either through various devices or publicly accessible databases,

annotating these audios, pre-processing, followed by feature extraction and classification of

these audios.

The acquisition of respiratory sounds from patients at clinics is achieved using various

equipment like microphones or stethoscopes. The development of mobile technology has

made it possible to acquire clinical samples and diagnoses. [9] proposed a modified stetho-

scope to record lung sounds. Further, the introduction of mHealth applications has made it

possible to monitor vital organs, track treatment progress and send patient records to hospi-

tals. Few readily available respiratory sounds databases include the Multimedia Database

MARS (Marburg Respiratory Sounds), RALE Repository (Respiratory Acoustic Laboratory

Environment), ICBHI (International Conference on Biomedical and Health Informatics) 2017

Scientific Challenge Dataset, etc. The Marburg Respiratory Sounds Database has over 5000

audio recordings from patients with COPD, bronchial Asthma, lung fibrosis and Pneumonia,

along with clinical parameters such as lung function, X-ray findings and laboratory results.

The RALE Repository provides a collection of sounds recorded by a stethoscope from the

chest of patients. It was created for medical students to gain experience in lung sounds auscul-

tation. The ICBHI Respiratory Sounds Dataset contains 5.5 hours of respiratory sounds

obtained from 128 patients belonging to 8 different classes (1 healthy + 7 diseases).

The development of computerized lung sound auscultation algorithms requires annotated

audio data. These annotations are valuable in pre-processing steps such as the segmentation of

lung sounds and for the development of supervised learning algorithms. Respiratory sound

annotation software makes it easier for medical experts to annotate lung sounds by providing
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an intuitive interface for quickly identifying respiratory cycles and valuable sounds in the

waveform such as wheezes and crackles. The development of Graphical User Interface (GUI)

based applications such as LungSounds@UA has made it easier for users to interact with multi-

media databases that store respiratory sounds and associated clinical parameters.

Pre-processing the acquired audio data is an essential step before feeding the data to a clas-

sification model. This is because the pre-processing techniques applied to the data affect the

training efficiency and performance of a machine/deep learning model. Neural networks can

represent any function. However, it may not effectively learn any input unless the correct pre-

processing techniques have been used. Some of the pre-processing methods used for lung

sounds include denoising, segmentation, normalization, resampling, spectrogram conversion,

padding, trimming, etc. Lung sounds acquired from various devices are often corrupted by dif-

ferent noise sources such as heartbeats, speech, electrical interference, etc. [10] discusses

denoising filters such as Butterworth Bandpass filters, wavelet transform based filters, FIR fil-

ters, etc. and compares their efficacies in eliminating certain types of noise from lung sounds.

[11] utilized a local polynomial regression smoother for the removal of displacement artefacts

in lung sounds. Resampling refers to modifying the sampling rate of the audio signals. Down-

sampling audio signals reduce the computational complexity and inference time for classifica-

tion models without compromising their performance significantly. Segmentation algorithms

identify the beginning and end of a respiratory cycle in the time domain. Spectrograms are

two-dimensional audio representations helpful in extracting features using deep learning tech-

niques such as CNN and its variants. Frequency ranges in which the audio signals have zero

energy can be cropped from the spectrogram, allowing neural networks to focus on regions of

interest thereby, leading to improved performance. Lastly, most neural networks often expect

fixed length inputs and padding techniques such as zero-padding, duplicating respiration

cycles are used to achieve a fixed-length input. Trimming eliminates any silence at the begin-

ning or end of the audio.

Training machine and deep learning models on audio data requires a feature extraction

step. This step transforms the raw audio into valuable features for each class that can be useful

to the model in distinguishing between various classes. Audio features can be extracted from

multiple domains such as time, frequency, time-frequency, entropy, spectral, statistical, wave-

let, etc. [12] proposed a five-dimensional feature vector consisting of four time-domain fea-

tures derived from Simple Moving Averages of a 92 ms window and one frequency domain

feature (spectrum mean) to classify crackles. [13] proposed a feature vector consisting of aver-

aged power-spectrums of 32 segments of a signal for classifying ten different samples of respi-

ratory sounds. [14] decomposed the lung sounds into frequency sub-bands using wavelet

transformed and extracted statistical features associated with each sub-band to represent the

wavelet distribution. [15] used Mel Frequency Cepstral Coefficients that describes a signal’s

cepstrum for classifying lung sounds with Artificial Neural Networks. [16] constructed Auto-

regressive models using Linear Predictive Coding, a time-domain estimator of the signal based

on a linear combination of previous samples weighted by LPC coefficients, for automated diag-

nosis of lung sounds. [17] used features such as percentile frequency ratios, mean crossing

irregularity, kurtosis, Renyi entropy, etc. for the classification of wheeze and non-wheeze

sounds. [18] proposed entropy-based features for the detection of four types of lung sounds

and found the method to be robust against additive white Gaussian noise. [19] computed the

"Wheeze Power Ratio", a ratio of the power of the maximum peak in the frequency range of

250–800 Hz to that of the mean power in the frequency range between 60–900 Hz and found it

to be effective and robust in classifying wheeze sounds. [20] used audio spectral envelope and

tonality index as discriminative features for wheezy sounds and found the method to be com-

putationally simple, effective in detecting weak wheezes and robust against noise. The
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technique was suitable for automated auscultation of Asthma sounds acquired remotely from

mobile devices where the wheezes may have weak intensity. Hence, deep-learning-based and

manual feature extraction techniques have been proposed for classifying respiratory sounds.

Fig 1 and Table 1 collectively summarizes the commonly used pre-processing, feature

extraction techniques, and classification models applied to lung sound signals. Table 1 catego-

rizes the research works depending on the framework used i.e. either anomaly-driven (classify-

ing respiratory cycles as crackles, wheezes, both or none) or pathology-driven classification

(detection of specific diseases).

2.2 Literature review on audio data augmentation techniques

Data Augmentation is a technique that attempts to create new samples from existing samples

with features that resemble the original samples in the training set. The generated samples vary

slightly from the original training data and this helps a classifier to generalize better for certain

classes. Data Augmentation techniques can be categorized into two types for audio data: the

first is standard data augmentation techniques like Time stretching, pitch shifting, addition of

white noise [28], signal speeding, frequency masking, time masking [29], etc and the second

technique involves generating samples from generative models like Variational Autoencoders

[30] and Generative Adversarial Network [31]. Table 2 summarizes the recent works under-

taken towards augmenting audio datasets to enhance audio classification results.

3. Exploratory data analysis of ICBHI dataset

This section explores the various aspects of the respiratory diseases database provided by the

International Conference on Biomedical Health Informatics. The database consists of 5.5

hours of annotated recordings with respiratory cycles containing crackles, wheezes or both

[38]. Crackles are discontinuous sounds representing the presence of the fluid or secretions,

whereas wheezing refers to high pitched whistling sound that occurs when a breath is taken

[39, 40]. Wheezing is generally found in patients with Asthma and can be heard very loudly.

Fig 1. Summary of techniques used in automated respiratory sounds auscultation.

https://doi.org/10.1371/journal.pone.0266467.g001
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On the other hand, crackles are heard through a stethoscope and are generally a sign of fluid in

the lungs. Early expiratory crackles occur in people with severe airway obstruction. These

types of crackles mainly occur in COPD and Asthma. Crackles are further categorized as fine

and coarse. Fine crackles occur in pulmonary edema, Pneumonia, and fibrosis cases, whereas

coarse crackles occur in cases of Bronchiectasis [39]. Fig 2 shows the distribution of crackles

and wheezes in respiratory cycles of various diseases.

The pie chart in Fig 3 shows the distribution of the patients with different respiratory diag-

noses. The total number of patients who participated in the study was 126 from various age

categories and gender.

The study produced 920 annotated audio samples belonging to various classes as shown in

Fig 4.

Each audio file has more than one respiratory cycle of various lengths, which could be

determined by the annotations provided in the dataset. The number of respiratory cycles for

various diagnoses is shown in Fig 5.

The total number of respiratory cycles was 6898, of which 5641 cycles belonged to the

COPD class. Fig 5 shows that the dataset is highly imbalanced. The volume of data for certain

classes is negligible; hence there is a need to use data augmentation methods to ensure that the

deep learning classifiers perform well.

Table 1. Literature review of classification models proposed for lung sound auscultation.

Author

and Year

Framework Input/Features Technique Results

Pathology

driven

classification

Anomaly driven

classification

[21] ✖ ✔ Linear Predictive Cepstral

Coefficients (LPCC)

Multilayer Perceptron Classifier Accuracy of 99.22% was obtained

[22] ✖ ✔ Mel Spectrograms with

clipped black (zero energy)

regions

RespireNet framework consisting of

ResNet-34 trained on concatenation-

based augmented samples of respiratory

cycles along with device- specific

optimizations.

Achieved a sensitivity of 0.54 and

specificity of 0.83 in classifying wheezes

(W), crackles (C), both wheezes and

crackles (B) and healthy/normal (N)

respiratory cycles.

[23] ✖ ✔ Mel Frequency Cepstral

Coefficients (MFCCs) and

Power Spectrum Density

(PSD)

For breath detector, models such as

KNN, Random Forest and Logistic

Regression were proposed.

All models achieved a precision of 0.98

and recall of 0.99, 0.98 and 0.99

respectively.

For anomaly detection engine, models

such as Logistic Regression, SVM, ANN,

Random Forest and KNN were used.

SVM and Logistic Regression achieved a

precision and recall of 0.93, 0.94 and 0.91,

0.91 respectively, All other models

achieved a precision and recall of 0.92

and 0.91 respectively.

[24] ✖ ✔ Short Time Fourier

Transformation (STFT)

Pretrained Deep Convolutional Network

+ SVM Classifier

Accuracy of 65.5% was obtained

Pretrained Deep Convolutional Network

fined tuned for classification

Accuracy of 63.09% was obtained

[25] ✔ ✔ Mel Frequency Cepstral

Coefficients (MFCCs)

Recurrent Neural Networks like LSTM,

GRU, BiGRU and BiLSTM

Sensitivity and Specificity of 64% and

82% were obtained respectively

[26] ✖ ✔ Mel Frequency Cepstral

Coefficients (MFCCs).

Noise Masking Recurrent Neural

Network (NMRNN)

Sensitivity and Specificity of 56% and

73.6% were obtained respectively for end

to end classification

[27] ✖ ✔ Mel Frequency Cepstral

Coefficients (MFCCs).

Hidden Markov Models in combination

with Gaussian mixture models

Best Score achieved in second evaluation

phase of ICHBI was 39.56

[19] ✔ ✖ Abnormal lung sounds,

presence of breathlessness,

peak meter readings and

family history

Logistic Regression with L1

Regularization

Achieved 0.95 AUC score in separating

COPD and asthma patients from other

categories of diseases and 0.97 AUC score

in distinguishing COPD and Asthma

https://doi.org/10.1371/journal.pone.0266467.t001
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Fig 6 shows the split of the real audio segments into train and test sets. The stacked bar

chart reveals that nearly 70% of the audio segments in each class were used to train the VAEs

and classification models. The remaining segments were reserved for testing/performance

evaluation of the classifiers.

4. Research gaps

1. Existing research works [21–25] have shown that machine and deep learning techniques

hold promise in automating respiratory sounds auscultation. However, developing a

Table 2. A literature review of data augmentation techniques for audio classification.

Author

and Year

Purpose Data Augmentation Technique(s) Input to

augmentation

technique

Results / Impact of augmentation on the

performance of classification models

[28] Environmental

Sound classification

Time Stretching, Pitch Shifting, Dynamic Range

Compression and Background Noise Addition

Log-Mel-

Spectrogram

The accuracy for the proposed CNN (SB-CNN)

increased from 73% (before augmentation) to 79%

(after augmentation)

[32] Speech Recognition Mixup Augmentation Normalized

Spectrogram

The authors compared the classification performance

of a VGG-11 model trained with empirical risk

minimization and mixup augmentation and

observed a lower classification error with mixup

augmentation.

[33] Speech Recognition Variational Autoencoder Discrete Fourier

Transform

The authors proposed four classification models and

evaluated these using Word Error Rate (WER).

However, all four classification models suffered an

increase in the WER after augmentation.

[29] Speech Recognition SpecAugment Log Mel

Spectrogram

Listen Attend Spell obtained WER of 2.8 with

Augmentation and without presence of Language

Model whereas LAS obtained WER of 4.1 without

Augmentation

[34] Acoustic Scene

Classification

Spectrogram Rolling and mixup Mel Frequency

Cepstral Coefficient

The mean accuracy obtained by ResNet model before

augmentation is 80.97% and after augmentation is

82.85%

[35] Monaural Singing

Voice Separation

Variational Autoencoder- Generative Adversarial

Network (VAE-GAN)

Short Time Fourier

Transform

The authors used metrics such as Source to

Interference ratio (SIR), Source to Artifacts ratio

(SAR) and Source to Distortion ratio (SDR) to

evaluate the separation quality of a deep recurrent

neural network and VAE-GAN. A higher value

suggested better separation quality. The results

revealed that VAE-GAN had a higher SDR and SAR

whereas RNN had a higher SIR.

[31] Environmental

Sound Classification

WaveGAN Raw audio For baseline method the accuracy generated was

94.84% whereas after application of GAN the

accuracy achieved was 97.03

[36] Animal Audio

Classification

Signal Speed scaling, Pitch Shift, Volume increase/

decrease, Addition of random noise and Time shift

Raw audio The mean accuracy obtained by VGG19 on the cat

dataset is 83.05 without augmentation and 85.59 with

augmentation

pitch shift, time shift, summing two spectrograms

from same class, applying random cropping followed

by cutting the spectrogram in 10 different temporal

slices and applying a function on it, application of

time shift by randomly picking the shift T.

Mel Spectrogram The mean accuracy obtained by VGG19 on cat

dataset is 83.05 without augmentation and 90.68 with

augmentation

[30] Abnormal

Respiratory Sounds

Detection

Convolutional Variational Autoencoder Mel Spectrogram The specificity, sensitivity and F-score of the

respiratory sounds classification model increased

from 0.286 to 0.986, 0.888 to 0.988 and 0.349 to 0.900

upon augmentation respectively.

[37] Acoustic Scene

Classification

Zero-value Masking

Mini-batch based mixture masking

Mini-batch based cutting masking

Log Mel

Spectrogram

The accuracy on DCASE 18 dataset is 76.2%

The accuracy on DCASE 18 dataset is 77.0%

The accuracy on DCASE 18 dataset is 76.9%

https://doi.org/10.1371/journal.pone.0266467.t002
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machine/deep learning model with good generalization ability, especially towards the

minority/disease classes, requires a large volume of data to learn the desired characteristics

of these classes. The total number of respiratory cycles for certain classes in the ICBHI data-

set is negligible, making it impossible to train data-hungry deep learning models. Hence, a

need for techniques that enable training deep neural networks with limited data has arisen.

Data Augmentation is one such technique that can help deep learning models combat over-

fitting in scenarios where certain classes are highly under-represented. We observed that

very few works in the literature have experimented with the impact of data augmentation

on the performance of respiratory sound classification models. Hence, this work has

explored the efficacy of data augmentation using VAEs in enhancing lung sound classifica-

tion performance.

2. Table 1 reveals that most works [21–24, 26, 27] on respiratory sounds classification have

adopted an anomaly-detection based framework. Very few studies have focused on

Fig 2. Distribution of crackles and wheezes in the respiratory cycle.

https://doi.org/10.1371/journal.pone.0266467.g002

Fig 3. Patient wise diagnosis in ICBHI dataset.

https://doi.org/10.1371/journal.pone.0266467.g003
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classifying multiple respiratory diseases, probably due to insufficient labelled audio data. In

this study, we aimed at achieving an acceptable classification performance metric for six

disease classes present in the ICBHI dataset. Neural networks have the potential to learn

sophisticated and robust feature representations of the disease classes. However, the small

number of audio samples in the ICBHI dataset limits the creation of multi-class classifica-

tion models. Hence, to leverage the power of deep learning for diagnosing multiple respira-

tory diseases, we need a large number of labelled samples for the disease classes. Creating a

Fig 4. Count of audio files for various respiratory diseases.

https://doi.org/10.1371/journal.pone.0266467.g004

Fig 5. Distribution of respiratory cycle per class.

https://doi.org/10.1371/journal.pone.0266467.g005
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comprehensive database with a large volume of data for the minority classes is time-con-

suming, costly and patients belonging to these classes might not be available. Hence, gener-

ative modelling techniques for synthesizing samples of the minority/disease classes are

required.

3. Standard audio augmentation techniques such as time-shifting, pitch shifting, noise addi-

tion, mixup, speed scaling, frequency masking, etc. can be used to create limited audio sam-

ples for the minority classes, both in quantity and variety, which may not be sufficient to

significantly enhance the respiratory sound classification performance metrics or generali-

zation ability. On the other hand, generative models such as VAEs and GANs that are less

explored for audio synthesis in the healthcare domain can create a much wider set of aug-

mentations that can lead to more robust classifiers. Lastly, we noticed that GANs were

more prevalent in literature for audio generation than VAEs in various domains. However,

training GANs is challenging due to instabilities in the training process and mode collapse

[41]. Very few works [30] have reported generating biomedical signals such as respiratory

sounds with VAEs. Moreover, we addressed three major issues that we noticed in [30]: 1.

Inclusion of test set data for training the generative model (data leakage), 2. Lack of quanti-

tative and qualitative assessment for the quality and variety of the synthetic samples and 3.

Performance evaluation of the classifiers on the synthetic samples. These issues led to opti-

mistic performance metrics on the test set, which could be misleading. Hence, our work

provides an accurate insight into the potential of VAEs for augmentation and their role in

enhancing classification performance metrics for respiratory sounds.

5. Methodology

Section 3 highlights the severity of the imbalance in the audio dataset. To address the issue,

Variational Autoencoders were proposed to generate synthetic samples. Our work consists of

two major steps: 1. generating synthetic samples for various respiratory classes and 2. Classify-

ing the samples using deep learning models. As shown in Fig 7, after the audio acquisition,

data pre-processing involves segmentation of the audio samples and padding the audio signals

Fig 6. Class wise split of audio segments into train and test sets.

https://doi.org/10.1371/journal.pone.0266467.g006
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to make them of the same duration. We aim to create a comparison in the performance of the

classifiers before and after augmentation. For the classification of respiratory diseases, Mel Fre-

quency Cepstrum Coefficients are obtained in feature extraction steps which are then passed

to the proposed classification models. We propose three different variational autoencoders,

namely Multilayer Perceptron VAE, Convolutional VAE and Conditional VAE. Unlike Gener-

ative Adversarial Networks, Variational Autoencoders do not take raw audio samples; hence

the feature extraction step is necessary. Mel Spectrograms are considered for this step instead

of Mel Frequency Cepstrum Coefficients because the former can be easily converted into

audio samples.

6. Implementation

6.1. Audio acquisition

The dataset consists of audio samples which were obtained by two research teams over a differ-

ent span and geographical location [38]. As indicated in Fig 2, the recordings can contain

Fig 7. Proposed methodology.

https://doi.org/10.1371/journal.pone.0266467.g007
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crackles, wheezes or both. The dataset contained 1864 recordings with crackles, 886 with

wheezes, and 506 with both wheezes and crackles. The dataset contained various respiratory

diseases obtained from 126 subjects, as mentioned in Figs 3 and 4. Sound annotation for the

audio samples was done by two physiotherapists and one medical doctor with experience in

visual-auditory wheezes/crackles identification and with the help of Respiratory Sound Anno-

tation Software. The result of the annotation stage was the generation of a text file for each

audio recording which was then used in the pre-processing step.

6.2 Pre-processing

6.2.1 Segmentation. The dataset consists of audio recordings of varying length i.e. 10 to

90 seconds. Each audio sample is broken down into respiratory cycles or segments depending

on the annotation provided. Fig 8 describes the distribution of the segments based on its

length.

6.2.2 Padding. As shown in Fig 8, the histogram peaks at 2.5 seconds and the majority of

the respiratory cycles i.e. 6779 respiratory cycles lie before 6 seconds duration. We discarded

those respiratory cycles which were above the length of 6 seconds and padded the respiratory

cycles less than 6 seconds with silence in the end to ensure that all the segments were of the

same length. The padded audio waveforms for different respiratory classes are shown in Fig 9.

6.3 Data augmentation

Variational Autoencoders belong to the family of Generative Models. Variational Autoenco-

ders bear a huge similarity to Autoencoders in terms of their design. They consist of an

encoder (a recognition or inference model) and a decoder, also known as a generative model.

Another similarity between the two is they attempt to reconstruct the input data while learning

from the latent vectors. However, the difference between the two is that the latent space of

VAE is continuous. This is achieved as the encoder does not output an encoding vector of

Fig 8. Histogram showing the distribution of respiratory cycle durations.

https://doi.org/10.1371/journal.pone.0266467.g008
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length n but two different vectors of length n, one, a vector of means and another vector of

standard deviation, as shown in Fig 10.

The purpose of the mean vector is to control the center location of the encoded input

whereas the purpose of the standard deviation vector is to control the area in which the encod-

ing can vary. Since the encoding is generated randomly in the circle, the decoder also exposes

itself to variations of encoding.

Since the proposed Variational Autoencoders do not take raw audio as input, it is essential

to carry out a feature extraction step. In this paper, we use Mel Spectrogram as a feature extrac-

tion step before the data augmentation process takes place. Mel spectrogram is a spectrogram

where the frequencies are converted into the Mel scale.

Let fX ¼ xig
N
i¼1

be the training data where each xi 2 R
d

represents a mel spectrogram

belonging to a given respiratory class. The encoder in the VAE learns a mapping Qθ(z|X) from

an input xi to the mean μ(xi) and covariance σ2(xi) vectors of the latent variables. VAEs assume

Fig 10. Structure of variational autoencoder.

https://doi.org/10.1371/journal.pone.0266467.g010

Fig 9. Padded raw audio segments of all classes used in the study.

https://doi.org/10.1371/journal.pone.0266467.g009
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that the latent variable z follows a standard normal distribution N(0, 1). The decoder needs to

sample from the latent distribution outputted by the encoder, since the encoder no longer out-

puts a latent representation z as in autoencoders. The decoder of a VAE learns a mapping

Pϕ(X|z) from the latent representation z to the distribution parameters of the training data X.

For the decoder to generate realistic samples, it needs to maximize the log likelihood of the

input data i.e. log (p(X)). We also need to ensure that the VAE does not memorize/overfit the

training data. This is done by adding a regularization term to the loss function of the VAE that

constrains the Gaussian distribution outputted by the encoder to be close to a standard normal

distribution. A standard normal distribution has an identity covariance matrix which implies

that the covariance between the latent variables is zero and they are independent of each other.

Hence, a VAE which learns to model the training data distribution p(X) with an encoder Qθ(z|
X), a decoder Pϕ(X|z) and a latent distribution p(z) is trained using the objective function (1)

maxy;�logðpðXÞÞ � maxy;�EQyðzjXÞ½logðP�ðXjzÞÞ� � DKLðQyðzjXÞjjpðzÞÞ ð1Þ

where θ, ϕ are the parameters of the encoder and decoder respectively and DKL represents the

Kullback-Leibler Divergence between two probability distributions.

The following steps obtain the Mel spectrograms, which are fed to the variational

autoencoder:

1. Sampling the input with the window size of n_fft as 2048 while making hops of 512 to sam-

ple the next window.

2. Computation of Fast Fourier Transform for each window to transform the time domain to

frequency domain

3. Generation of Mel Scale is done by taking the entire spectrum and breaking it into 128 bins.

4. Generation of spectrograms.

The Mel spectrograms generated by the above process are shown in Fig 11.

We propose three variants of Variational Autoencoders for tackling data imbalance. These

are Multilayer Perceptron VAE (MLP-VAE), Convolutional VAE (CVAE) and Conditional

CVAE. The architectural details, along with hyperparameter settings, are discussed in the fol-

lowing subsections. All the VAE models were trained on mel spectrograms of the minority

classes. The encoders of the VAEs aimed at learning a mapping from the high-dimensional

mel spectrograms to low-dimensional latent representations, which in turn can be used by the

decoder to reconstruct a realistic mel spectrogram for a given minority class. As highlighted in

Eq (1), the decoder learns to generate mel spectrograms similar to the real spectrograms by

minimizing the reconstruction loss (Mean Squareddd Error in our case). On the other hand,

the encoder is incentivized to output normally distributed latent variables by the regularization

term (KL divergence between the distribution of latent variables and a standard normal distri-

bution in our case). To control the outputs generated by the unconditional decoders, we

instantiated a new VAE model per minority class. Each instance of the unconditional models

was trained on only one of the minority classes, thus ensuring that all synthetic mel spectro-

grams generated by an unconditional model belong to the same class only. On the other hand,

the Conditional VAE model was trained on all six minority classes simultaneously. Upon com-

pleting training for an instance of a VAE model, we generated synthetic mel spectrograms

using the decoder network by inputting a latent vector z sampled from a standard normal dis-

tribution and a class label for the Conditional VAE.

6.3.1 Multilayer perceptron VAE. The encoder consists of three dense layers, with the

third layer generating the mean and the log variance. The addition of the log variance layer
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makes the computation of KL loss and re-parameterization easier. The decoder also consists of

two intermediate dense layers and an output layer that takes samples of z to reconstruct a Mel

spectrogram. The dimension used in the intermediate layer is 512. The size of the latent

dimension is 2. The lambda function implements the re-parameterization trick to push the

sampling stochastic latent codes outside the network. The optimizer used was Adam. The acti-

vation function used in the intermediate and the output layers are ReLU and sigmoid, respec-

tively. The network configuration of the multilayer perceptron VAE is shown in Fig 12.

6.3.2 Convolutional VAE. The encoder is made up of two convolutional layers and three

intermediate dense layers to generate the latent code. The kernel size used in the convolutional

layers is three, numbers of strides were assigned as two and filters were varied depending on

the number of convolutional layers i.e. there were 16 for the first layer and 32 for the second

layer. The decoder has one dense layer, a reshape layer which is then given as an input to the

three Conv2DTranspose layers responsible for upsampling and reconstructing the image to its

original dimension. The filters in Conv2DTranspose layers vary with the layers and are

assigned 32, 16 and 1, respectively. The strides and kernel size for the Conv2DTranspose were

assigned 2 and 3, respectively. The activation function assigned to the first two layers was Rec-

tified Linear Activation function or ReLU and sigmoid activation function for the last upsam-

pling layer. The optimizer used in this case was RMS Prop. The network configuration of the

VAE is indicated in Fig 13.

6.3.3 Conditional VAE. If the latent space is randomly sampled, it becomes impossible

for the Variational Autoencoder to control the class of the sample being generated.

Fig 11. Mel spectrograms of various respiratory diseases.

https://doi.org/10.1371/journal.pone.0266467.g011
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Fig 12. Overall architecture of MLP-VAE.

https://doi.org/10.1371/journal.pone.0266467.g012

Fig 13. Architecture of CNN-VAE.

https://doi.org/10.1371/journal.pone.0266467.g013
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Conditional VAE addresses the issue by including a one hot label or a condition into the

encoder and the decoder. The reconstruction loss of the decoder and KL loss of the encoder is

determined by latent vector and the condition. Conditional VAE is a special type of β-VAE

(Disentangled VAE) where β = 1. The network structure of the VAE consists of an encoder

which has a one hot vector of the labels provided as the input along with 3 Dense layers, 2 Con-

volutional layers with varying filters i.e. 16 and 32, kernel size as 3 and latent dimension as 2.

The structure of the decoder consists of one hot vector of the class labels and 2 dimension

input obtained from the lambda function as the input. It consists of 1 Dense layer and 3 Con-

v2DTranspose Layers with filters 32, 16 and 1 respectively. The optimizer used in this case was

RMS Prop. The network configuration of the VAE is indicated in Fig 14.

Variational Autoencoder generates reconstructed Mel spectrograms which are converted

into audio by applying Griffin-Lim [42]. The numbers of audio samples generated for the

minority classes by various variational autoencoders are shown in Table 3.

6.4 Feature extraction for classification models

Before feeding the data into neural networks for the classification of respiratory diseases, it is

essential to extract the required features from the data as it reduces the computation time of

the classification models. We propose the use of Mel Frequency Cepstrum for the extraction of

features from audio. This technique involves windowing the signal, applying direct Fourier

transformation, taking log of magnitude and warping the frequencies on the Mel scale, and

finally applying inverse Direct Cosine Transformation. Fig 15 shows the steps of computing

the Mel Frequency Cepstral Coefficients for an audio signal.

We gave the value of the number of MFCC as 13 and sample rate of each audio file as

22050. Fig 16 visualizes the MFCCs over time for various respiratory classes in the dataset.

Fig 14. Overall architecture of conditional VAE.

https://doi.org/10.1371/journal.pone.0266467.g014

Table 3. Samples generated by proposed variational autoencoders.

Synthetic samples generated LRTI URTI Bronchiectasis Bronchiolitis Healthy Pneumonia

MLP-VAE 5641 5641 5642 5641 5636 5637

CNN-VAE 5633 5640 5641 5640 5641 5640

CVAE 5657 5569 5577 5636 5646 5613

https://doi.org/10.1371/journal.pone.0266467.t003
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6.5 Classification models

In this paper, we have proposed five deep learning architectures for the classification of various

respiratory diseases. The architectural details and hyperparameter settings of these models are

discussed in the following subsections and Table 4, respectively. The last layer of these models

is a dense layer with seven neurons and the softmax activation function that outputs the class

probabilities corresponding to the seven respiratory classes. The classification models were

compiled with categorical cross-entropy loss function, Adam optimizer and a learning rate of

0.0001. The classification models were trained on the imbalanced and augmented training sets

and evaluated using metrics such as specificity, sensitivity, precision and F1-score.

Fig 15. Procedure for computing MFCCs.

https://doi.org/10.1371/journal.pone.0266467.g015

Fig 16. MFCC for various respiratory classes.

https://doi.org/10.1371/journal.pone.0266467.g016
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6.5.1 Multilayer perceptron. As shown in Fig 17, the model takes flattened MFFC as

input which is then fed to the seven dense layers which have dropout in the range of 10% to

40% in order to reduce overfitting.

Table 4. Hyperparameters configuration of the proposed classification models.

Model Hyperparameters Value

Multilayer Perceptron Number of neurons in hidden layers (1–3), layer 4 and

hidden layers (5–7)

512, 1024, 512

Activation function used in hidden layers ReLU

Optimizer and learning rate Adam and 0.0001

Convolutional Neural

Network

Number of filters in Conv2D layers 32

Stride in Conv2D layers (1,1)

Pool size in MaxPool2D layers (2,2)

Stride in MaxPool 2D layers (2,2)

Kernel size in Conv2D layers 1 and 2 (3,3) and (2,2)

Number of neurons in Dense layers (1–4) 64, 128, 128, 64

Activation function used in Dense layers ReLU

Optimizer and Learning Rate Adam and 0.0001

LSTM Number of memory cells in LSTM layers 1 and 2 64 and 128

Number of neurons in Dense layers (1–3) 64, 256, 128

Activation function used in LSTM layers 1 and 2 tanh

Activation function used in Dense layers (1–3) ReLU

Optimizer and Learning Rate Adam and 0.0001

ResNet-50 Number of neurons in Dense layers (1–6) 256, 128, 64, 512,

512, 512

Activation function used in Dense layers (1–6) ReLU

Optimizer and Learning Rate Adam and 0.0001

Efficient Net B0 Number of neurons in Dense layers (1–3) 256, 128, 64

Activation function used in Dense layers (1–3) ReLU

Optimizer and Learning Rate Adam and 0.0001

https://doi.org/10.1371/journal.pone.0266467.t004

Fig 17. Visual representation of MLP model.

https://doi.org/10.1371/journal.pone.0266467.g017
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6.5.2 Convolutional neural network. The second model used for detection of respiratory

diseases is CNN which has a sequential framework. The model has two Conv2D layers which

were used for feature extraction, with five intermediate dense layers and a dense layer as the

output layer. Convolutional Neural Networks have the ability to capture the spatial and tempo-

ral dependencies from the input, specifically an image through the application of various fil-

ters. It is preferred because of the reduction in the number of parameters involved and option

of reusability of the weights. In short, Convolutional Neural networks reduce the mel-spectro-

grams, into a form that is easier to process and does not lose the critical features on its way to

achieve it. Fig 18 shows the architecture of the proposed CNN model for classifying MFCCs of

respiratory sounds.

6.5.3 Recurrent neural network: LSTM. A recurrent neural network is a class of neural

networks where the previous outputs are used as input while having hidden states. The advan-

tage of recurrent neural networks is that the weights are shared across time. On the other

hand, vanishing gradients are one of the major problems in RNN. Hence, LSTM was intro-

duced to counter the issue. LSTM has the edge over feed-forward and recurrent neural net-

works because of their property of selectively memorizing patterns for long durations of time.

Fig 19 shows the architecture of the proposed LSTM model for classifying the MFCCs of respi-

ratory sounds over several time frames.

6.5.4 Resnet-50. The proposed respiratory sound classification method involves a pre-

trained Resnet-50 model [43], which is considered for both deep feature extraction and fine-

tuning. The input to the model is the MFCC spectrogram of dimension (13,130,1). The fully

connected layers were used for predicting the class labels. The output obtained from Resnet is

flattened, normalized using BatchNormalization and passed into fully connected layers. The

fully connected layer consists of 6 hidden dense layers and one output layer with a softmax

activation function. The dense layers have dropouts in the range of 10% to 30% and a batch

normalization layer to prevent overfitting. Fig 20 shows the architecture of the proposed trans-

fer learning model that employs the RESNET-50 backbone for extracting features from the

MFCCs of respiratory sounds and classifies the same.

Fig 18. Visual representation of CNN model.

https://doi.org/10.1371/journal.pone.0266467.g018
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6.5.5 Efficient Net B0. This model contains Efficient Net B0 [44] as the base model over

which other layers are built. The input is fed into the Efficient Net Architecture and the output

obtained from it is flattened. The input is of the size (13, 130, 1) and the dimension obtained

after passing it through an efficient net B0 layer and flattening is 6400. The training set is nor-

malized using BatchNormalization and dropout layers of 50% are added to reduce overfitting.

There are 3 hidden layers with 256, 128 and 64 neurons respectively and one output layer with

Fig 19. Visual representation of RNN-LSTM model.

https://doi.org/10.1371/journal.pone.0266467.g019

Fig 20. Visual representation of RESNET-50 transfer learning model.

https://doi.org/10.1371/journal.pone.0266467.g020

PLOS ONE Data augmentation using Variational Autoencoders for improvement of respiratory disease classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0266467 August 12, 2022 20 / 41

https://doi.org/10.1371/journal.pone.0266467.g019
https://doi.org/10.1371/journal.pone.0266467.g020
https://doi.org/10.1371/journal.pone.0266467


softmax as the activation function. The optimizer used was Adam with a learning rate of

0.0001. Fig 21 shows the architecture of the proposed transfer learning model that employs the

Efficient Net B0 base architecture for extracting features from the MFCCs of respiratory

sounds and classifies the same.

7. Results

In this section, we evaluate the performances of the generative and classification models. To

assess the ability of the generative models to synthesize realistic respiratory sounds, we used

metrics such as Fréchet Audio Distance (FAD), Cross-Correlation, Mel Cepstral Distortion

and compared the features of the synthetic and original audios using Principal Component

Analysis (PCA). To evaluate the performance of the classifiers and the effectiveness of the addi-

tion of the synthetic samples to the imbalanced training set in combating overfitting for the

minority classes, we measured metrics such as confusion matrices, specificity, sensitivity, pre-

cision and F1 score on the hold-out test set.

7.1 Generative models

7.1.1 Fréchet audio distance. The Fréchet Audio Distance (FAD) is a reference-free eval-

uation metric used for assessing the quality of synthetic samples created by a generative model

[45]. Reference samples for each synthetic audio generated are not required for measuring the

FAD metric. Other benefits of using the FAD metric include robustness against noise, compu-

tational efficiency, correlates well with the human judgment of audio quality (Pearson Correla-

tion: 0.52), sensitivity to intra-class mode dropping [46]. The FAD metric compares the

statistics of embeddings obtained from a VGGish audio classification model for the original

and synthetic datasets using Eq 2.

FAD ¼ jjmr � mg jj
2
þ traceð

P
r þ mg � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
r

P
g

q
Þ ð2Þ

where μr: Mean of real data distribution

μg: Mean of generated data distribution

Fig 21. Visual representation of EFFICIENT NET B0 transfer learning model.

https://doi.org/10.1371/journal.pone.0266467.g021
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∑r: Covariance of real data distribution

∑g: Covariance of generated data distribution

Fig 22 illustrates the computation of FAD. The synthetic and original audios for each lung

sound class are inputs to the VGGish model to obtain the corresponding embeddings. The

mean and covariance of these embeddings are obtained to compute the FAD metric. Lower

the FAD, the smaller the distance between the distributions of the original and synthetic

audios. A small FAD is also indicative of the good audio quality of the synthetic samples.

Table 5 and the bar graph in Fig 23 show the FAD scores of the synthetic audios generated

by the proposed VAEs w.r.t the original sounds for each class. The FAD scores of synthetic

audios created by CNN-VAE and Conditional VAE exhibit consistent values in the range of

10–14, whereas those of MLP-VAE vary greatly depending on the lung sound class. The

MLP-VAE synthesized audios of the ’Healthy’ and ’LRTI’ classes with low FAD scores of 4.81

and 3.16, respectively. The synthetic audios are obtained by inverting the Mel spectrograms

reconstructed by the decoder of the VAEs. Mel Spectrograms are a lossy compression of STFT

as the phase information gets discarded. Hence, to estimate the phase during inversion, we

used the iterative Griffin and Lim method [42] offered by the audio processing library Librosa.

Hence, distortions introduced by the inversion method may lead to a higher FAD score.

7.1.2 Visualization of audio features using principal component analysis. The features

of the real and synthetic respiratory segments were visualized in two-dimensional space using

Fig 22. Computation of FAD.

https://doi.org/10.1371/journal.pone.0266467.g022

Table 5. FAD of synthetic samples of minority classes w.r.t real samples.

Generative model Class

Bronchiectasis Bronchiolitis Healthy Pneumonia LRTI URTI

MLP-VAE 28.40 11.72 4.81 12.34 3.16 14.11

CNN-VAE 12.47 10.86 12.05 11.56 12.10 10.44

Conditional VAE 13.96 10.88 12.07 11.62 10.79 10.57

https://doi.org/10.1371/journal.pone.0266467.t005
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Principal Component Analysis. For each VAE and lung sound class, 200 synthetic audios were

sampled, whereas all respiratory cycles of the original audios were considered. The features

extracted from these audios included the mean, standard deviation and the first-order deriva-

tive of their Mel Frequency Cepstral Coefficients. The feature extraction process resulted in a

feature vector of 39 dimensions compressed to 2 using PCA. The scatter plots in Figs 24–26

show the spread of the two principal components for the synthetic and original audios.

The distribution of the features of the synthetic segments created by MLP-VAE shown in

Fig 24 is linear and inconsistent with that of the original segments. The only exception is the

"LRTI" class where the distribution of features of the synthetic samples follows that of the real

audios closely. The inconsistent distribution of the features explains the high FAD score of

28.30 for synthetic audios of the "Bronchiectasis" class synthesized by MLP-VAE. Also, the low

FAD score of 3.16 for the synthetic LRTI audios generated by MLP-VAE can be explained by

the similarity between the features of the original and synthetic audios of the LRTI class. The

distribution of features of audio segments generated by CNN-VAE shown in Fig 25 is consis-

tent w.r.t. to the original audios compared to Conditional VAE. The features of these synthetic

audios resemble those of the original audios better. Hence, the FAD score achieved by the syn-

thetic samples of CNN-VAE is lower than that of MLP-VAE for certain classes. The spread of

features of synthetic samples created by Conditional VAE shown in Fig 26 is inconsistent w.r.t

the original audios for respiratory classes such as LRTI, URTI, Bronchiectasis and Bronchioli-

tis. Hence, synthetic audios created by CNN-VAE resemble the real audios more closely in a

two-dimensional space when compared to MLP-VAE and Conditional VAE.

7.1.3 Cross-correlation between synthetic and real audios. Cross-correlation is a mea-

sure of how much two signals resemble each other [49]. The higher the correlation, the better

is the similarity between the two signals. For 1D time-series x and y, the cross-correlation at

lag k, denoted by ϕxy[k], is given by the Eq (3).

�xy½k� ¼
X1

n¼� 1

x½kþ n�y½n� ð3Þ

Fig 23. FAD of synthetic samples w.r.t real samples for minority classes.

https://doi.org/10.1371/journal.pone.0266467.g023
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From Eq (3), we observe that the cross-correlation operation multiplies a signal y[n] with a

shifted version of the signal x[n] by introducing a lag k. This study used Scipy’s correlate

method to measure the cross-correlation between the real and synthetic audio segments. Since

the real and synthetic signals were of the same length and the ‘valid’ mode argument of Scipy’s

correlate [50] method was used, we essentially measured the correlation between the real and

synthetic signals at lag 0. To estimate the cross-correlation of the synthetic signals w.r.t. the

real signals, we took a sample size of 50 from each minority class. The cross-correlation of each

of the sampled synthetic signals w.r.t. the sampled real signals were measured, and the maxi-

mum correlation for each synthetic sample was selected. The mean and standard deviation of

the maximum attainable correlation for each of the sampled synthetic samples w.r.t. the real

samples are reported in Table 6. The correlation heatmaps in Figs 27–29 visualize the mean

maximum attainable cross-correlation between the sampled synthetic samples of a given class

and all minority classes.

The correlation heatmap in Fig 27 shows that the synthetic audio segments created by

MLP-VAE are very weakly correlated with the real audio segments for all the classes except

LRTI. The mean cross-correlation between the sampled synthetic LRTI signals created by

MLP-VAE and the real LRTI signals is 0.79, the highest correlation compared to the

Fig 24. Principal components of MFCCs of synthetic (MLP-VAE) and real samples of minority classes.

https://doi.org/10.1371/journal.pone.0266467.g024
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corresponding correlations achieved by CNN-VAE (0.46) and Conditional VAE (0.50). This

observation is consistent with our finding of MLP-VAE achieving the lowest FAD score for

the LRTI class compared to CNN-VAE and Conditional VAE.

The correlation heatmaps in Figs 28 and 29 show that the synthetic audio signals created by

CNN-VAE and Conditional VAE have a weak positive correlation w.r.t. synthetic samples.

The figures show that the synthetic audio segments of a given class show the highest mean cor-

relation w.r.t the real audio segments of a different class. In the case of Conditional VAE, the

mean cross-correlations between the real audio segments of a given class w.r.t. the synthetic

segments of all classes lie in a very narrow range. For example, the mean cross-correlation

between the sampled real Bronchiectasis audio segments and that of synthetic segments lie in

the range of 0.41–0.48, which implies that the synthetic samples belonging to the other classes

that resemble Bronchiectasis can make it harder for our classifiers to classify the intended

minority class correctly. Another example observed in Fig 28 is the high correlation of 0.65

between the synthetic Bronchiectasis samples and the real Pneumonia samples, which can

cause the classifiers to misclassify real Bronchiectasis samples as Pneumonia, potentially hurt-

ing the performance of our classifiers with the Conditional VAE augmentation. A potential

explanation for such observations could be that the features of the wheezes and crackles

observed for a minority class such as Bronchiectasis are very similar to those observed in

another minority class such as Pneumonia.

7.1.4 Mel Cepstral Distortion. The Mel Cepstral Distortion (MCD) measures the differ-

ence between two sequences of mel cepstra. To account for the differences in timing, we used

Fig 25. Principal components of MFCCs of synthetic (CNN-VAE) and real samples of minority classes.

https://doi.org/10.1371/journal.pone.0266467.g025
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Dynamic Time Warping (DTW) to identify the best possible alignment between the real and

synthetic audio signal. We measured the difference MCD (Cti; Ĉti) between the mel frequency

cepstral coefficients (MFCCs) of the real Cti and synthetic Ĉti audio segments over T time-

frames using Eq (4)

MCD Cti; Ĉti

� �
¼

10
ffiffiffi
2
p

ln10

1

T

XT

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

ðCti � ĈtiÞ
2

r

ð4Þ

To measure the MCD between the real and synthetic signals of each class, we took samples

of size 50 from each class and computed the MCD between each synthetic sample and all the

Fig 26. Principal components of MFCCs of synthetic (Conditional VAE) and real samples of minority classes.

https://doi.org/10.1371/journal.pone.0266467.g026

Table 6. Cross-correlation between sampled synthetic and real audio segments for each class.

Class MLP-VAE CNN-VAE Conditional VAE

Bronchiectasis 0.1 ± 0.13 0.40 ± 0.15 0.46 ± 0.20

Bronchiolitis 0.34 ± 0.18 0.52 ± 0.12 0.57 ± 0.13

Healthy 0.01 ± 0.16 0.54 ± 0.15 0.52 ± 0.13

LRTI 0.79 ± 0.18 0.46 ± 0.15 0.50 ± 0.17

Pneumonia 0.32 ± 0.17 0.55 ± 0.14 0.56 ± 0.13

URTI 0.17 ± 0.15 0.59 ± 0.13 0.39 ± 0.15

https://doi.org/10.1371/journal.pone.0266467.t006
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Fig 27. Correlation heatmap between sampled synthetic (MLP-VAE) and real audio segments for all minority

classes.

https://doi.org/10.1371/journal.pone.0266467.g027

Fig 28. Correlation heatmap between sampled synthetic (CNN-VAE) and real audio segments for all minority

classes.

https://doi.org/10.1371/journal.pone.0266467.g028
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real audio segments of that class. The mean and standard deviation of these MCDs for a given

class and VAE model are reported in Fig 30. Higher the MCD, the larger the distortion

between the two mel cepstras and, hence, poorer the synthetic signal quality.

Fig 30 reveals that the MCD between the real and synthetic samples created by MLP-VAE

and CNN-VAE for all classes except the Healthy class are consistent with each other. For the

Fig 30. Mean Mel Cepstral Distortion between the mel cepstras of the synthetic and real audio samples for all classes.

https://doi.org/10.1371/journal.pone.0266467.g030

Fig 29. Correlation heatmap between sampled synthetic (Conditional-VAE) and real audio segments for all

minority classes.

https://doi.org/10.1371/journal.pone.0266467.g029
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synthetic samples created by Conditional VAE, the MCD is significantly higher, which can be

justified because the Conditional VAE model was trained on all six minority classes simulta-

neously, giving it lesser time to learn the essential features of the disease classes.

7.2 Classification models

Various evaluation metrics used to determine the performance of a classification model are as

follows:

1. Confusion Matrix: It provides an insightful idea of the classes that are predicted correctly

and incorrectly by the model and a count of errors (False Positives and False Negatives)

made. It is useful for measuring other metrics like recall, precision, specificity and accuracy.

Fig 31 shows the structure of a confusion matrix and the commonly used terms with a con-

fusion matrix.

2. Precision: Precision (Eq 5) represents the fraction of positive predictions that were actually

correct. Hence, it is also called positive predictive value.

Precision ¼
TP

TP þ FP
ð5Þ

3. Recall: Recall (Eq 6) represents the fraction of positive samples that were classified correctly.

It is also known as sensitivity or true positive rate.

Recall ¼
TP

TPþ FN
ð6Þ

4. F1-Score: F1 score (Eq 7) is the harmonic mean of precision and recall and is denoted by

the formula

F1 score ¼ 2�
Precision� Recall
Precisionþ Recall

ð7Þ

Fig 31. Confusion matrix.

https://doi.org/10.1371/journal.pone.0266467.g031
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5. Specificity: Specificity (Eq 8) represents the fraction of negative samples that were classified

correctly. Hence, it is also called the true negative rate.

Specificity ¼
TN

TN þ FP
ð8Þ

As indicated in Figs 33 to 37, the classification models can classify only COPD correctly

and overfit for the minority classes with an imbalanced training set. This issue is resolved for

certain minority classes with the help of our proposed data augmentation techniques. Table 7

shows the average of the classification metrics over all classes, whereas the confusion matrix

gives us the actual performance of the classifiers per respiratory class. We trained each classi-

fier on the four training sets (imbalanced + 3 augmented) thrice for 100 epochs. We reported

the aggregated metrics in Table 6 and the best confusion matrix obtained from the three trials.

To understand the impact of data augmentation on the classification models, consider the

LRTI class, which is almost completely misclassified by classifiers trained on the imbalanced

training set. In contrast, the classifiers classify LRTI better on the augmented training sets.

With the augmented training sets, the misclassification proportion for the LRTI class was

reduced from 100% for all classifiers (imbalanced) to 40% for ANN (CNN-VAE augmenta-

tion), 50% for CNN (CNN-VAE augmentation), 50% for LSTM (CNN-VAE augmentation),

50% for Resnet-50 (For all three VAEs) and 30% (Conditional VAE augmentation). The

improvement in the performance metrics for the LRTI class after augmentation can also be

observed in Fig 32, which compares the mean F1 score of the classifiers on the test set per

class. Fig 32 for the LRTI class reveals that most of the classifiers (except LSTM and Resnet-50)

completely misclassified LRTI with an imbalanced training set achieving a mean F1 score of 0;

which improved to a minimum F1 score of 0.47 for MLP-VAE augmentation (except ANN),

0.37 for CNN-VAE augmentation (except ANN) and 0.52 for Conditional VAE augmentation

(except ANN and CNN).

Table 7. Impact of VAE augmentation on the performance of classification models.

Dataset Metric MLP CNN LSTM RESNET-50 EFFICIENT NET B0

Imbalanced training set Specificity 0.95±0.09 0.96±0.06 0.92±0.16 0.97±0.05 0.94±0.11

Sensitivity 0.48±0.3 0.29±0.37 0.41±0.28 0.75±0.2 0.47±0.32

Precision 0.43±0.35 0.34±0.39 0.32±0.28 0.62±0.25 0.37±0.31

F1 score 0.43±0.32 0.3±0.36 0.34±0.26 0.64±0.19 0.39±0.31

Augmented training set-1(MLP-VAE) Specificity 0.97±0.05 0.96±0.08 0.92±0.15 0.98±0.05 0.96±0.07

Sensitivity 0.51±0.29 0.61±0.2 0.41±0.24 0.71±0.16 0.55±0.22

Precision 0.53±0.32 0.74±0.18 0.49±0.23 0.78±0.14 0.67±0.2

F1 score 0.51±0.3 0.66±0.18 0.44±0.23 0.74±0.14 0.59±0.2

Augmented training set-2(CNN-VAE) Specificity 0.95±0.11 0.96±0.07 0.92±0.17 0.98±0.04 0.96±0.06

Sensitivity 0.45±0.33 0.62±0.23 0.38±0.26 0.71±0.14 0.56±0.26

Precision 0.58±0.33 0.76±0.17 0.46±0.23 0.77±0.19 0.62±0.25

F1 score 0.48±0.31 0.65±0.2 0.41±0.24 0.72±0.15 0.57±0.24

Augmented training set-3 (Conditional VAE) Specificity 0.96±0.07 0.96±0.05 0.91±0.19 0.98±0.04 0.96±0.07

Sensitivity 0.42±0.34 0.4±0.33 0.36±0.27 0.7±0.17 0.55±0.25

Precision 0.48±0.33 0.48±0.35 0.52±0.23 0.76±0.17 0.6±0.23

F1 score 0.41±0.32 0.39±0.3 0.42±0.24 0.72±0.15 0.56±0.23

Note: The improvement in F1 scores after augmentation are marked in bold.

https://doi.org/10.1371/journal.pone.0266467.t007
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On observing the performance of the classifiers on the augmented training sets in Fig 32, it

can be seen that the MLP-VAE and CNN-VAE augmentations were more effective than Con-

ditional VAE. The confusion matrices in Figs 33–37 for augmented training set 3 (Conditional

VAE) show poor performance for all classifiers except Resnet-50 and Efficient Net B0

Fig 32. Classwise comparison of F1 score achieved by the classifiers with different training set.

https://doi.org/10.1371/journal.pone.0266467.g032
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compared to augmented training sets 1 (MLP-VAE) and 2 (CNN-VAE). The PCA plots in Fig

26 show that the distribution of features of the synthetic samples created by Conditional VAE

disagrees with those of the original samples for LRTI, URTI, Bronchiectasis and Bronchiolitis

classes. The synthetic samples generated by Conditional VAE create confusion for the classifi-

cation models and hampers their performance compared to the augmentation of MLP-VAE

and CNN-VAE.

On comparing the VAE augmentations, we can conclude that the MLP-VAE and

CNN-VAE augmentations were more effective in enhancing the classification performance

metrics than Conditional-VAE. Our evaluation of the generative models can justify this

Fig 33. Confusion matrices for ANN classifier with imbalanced and augmented training sets.

https://doi.org/10.1371/journal.pone.0266467.g033
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observation, which revealed issues with the Conditional VAE model, such as the resemblance

of the synthetic audios of a given class with another minority class and higher MCD of the syn-

thetic audios than the MLP-VAE and CNN-VAE.

We used Excel’s “two-way ANOVA (Analysis of Variance) with Replication” for comparing

the performance metrics on the imbalanced and augmented training sets. The null hypothesis

H0 assumed for the test is “No significant difference in the performance metrics was observed

with the augmented training sets”, and the alternate hypothesis H1 is “A significant difference

in the performance metrics was observed with the augmented training sets”. Table 8 reports

the statistical test results for comparing performance metrics of various classifiers on the

imbalanced and augmented training sets. The p-value represents the probability of the null

hypothesis H0 being true. A significance level (SL) of 0.05 was chosen for these tests. Table 8

shows that the p-values corresponding to the above hypothesis tests for all performance met-

rics were less than the chosen SL. Also, the F ratio was greater than the critical F value for all

performance metrics except specificity. These test results indicate that the null hypothesis H0

can be rejected, and a significant difference in the performance metrics is observed with the

augmented training sets.

8. Discussion

This study aimed to evaluate the impact of augmenting the imbalanced ICBHI dataset with the

synthetic samples created by VAEs to achieve superior classification results for detecting mul-

tiple respiratory diseases. Our results showed that the synthetic audio segments created by

Table 8. Statistical significance of performance metrics achieved by various classifiers with imbalanced and aug-

mented training sets.

Performance Metric F ratio Critical F value p-value

Specificity 0.13 2.63 0.94

Precision 9.01 2.63 8.72 x 10−6

Recall 5.97 2.63 0.0005

F1 score 9.52 2.63 4.35 x 10−6

https://doi.org/10.1371/journal.pone.0266467.t008

Table 9. Comparison of our results with recent works undertaken towards multi-class respiratory disease classification.

Authors

and Year

Dataset used Features / Input to model Proposed Model

(s)

Sensitivity Specificity ICBHI

Score

[25] ICBHI Dataset with healthy and two classes (Chronic and Non-

Chronic)

MFCCs combined with

their first-order derivative

LSTM 0.98 0.82 0.90

[30] ICBHI Dataset with CNN VAE generated synthetic samples of

healthy and five disease classes (Bronchiectasis, Bronchiolitis,

COPD, Pneumonia, URTI)

Mel Spectrograms of

respiratory sounds

CNN 0.99 0.99 0.99

[47] ICBHI Dataset with augmented samples of two classes (COPD

and Non-COPD)

MFCCs CNN 0.92 0.92 0.92

[48] King Abdullah University Hospital + ICBHI Database with six

classes (Normal, COPD, BRON, Pneumonia, Asthma, heart

failure)

Entropy-based features Boosted

Decision Trees

0.95 0.99 0.97

Our Study

(2021)

ICBHI dataset with VAE-generated synthetic samples of healthy

and six disease classes (Pneumonia, LRTI, URTI, Bronchiectasis,

Bronchiolitis, COPD)

MFCCs of respiratory

sound segments

MLP 0.97 0.51 0.74

CNN 0.96 0.62 0.79

LSTM 0.92 0.41 0.67

RESNET-50 0.98 0.71 0.85

EFFICIENT

NET B0

0.96 0.56 0.76

https://doi.org/10.1371/journal.pone.0266467.t009
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MLP-VAE and CNN-VAE enhanced the classification performance metrics more than Condi-

tional VAE. The VAE augmentation helped our classifiers achieve superior performance in

detecting multiple diseases. In this section, we compared the results of our classifiers with

those of existing respiratory disease classification models. We observed that very few works

proposed models for the classification of multiple respiratory diseases in the literature. It is

worth mentioning that a direct quantitative comparison of results is not possible due to the

variations in datasets (sample size and disease classes involved), feature extraction techniques,

classification algorithms and evaluation methods. Table 9 and Fig 38 collectively present the

comparative summary of our work with recent works undertaken towards diseased respiratory

sounds classification. Table 9 reveals that the sensitivity of our models is lower than those

achieved by existing works. However, it is worth noting that the sensitivity metric in our case

includes six disease classes, unlike other works where only two or four classes have been

considered.

Fig 34. Confusion matrices for CNN classifier with imbalanced and augmented training sets.

https://doi.org/10.1371/journal.pone.0266467.g034
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[25] proposed a deep learning-based auscultation framework consisting of RNN and its var-

iants for detecting abnormal respiratory sounds (such as crackles, wheezes or both) and patho-

logical lung diseases (such as chronic, non-chronic and healthy). Their results showed that

MFCCs computed with a window step size leading to a 50% overlap between successive time

frames lead to an LSTM with the best performance (ICBHI Score: 0.90, Sensitivity: 0.98 and

Specificity: 0.82). Even though our work has not focused on classifying adventitious respiratory

sounds such as wheezes and crackles, we have built models that can predict a specific disease

rather than only its category (chronic or non-chronic). This was made possible due to the volu-

minous synthetic data we generated using VAEs to help our classifiers generalize better on the

minority classes. Our proposed LSTM also extracted features from MFCCs of the respiratory

sounds computed on overlapping time-frames; however, the extracted features were not suffi-

cient for classifying the respiratory diseases with the imbalanced training set. Upon the VAE

augmentation, the performance of our LSTM model improved significantly for certain disease

Fig 35. Confusion matrices for LSTM classifier with imbalanced and augmented training sets.

https://doi.org/10.1371/journal.pone.0266467.g035
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classes and the Healthy class, achieving an ICBHI score of 0.67 (Sensitivity: 0.41 and Specific-

ity: 0.92).

[30] developed 3-class and 6-class (healthy and five diseases) classification models for diag-

nosing respiratory diseases in the ICBHI dataset. Similar to our work, these authors proposed

a CNN-VAE for augmenting the 6-class imbalanced dataset. The augmentation led to state-of-

the-art results for their models with an ICBHI score of at least 0.99. Our work not only focused

on 7-class (healthy + six diseases) classification models but also proposed a Conditional VAE,

which allowed simultaneous training of the VAE for all minority classes. The disadvantage of

CNN-VAE is that there is no way to control the output synthesized class, forcing us to train

CNN-VAE for each respiratory class separately. Upon completing the training for a given

class, the generative model can synthesize mel spectrograms for that class. As our classifiers

rely on MFCCs, we needed to invert the synthetic mel spectrograms to raw audios. Training

CNN-VAE for each class separately and inverting the synthetic mel spectrograms to raw

Fig 36. Confusion matrices for RESNET-50 classifier with imbalanced and augmented training sets.

https://doi.org/10.1371/journal.pone.0266467.g036
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audios was time-consuming. To overcome this limitation of CNN-VAE, we experimented

with a Conditional VAE, which could be guided via a label to generate mel spectrograms of

specific classes, allowing us to train the VAE with all classes simultaneously. As a result, the

time required for synthesizing the augmented training samples for all classes was reduced;

however, our results showed that the Conditional VAE augmentation was harmful to the clas-

sifiers. Hence, we conclude that the unconditional models such as MLP-VAE and CNN-VAE,

though time-consuming for training and generating synthetic samples, are suitable generative

models for augmenting the respiratory sounds database.

[47] divided the ICBHI dataset into two classes consisting of COPD and non-COPD. They

analyzed several audio representations such as MFCCs, Mel Spectrograms, Chroma STFT,

Chroma CQT and Chroma CENS to identify the most effective audio representation for fea-

ture extraction using a CNN. They discovered that MFCCs and Mel Spectrograms led to the

highest ICBHI scores of 0.77 and 0.73. They further improved these scores to 0.92 and 0.82 by

augmenting their training set using augmentation techniques such as loudness augmentation,

shift augmentation, mask augmentation and speed augmentation.

[48] proposed using entropy-based features such as Shannon entropy, logarithmic energy

entropy and spectral entropy for classifying audio segments of multiple respiratory diseases.

They used ensemble techniques such as bagging and boosting on classifiers such as Decision

Tree and Linear Discriminant Analysis to enhance performance metrics such as sensitivity

and specificity over all classes.

Fig 37. Confusion matrices for Efficient Net B0 classifier with imbalanced and augmented training set.

https://doi.org/10.1371/journal.pone.0266467.g037
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9. Conclusion

To conclude, this paper investigated the impact of augmenting the imbalanced ICBHI dataset

with synthetic audio segments created by VAEs on various classifiers. The resemblance

between the features of the synthetic audio segments and that of the original was measured

using metrics such as Fréchet Audio Distance, Cross-Correlation and Mel Cepstral Distortion.

The results showed that the unconditional generative models such as MLP-VAE and

CNN-VAE were more effective in enhancing the performance metrics of the classifiers than

the Conditional VAE. The PCA plots for CNN-VAE indicated that generated audio segments

also exhibited better variety in terms of acoustic features when compared to those created by

MLP-VAE. Lastly, the classifiers completely misclassified certain diseases such as LRTI when

trained on an imbalanced training set. Upon augmenting the imbalanced training set, a signifi-

cant boost in the performance metrics of the classifiers was observed for certain minority clas-

ses and marginal improvement for the other classes.
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Dequen Dr.. Variational Autoencoder for Image-Based Augmentation of Eye-Tracking Data. J, Imaging.

May 2021; 7(5):83. https://doi.org/10.3390/jimaging7050083 PMID: 34460679

7. Maestre Garay, Unai & Gallego Antonio-Javier & Calvo-Zaragoza Jorge. Data Augmentation via Varia-

tional Auto-Encoders. In book: Progress in Pattern Recognition, Image Analysis, Computer Vision, and

Applications, Proceedings of 23rd Iberoamerican Congress, CIARP 2018, Madrid, Spain, Jan 2019.

https://doi.org/10.1007/978-3-030-13469-3_4

8. World Health Organization. Chronic Respiratory Diseases, 2007. URL:https://www.who.int/health-

topics/chronic-respiratory-diseases

9. Khan SI, Jawarkar NP, Ahmed V. Cell phone based remote early detection of respiratory disorders for

rural children using modified stethoscope. In: 2012 International Conference on Communication Sys-

tems and Network Technologies. May 2012; pp. 936–940. https://doi.org/10.1109/CSNT.2012.199

10. Singh D., Singh B. K. and Behera A. K. Comparative analysis of Lung sound denoising technique. In:

2020 First International Conference on Power, Control and Computing Technologies (ICPC2T). Apr

2020; pp. 406–410, https://doi.org/10.1109/ICPC2T48082.2020.9071438

11. Fraiwan M., Fraiwan L., Alkhodari M, Hassanin O. Recognition of pulmonary diseases from lung sounds

using convolutional neural networks and long short-term memory. J Ambient Intell Human Comput. Apr

2021. https://doi.org/10.1007/s12652-021-03184-y PMID: 33841584

12. Grønnesby M., Solis J.C., Holsbø E.J., Melbye H., & Bongo L.A. Feature Extraction for Machine Learn-

ing Based Crackle Detection in Lung Sounds from a Health Survey. arXiv: Sound. May 2017. https://

arxiv.org/abs/1706.00005.

13. Oweis RJ, Abdulhay EW, Khayal A, Awad A. An alternative respiratory sounds classification system uti-

lizing artificial neural networks. Biomedical journal. Apr 2015; 38(2):153–161, https://doi.org/10.4103/

2319-4170.137773 PMID: 25179722

14. Kandaswamy A, Kumar CS, Ramanathan RP, Jayaraman S, Malmurugan N. Neural classification of

lung sounds using wavelet coefficients. Computers in biology and medicine, Sep 2004; 34(6): 523–

537. https://doi.org/10.1016/S0010-4825(03)00092-1 PMID: 15265722
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