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Abstract

Background: Global programs of anti-HIV treatment depend on sustained laboratory capacity to assess treatment initiation
thresholds and treatment response over time. Currently, there is no valid alternative to CD4 count testing for monitoring
immunologic responses to treatment, but laboratory cost and capacity limit access to CD4 testing in resource-constrained
settings. Thus, methods to prioritize patients for CD4 count testing could improve treatment monitoring by optimizing
resource allocation.

Methods and Findings: Using a prospective cohort of HIV-infected patients (n = 1,956) monitored upon antiretroviral
therapy initiation in seven clinical sites with distinct geographical and socio-economic settings, we retrospectively apply a
novel prediction-based classification (PBC) modeling method. The model uses repeatedly measured biomarkers (white
blood cell count and lymphocyte percent) to predict CD4+ T cell outcome through first-stage modeling and subsequent
classification based on clinically relevant thresholds (CD4+ T cell count of 200 or 350 cells/ml). The algorithm correctly
classified 90% (cross-validation estimate = 91.5%, standard deviation [SD] = 4.5%) of CD4 count measurements ,200 cells/ml
in the first year of follow-up; if laboratory testing is applied only to patients predicted to be below the 200-cells/ml threshold,
we estimate a potential savings of 54.3% (SD = 4.2%) in CD4 testing capacity. A capacity savings of 34% (SD = 3.9%) is
predicted using a CD4 threshold of 350 cells/ml. Similar results were obtained over the 3 y of follow-up available (n = 619).
Limitations include a need for future economic healthcare outcome analysis, a need for assessment of extensibility beyond
the 3-y observation time, and the need to assign a false positive threshold.

Conclusions: Our results support the use of PBC modeling as a triage point at the laboratory, lessening the need for
laboratory-based CD4+ T cell count testing; implementation of this tool could help optimize the use of laboratory resources,
directing CD4 testing towards higher-risk patients. However, further prospective studies and economic analyses are needed
to demonstrate that the PBC model can be effectively applied in clinical settings.
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Introduction

Successful maintenance and expansion of anti-HIV-1 therapy

programs in resource-limited settings is determined by multiple

factors, such as clinical thresholds to start antiretroviral therapy

(ART), drug access, trained personnel, and laboratory infrastruc-

ture. World Health Organization (WHO) guidelines for HIV-1

therapy in adults recommend initiation of anti-HIV-1 therapy

after CD4 count drops below 350 cells/ml, with a clear indication

to treat irrespective of clinical state if the CD4 count is below 200

cells/ml [1]. While the ideal monitoring of response to ART is dual

(virological monitoring with high-sensitivity PCR as the bench-

mark to assess viral suppression, and monitoring of ART-mediated

immune reconstitution via assessment of change in CD4 count [2–

4]), this level of monitoring is often unsustainable within national

health programs in resource-constrained settings because of the

cost and limitations of the healthcare system infrastructure [5–11].

Although development of viral resistance linked to ineffective

monitoring remains a concern in resource-poor settings, monitor-

ing of clinical response (i.e., initial weight gain) and immune

reconstitution (i.e., rise in CD4 cell counts) has been broadly used

as a primary tool to assess success of therapy: there is a direct

relationship between a lack of clinical response or a lack of a rise in

CD4 count and risk of developing or not recovering from

opportunistic infections. Indeed, WHO guidelines for patient

monitoring address the imbalance between increasing treatment

access and limited monitoring capacity by promoting therapy

success definitions such as frequency of patients with CD4 count

.200 cells/ml at 6, 12, and 24 mo after starting ART [1].

Despite the advent of newer, more cost-effective point-of-care

devices for CD4+ T cell count determination using peripheral or

capillary blood, the cost of laboratory-based CD4 count

determinations to determine disease progression, indication for

therapy, and response to ART remains high in terms of both

economic and human resources (i.e., the need for specialized

instrumentation and trained laboratory staff). Thus, numerous

attempts have been made to identify low-cost surrogate markers

that are widely available even in resource-limited settings, with the

intent of eliminating the need for such intense CD4 count testing

within resource/capacity-limited national HIV therapy programs

[12]. The WHO recommends the use of total lymphocyte count to

monitor untreated chronic HIV infection as a surrogate for disease

progression changes, recommending treatment for patients with

TLC,1,200 cells/ml [1]. While useful in the context of when to

start treatment, TLC and other surrogate markers have not been

shown to be useful in monitoring therapy response and/or

treatment failure [13–19]. To date, no strategy has been proposed

to reduce the need for CD4 testing after ART.

Using prediction-based classification (PBC) [20], a recently

described model-based approach that accommodates repeatedly

measured quantitative biomarkers for outcome prediction, we have

developed a prioritization strategy to monitor response to ART

based on baseline CD4 count, prospective white blood cell count

(WBCC), and lymphocyte percent (Lymph%) measurements. In

contrast to previous attempts focused on providing a direct

surrogate marker for CD4 count, our approach could be used to

direct limited healthcare resources to high-priority patients classified

below predetermined CD4 count thresholds of clinical significance.

Methods

Cohorts
Anonymized data (WBCC, Lymph%, and CD4 count) were

obtained from a cohort of 3,357 HIV-1-infected, ART-naı̈ve

individuals at the following clinical sites: Royal Free Hampstead

NHS Trust, London, UK (used to generate the prediction rule);

University of Alabama at Birmingham, Birmingham, Alabama,

US; Jonathan Lax Center, Philadelphia FIGHT, Philadelphia,

Pennsylvania, US; University of Malaya, Kuala Lumpur,

Malaysia; University of the Witwatersrand, Johannesburg, South

Africa; Fundación Huésped, Buenos Aires, Argentina; and

University of British Columbia, Vancouver, British Columbia,

Canada, for a total of 32,974 cumulative observations. Individual

contributions from each site are summarized in Table 1.

Participants were repeatedly observed for up to 3 y after ART

initiation, and all patients had at least one post-initiation-of-ART

(baseline) assessment. There were no restrictions on initial CD4

count.

Primary analysis is focused on a subset of individuals (n = 1,956;

Cohort 1) with complete data, defined as having at least one

assessment (CD4+ T cell count, WBCC, and Lymph% measured

at the same time) and no more than six assessments in each 6-mo

period of follow-up—for 1 y after initiation of ART. Additionally,

we consider a subset of these individuals (n = 619; Cohort 2) with

complete data for 3 y of follow-up to assess the longer-term

feasibility of this strategy.

Statistical Analysis
We applied the PBC algorithm, which in brief involved fitting a

mixed-effects model to the repeated measures of CD4 counts and,

in turn, using model-derived estimates to define a prediction rule

for whether post-baseline (start of ART) observations would be

above predefined thresholds of 200 and 350 CD4+ T cells/ml.

Patients with values predicted to be below these thresholds would

be prioritized for actual CD4 testing. Algorithm performance

compared to an alternative generalized linear modeling approach

Table 1. Cohort description.

Cohort Site

Buenos Aires London Kuala Lumpur Philadelphia Johannesburg Birmingham Vancouver Total

Total 100 (542) 270 (2635) 35 (102) 72 (399) 1,351 (4,239) 66 (640) 1,463 (24,336) 3,357 (32,893)

Cohort 1 58 (217) 214 (1,375) 15 (45) 55 (223) 654 (2,058) 59 (292) 901 (5,985) 1,956 (10,195)

Cohort 2 15 (147) 49 (679) 0 (0) 5 (43) 0 (0) 32 (398) 518 (8,559) 619 (9,826)

Data are expressed as number of individuals (number of observations over time). Cohort 1 is composed of individuals with complete data—between one and six
assessments (CD4+ T cell count, WBCC, and Lymph% measured at the same time) within each 6-mo interval—for 1 y of follow-up. Cohort 2 is composed of individuals
with complete data for 3 y of follow-up.
doi:10.1371/journal.pmed.1001207.t001
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is detailed in Foulkes et al. [20] and includes improvements in

sensitivity, positive predictive value, and negative predictive value

for the same false positive rate (FPR). Briefly, the primary

advantages of PBC over alternative strategies are the following: (1)

PBC draws strength from the full range of continuous outcomes

(through application of a linear model) while offering clinically

relevant measures (such as positive and negative predictive value)

through subsequent classification; and (2) it incorporates simulta-

neously multiple, repeatedly measured biomarkers observed at

unevenly spaced intervals.

Formally, the PBC algorithm with cross-validation (CV) is given

as follows, with additional details and formal mathematical

derivations provided in Foulkes et al. [20]. Re-substitution

estimates were determined using the same algorithm detailed

below, with the full cohort used in place of both the learning and

test samples (i.e., removing steps 1 and 7).

PBC Algorithm
Step 1. We first randomly selected a learning sample

composed of approximately 90% of the individuals in the full

cohort to derive the prediction rule. Sample data included baseline

(defined as time of ART initiation) and repeated measurements of

CD4 count, WBBC, and Lymph% up to 3 y after ART initiation.

The remaining approximately 10% of individuals made up the test

sample.

Step 2. Based on the learning sample selected in step 1, we

fitted a mixed-effects change-point model to repeatedly measured

CD4 counts, with fixed effects for allowing different slopes before

and after 1 mo on ART, and random person-specific intercept

and slope terms (for time). The two time slopes are intended to

reflect the rapid rise in CD4 count during the first month after

ART initiation, and then the more gradual increase in CD4 over

the remaining observation time. Additional fixed-effects terms for

baseline CD4 count and baseline and time-varying WBCC and

Lymph% are included as predictor variables. Also included in the

model are fixed interaction effects between baseline CD4 count

and (1) time before and after the change point, (2) baseline and

time-varying values of WBCC, and (3) baseline and time-varying

values of Lymph%. All terms in the model have Wald test statistic

p-values of less than 0.10 for the complete cohort analysis, and

main effects are included when corresponding interaction effects

are statistically significant. Notably, application of a less stringent

level 0.10 test is appropriate at this stage given that the algorithm

additionally includes implementation of a CV procedure. Model

fitting is performed using the lme() function of the nlme package in

R version 2.11.1.

Step 3. Based on the model-based estimates derived in step 2,

we calculated predicted values of CD4 count for all post-baseline

observations in the learning sample. We also determined the lower

bounds of corresponding one-sided level-a prediction intervals for

a range of a values. Details about the calculation of these

prediction intervals, including derivation of the prediction

variance, as well as a discussion of their interpretation as

credible intervals are provided in Foulkes et al. [20]. For a given

a, the lower bound is denoted La,ij for the jth time point for

individual i. A new binary predicted response, denoted Yij,pred(a,K)

for the jth time point for individual i, is then defined as an

indicator for whether the corresponding lower bound is greater

than K where K = 200 or 350. That is, we let

Yij,pred(a,K)~
1 if La,ijwK

0 otherwise

�
ð1Þ

for each CD4 threshold K = 200 and 350. We selected 200 CD4+

T cells/ml as indicative of a risk of development of opportunistic

infections, and 350 CD4+ T cells/ml, the WHO-recommended

ART initiation threshold [1], defining high-priority patients (i.e.,

patients requiring laboratory-based testing) as those failing to

maintain CD4 counts above either of these thresholds after ART

initiation.

Step 4. Again based on the learning sample, we compared the

predicted variable Yij,pred(a,K) to an indicator for whether the

observed CD4 count is greater than K, which we denote Yij,obs(K),

where

Yij,obs(K)~
1 if CD4ijwK

0 otherwise

�
ð2Þ

and CD4ij is the observed CD4 count at the jth time point for

individual i. To measure a prediction rule for a given a level and

K, we calculated the FPR, defined as the proportion of post-

baseline observations that fall below the threshold Yij,obs(K)~0 but

are predicted to be above the threshold Yij,pred(a,K)~1 among

those observed to be below the threshold.

Step 5. The ‘‘optimal’’ prediction rule was defined for a given

threshold K as the rule (across all rules defined by the range of a
values) that maximizes the FPR in the learning sample, subject to

the constraint that the FPR is less than a predefined cut point.

FPR cut points of 5% and 10% were considered clinically relevant.

The a level corresponding to this optimal rule, denoted aoptimal,

was fixed for all subsequent analyses in the test sample.

Step 6. The test sample data were used to evaluate the

optimal prediction rule as follows. Baseline CD4 counts, time since

ART initiation, and baseline and post-baseline WBCC and

Lymph% were used as inputs in the model derived in step 2

above to arrive at predicted CD4 counts at all measured post-

baseline time points for individuals in the test sample. Notably, it is

assumed that post-baseline CD4 count is not observed in the test

sample, and so a correction for the empirical Bayes estimates from

the mixed model is required, as described in Foulkes et al. [20].

Corresponding lower bounds for one-sided level-aoptimal prediction

intervals were determined. Formally, this is denoted Laoptimal,ij for

the jth time point for individual i in the test sample. Binary

predictions for all post-baseline CD4 counts within the test cohort

were then defined according to Equation 1 where La,ij was

replaced with Laoptimal,ij . The dichotomized observed CD4 counts,

as given by Equation 2, were compared to these binary predictions

to arrive at the cross-validated estimates of sensitivity, specificity,

positive predictive value, negative predictive value, and capacity

savings. Capacity savings is defined as the ratio of tests spared by

use of the model (i.e., the number across all individuals of post-

baseline time points at which CD4 count is predicted to be above

the K threshold, and thus a CD4 test would not be performed,

divided by the total number of post-baseline time points).

Steps 1 to 6 are repeated ten times, and the average and

standard deviation (SD) of the estimates listed in step 6 are

reported as CV estimates. As these parameters are interdependent,

CV estimates are not consistently lower (or higher) than re-

substitution estimates using the full cohort. Copies of the R scripts

used are available at http://people.umass.edu/foulkes/software.

html.

Results

Cohort Description and Follow-Up
The geographical distributions of patients and corresponding

numbers of observations over time are summarized in Table 1. For

Prioritization Tool for CD4 Counts after ART
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Cohort 1, the median baseline (pre-ART) CD4 count was 145.5

cells/ml; 34% of the patients initiated ART with a CD4 count

.200 cells/ml, and 14.3% with a CD4 count .350 cells/ml.

Median baseline WBCC was 4.76103 cells/ml, and median

Lymph% was 30.7%. A detailed breakdown of these values for

each cohort is summarized in Table 2. Unlike Lymph% and

WBCC, median CD4 count and fraction of patients above 200 or

350 CD4+ T cells/ml were higher in the longer follow-up subset

(200 for Cohort 2, as compared to 139 for Cohort 1), possibly due

to the better clinical outcomes of patients that initiate treatment

with higher CD4 counts, as well as the longer average follow-up in

the London, Birmingham, and Vancouver cohorts. However, the

rate of ART responders, defined as patients who had a

documented CD4 raise of at least 20% from baseline over the

follow-up time, was similar across all cohorts. The overall response

to ART initiation was confirmed by the observed rise of median

CD4+ T cell count over the observation time, as illustrated in 6-mo

intervals in Figure 1 for the two cohorts.

PBC Application
The results of fitting mixed-effects change-point models (as

described in step 2 of the PBC algorithm) to Cohorts 1 and 2 are

given Table 3. The models suggest that the effects of WBCC,

Lymph%, and time (before and after 1 mo on ART) are modified

by baseline CD4 count (interaction terms are significant at the

0.10 level), and thus all main effects and interaction terms are

included in the final model. The model-based estimates (coefficient

estimates in Table 3) are used to derive the optimal prediction rule

(as described in steps 3–5 of the PBC algorithm) using maximum

FPRs of 5% and 10%. The results of applying the optimal rule to

Cohort 1 data are given in Table 4. Of the 8,239 post-baseline

observations, 5,976 (72.5%) had CD4 count .200 cells/ml, while

2,263 (27.4%) had CD4 count #200 cells/ml. Among observations

with CD4 count #200 cells/ml, the algorithm correctly classified

2,037 (90%; CV estimate = 91.5%, SD = 4.1%); the corresponding

FPR was 226/2,263 = 10% (CV estimate = 8.5%). Prioritized

CD4 testing would be recommended for all observations with a

predicted CD4 count ,200 cells/ml (n = 3,729; 45.5%). The

potential capacity savings based on this prioritization scheme,

where the likelihood of not detecting a low CD4 count (FPR) is

,10%, is 4,490/8,239 = 54.5% (CV estimate = 54.3%, SD =

4.2%). Alternatively, controlling the FPR at 5% would result in the

option to prioritize testing for more observations (n = 4,705;

57.1%) and would result in a capacity savings of 42.9% (CV

estimate = 44.4%, SD = 4.2%).

These results, as well as the results from applying a 350-cells/ml

threshold for CD4 count, are summarized in Figure 2 for both

cohorts. Additional details on cross-validated parameter estimates,

including sensitivity, specificity, negative predictive value, positive

predictive value, and capacity savings, as well as corresponding

SDs, are provided in Table 5 for both cohorts and thresholds.

Extending this analysis to Cohort 2 (inclusive of 3 y of follow-up)

resulted in overall similar capacity savings results, indicating that

the model is applicable for at least 3 y from ART initiation

without any intervening CD4 count assessment.

Application Examples and Test Cost Comparison
To illustrate the potential use of the model to provide individual

predictions, we applied our algorithm to six representative individ-

uals, selected from Cohort 2, based on initial CD4 count and the

availability of multiple assessments. In the patients tested (Figure 3),

the model performed well in prediction of a CD4 count .200 cells/ml

(green dots); in fact, it was always correct in these cases, whereas, as

expected, at some of the visits, patients predicted to have CD4 count

#200 cells/ml (red dots) actually had a CD4 count .200 cells/ml

(false negatives). As all cases predicted to be below threshold should be

tested using the traditional laboratory-based methods, real time

application of the model would not have exposed any of these patients

to an undetected dangerous CD4 count, while sparing 20 (57%) of

the 35 CD4 laboratory tests performed after baseline.

To assess the feasibility of the application of our modeling

scheme to a healthcare setting scenario, we compared cost

estimates for the PBC approach (at 200- and 350-cells/ml

thresholds) to the estimated costs of a high-cost CD4 testing

method (dual platform assessment) and a low-cost alternative

(Guava platform, Millipore) as applied to a constrained-resource

setting (South Asia). The details of this comparison are reported in

Table S1. Briefly, according to our literature-based cost estima-

tions, the PBC approach (considering a single initial laboratory-

based CD4 assessment, followed by PBC application with a

complete blood count performed for each individual, and CD4

assessment only for individuals predicted to have below-threshold

CD4 values) could result in test cost savings when complete blood

count cost is below ‘‘breakeven points’’ ranging from US$10.90

(PBC with 200-cells/ml threshold, CD4 laboratory testing based on

dual platform assessment) to US$1.38 (PBC with 350-cells/ml

threshold, Guava-platform-based laboratory CD4 testing). Impor-

tantly, the estimated cost of PBC (US$0.80) is well below all of

these thresholds, suggesting that the PBC method may prove to be

a cost-effective treatment monitoring strategy in future cost-

effectiveness analyses.

Discussion

We demonstrate that after obtaining a baseline WBCC and

Lymph% and one laboratory-based CD4+ T cell assessment, the

Table 2. Baseline characteristics.

Cohort CD4 Count (Cells/ml) Lymph% WBCC (Cells6103/ml)

Median IQR

Percent CD4
Counts.200
cells/ml

Percent CD4
Counts .350
cells/ml

ART
Respondersa Median IQR Median IQR

Total 139.0 49.0, 238.0 31.3 12.7 30.0 21.7, 38.5 4.7 3.6, 6.0

Cohort 1 145.5 60.0, 250.0 34.0 14.3 93.1 30.7 23.0, 38.9 4.7 3.7, 6.0

Cohort 2 200.0 80.5, 340.0 48.6 22.9 97.4 31.7 23.3, 40.0 4.6 3.7, 5.8

aPercent of patients with one or more post-baseline visits with CD4 count .1.26baseline CD4.
IRQ, interquartile range (25th percentile, 75th percentile).
doi:10.1371/journal.pmed.1001207.t002
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response to ART can be monitored relying on relatively low-cost

clinical laboratory tests (i.e., WBCC and Lymph%) by using the

PBC approach. This method enables us to predict whether CD4+

T cell count remains above predetermined safety thresholds with

an estimated cross-validated FPR of 8.5%, and could potentially

lead to testing capacity savings as compared to monitoring

approaches based solely on repeated laboratory-based CD4 tests.

Given the high economic and capacity cost of laboratory-based

CD4 assessments [21,22], and the limited number of available

accredited laboratories [23,24]—circumstances that tax already

stretched health systems as they implement national HIV

treatment programs—a number of surrogate assessments (e.g.,

TLC) have been proposed to assess when HIV-infected patients

require treatment, and to monitor them while they are undergoing

treatment [12,13,15,16,25,26]. Since to date these surrogates have

not performed as well as CD4 counts in monitoring response to

ART [13–19], two other options are open to improve current

capacity utilization: (1) reducing the economic and human

resource cost of performing laboratory-based CD4 tests, and/or

(2) optimizing the use of existing resources to test only patients who

are likely to need testing (i.e., patients likely to have dangerously

low CD4 counts). The use of approaches that allow triaging

patients at highest risk (e.g., patients who are failing treatment) for

laboratory-based CD4 testing is expected to be particularly

beneficial in resource-constrained settings characterized by high

testing volume requirements (e.g., expanding treatment programs

in sub-Saharan Africa).

Based on this premise, we conceived an algorithm that is

intended as a triage/prioritization tool. To ensure the reasonable-

ness of the approach, we fixed the acceptable FPR at 0.05 or 0.1.

Although minimizing the FPR is desirable, there is an inevitable

trade-off between the FPR and capacity savings. We believe that

this error rate (5%–10%) is acceptable in light of the intrinsic

variability of laboratory-based CD4 testing, and therefore

clinically relevant.

Notably, erroneously predicting a CD4 count to be below 200

or 350 cells/ml when it is above this level (12sensitivity) is less

relevant to patient safety, as CD4 testing is recommended on

predicted failures, thus eliminating the risk associated with this

form of misclassification.

Our testing and validation indicate that the proposed model

worked well over the 3-y follow-up time in our dataset. The

possibility that periodic laboratory-based CD4 testing (e.g., every

year) would improve and/or extend the predictive life of the

model, to the point that it could be used continuously after ART

initiation, remains open, as its determination will require

dedicated prospective studies.

Our comparison of CD4 testing cost estimates indicates that the

use of the PBC strategy is anticipated to result in a potential

capacity and possibly cost savings at all the threshold levels

Figure 1. Distribution of CD4 count. The distribution of CD4 count at 6-mo time intervals was assessed for both Cohort 1 (left) and Cohort 2
(right). Means were calculated for patients with multiple CD4 count assessments in the same interval.
doi:10.1371/journal.pmed.1001207.g001
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assessed (Table S1). Further prospective healthcare economic

studies modeling primary data (inclusive of all monitoring costs)

obtained in target countries will be required to perform a net cost

comparison, formally assessing the ramifications of the application

and limitations of PBC testing for individual countries/regions’

testing capacity, as well as long-term cost per outcome. While such

studies are beyond the scope of this article, the data presented here

provide a strong rationale for such studies.

Notably, the model-derived estimates and predictive rule are

first derived based on application of PBC to a large cohort, as

described in this article. Through development of publicly

accessible web-based tools that incorporate the results presented

herein, the above-described scenarios can be applied to single-case

analyses. Additional contributions to this data resource will likely

allow for further model refinement and improvements in

predictive performance.

Table 4. Observed and predicted values resulting from application of PCB to Cohort 1.

Predicted Value Observed CD4 Count .200 cells/ml Observed CD4 Count ,200 cells/ml Total

Predicted CD4 .200 4,264 (51.7%) 226 (2.7%) 4,490 (54.5%)

Predicted CD4,200a 1,712 (20.8%) 2,037 (24.7%) 3,749 (45.5%)

Total 5,976 (72.5%) 2,263 (27.5%) 8,239 (100%)

Data are expressed as number of observations (percent of total).
aPrioritized CD4 testing recommended for this group.
doi:10.1371/journal.pmed.1001207.t004

Table 3. Mixed-effects change-point modeling results for Cohort 1.

Cohort Variable Coefficient Estimate Standard Error t-Value p-Value

Cohort 1 (Intercept) 266.212 22.817 22.902 0.004

Baseline CD4 (BL_CD4) 1.011 0.101 10.053 0.000

Time (in months) 37.424 19.331 1.936 0.053

[Time21]+a 228.515 19.419 21.468 0.142

Baseline Lymph% (BL_Lymph%) 20.119 0.318 20.374 0.708

Baseline WBCC (BL_WBCC)b 19.247 16.466 1.169 0.243

Lymph% 2.012 0.212 9.484 0.000

WBCCb 117.441 12.326 9.528 0.000

BL_CD4*BL_Lymph% 20.008 0.001 25.662 0.000

BL_CD4*BL_WBCC 20.521 0.066 27.899 0.000

BL_CD4*Lymph% 0.007 0.001 8.635 0.000

BL_CD4*WBCC 0.282 0.044 6.357 0.000

BL_CD4*Time 0.139 0.079 1.745 0.081

BL_CD4*[Time21]+ 20.148 0.080 21.850 0.064

Cohort 2 (Intercept) 264.254 48.206 21.333 0.183

Baseline CD4 (BL_CD4) 0.890 0.221 4.031 0.000

Time (in months) 63.075 39.389 1.601 0.109

[Time21]+a 256.659 39.409 21.438 0.151

Baseline Lymph% (BL_Lymph%) 20.730 0.672 21.086 0.278

Baseline WBCC (BL_WBCC)b 246.320 47.386 20.977 0.329

Lymph% 2.245 0.253 8.865 0.000

WBCCb 152.095 17.088 8.901 0.000

BL_CD4*BL_Lymph% 20.005 0.002 22.111 0.035

BL_CD4*BL_WBCC 20.272 0.140 21.950 0.052

BL_CD4*Lymph% 0.003 0.001 3.832 0.000

BL_CD4*WBCC 0.233 0.056 4.139 0.000

BL_CD4*Time 0.320 0.189 1.691 0.091

BL_CD4*[Time21]+ 20.332 0.189 21.756 0.079

a[Time21]+ indicates the positive component of [Time21], given as follow-up time after the first month for Time .1 mo, and 0 for Time #1 mo.
bWBCC is scaled by (divided by) a factor of ten.
doi:10.1371/journal.pmed.1001207.t003
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Table 5. Re-substitution and CV counts and estimates for the PBC model.

Cohort Ka FPRb Observed CD4 Count.K Observed CD4 Count,K Sensitivityc Specificityc,d PPVc NPVc
Capacity
Savingsc

Predicted
.K

Predicted
,K

Predicted
.K

Predicted
,K

1 200 0.10 4,264 1,712 226 2,037 0.71 (0.73; 0.048) 0.90 (0.92; 0.041) 0.95 (0.96;
0.020)

0.54 (0.57;
0.051)

0.54 (0.54;
0.042)

0.05 3,421 2,555 113 2,150 0.57 (0.60; 0.050) 0.95 (0.95; 0.031) 0.97 (0.97;
0.018)

0.46 (0.49;
0.041)

0.43 (0.44;
0.042)

350 0.10 2,348 1,094 478 4,319 0.68 (0.73; 0.044) 0.90 (0.89; 0.036) 0.83 (0.82;
0.048)

0.80 (0.82;
0.034)

0.34 (0.37;
0.039)

0.05 1,908 1,534 239 4,558 0.55 (0.58; 0.064) 0.95 (0.94; 0.032) 0.89 (0.88;
0.057)

0.75 (0.76;
0.043)

0.26 (0.27;
0.039)

2 200 0.10 5,234 2,548 142 1,283 0.67 (0.71; 0.050) 0.9 (0.88; 0.087) 0.97 (0.97;
0.022)

0.33 (0.35;
0.053)

0.58 (0.62;
0.048)

0.05 3,998 3,784 71 1,354 0.51 (0.53; 0.072) 0.95 (0.95; 0.043) 0.98 (0.98;
0.015)

0.26 (0.27;
0.041)

0.44 (0.46;
0.065)

350 0.10 2,993 2,402 381 3,431 0.55 (0.55; 0.048) 0.90 (0.90; 0.034) 0.89 (0.89;
0.026)

0.59 (0.58;
0.048)

0.37 (0.37;
0.050)

0.05 2,147 3,248 188 3,624 0.4 (0.41; 0.046) 0.95 (0.95; 0.027) 0.92 (0.92;
0.031)

0.53 (0.52;
0.049)

0.25 (0.26;
0.041)

aK: CD4+ T cell count threshold (cells/ml).
bFPR, assigned.
cRe-substitution estimate (mean CV estimate; SD of cross-validated estimates).
dFixed, as determined by FPR.
NPV, negative predictive value; PPV, positive predictive value.
doi:10.1371/journal.pmed.1001207.t005

Figure 2. Summary of model performance. (A) Cross-validated estimates of FPRs. The bars represent the number of observed post-baseline
observations below the thresholds indicated on the x-axis and at the indicated FPRs for Cohort 1 (left) and Cohort 2 (right). The dark shading indicates
the number of observations correctly identified for laboratory-based CD4 testing (i.e., CD4 counts predicted to be and observed to be below
threshold); lighter shading represents false positives (CD4 count incorrectly predicted as above threshold); cross-validated estimates of the FPRs are
indicated above each bar. (B) Capacity savings (CS) estimates. Dark shading indicates the number of observations in Cohort 1 (left) and Cohort 2
(right) predicted to require laboratory-based CD4 testing (i.e., CD4 count predicted to be below threshold), and light shading the number of
observations predicted to not require laboratory testing (i.e., CD4 count predicted to be above threshold) at the CD4 count threshold and FPR
indicated below each bar.
doi:10.1371/journal.pmed.1001207.g002
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Applications
In light of the considerations discussed above, our PBC-based

tool could be useful in a number of scenarios.
Prioritization/triage of CD4+ T cell count testing at the

laboratory level. In this case, a laboratory receiving a request

for blood differential and CD4 count would first perform the

differential, which requires limited time and commonly available

resources; using the information obtained from this differential

(WBCC and Lymph%), as well as the historic pre-ART baseline

CD4 count (either stored or provided by the clinic), the laboratory

could then run the prediction algorithm, and proceed to test only

those patients who are predicted to have a CD4 count below a

predetermined threshold.
Expansion of ART response monitoring at the clinic

level. Due to cost limitations, some rollout programs allow only

limited CD4 testing (e.g., every 6 mo). If ART-treated patients are

additionally monitored at the rollout clinics for clinical visits and

ART medication refills (e.g., every 3 mo), all patients could be

monitored at these ‘‘non-CD4’’ visits for ART response by drawing

a blood sample for a blood differential. Once the WBCC and

Lymph% results are obtained from the laboratory, the clinic could

employ the prediction tool to predict whether or not the patient’s

CD4 count is below a clinically meaningful threshold. Based on this,

patients who are predicted to be failing treatment can be counseled

for adherence, and/or further monitored by requesting a CD4

count. Because of the anticipated wider availability of complete

blood count testing as compared to CD4 testing, this approach may

result in shorter result turnaround time, partially reducing the acute

need for point-of-care CD4 testing [27].
Reduction of confirmatory CD4 tests. Due to the intrinsic

variability of current CD4 count tests, in many circumstances

laboratory-based CD4 tests yield unexpected or doubtful results

that are not in keeping with clinical observations (e.g.,

unexpectedly low CD4 count in a patient with increasing

WBCC, lymphocytes, hemoglobin, or weight, and controlled

viral load). In such cases, the CD4 count test may need to be

repeated for confirmation before any clinically relevant action is

taken (e.g., adherence counseling or regimen alteration and

resistance testing). The use of the PBC method to independently

confirm unexpected laboratory-tested CD4 counts could limit the

need for repeated CD4 measures.

As indicated throughout this section, our conclusions should be

tempered by considering some of the limitations of this work. First,

this work is not intended to provide a complete analysis of the

economic and healthcare outcomes of the application of PBC.

Future prospective studies based in actual resource-constrained

settings will be required to demonstrate the feasibility of this

approach; here we focus on providing the foundation and

rationale for such studies, which will be required to assess whether

or not implementation of a PBC-based monitoring approach is a

viable alternative to repeated CD4 testing. Second, it remains to

be assessed how long this approach can be extended in time, e.g.,

by adding periodic CD4 testing, and whether or not periodic viral

load testing would improve clinical outcomes of PBC-based

monitoring. Third, PBC requires specifying an acceptable FPR.

While the assessed rate can be lower, depending on the threshold

used, the fact remains that the PBC has an intrinsic, small

possibility of error. In light of the wide variability of CD4 count

testing results, we do not consider this to be problematic, but it’s

possible that the collection of additional data (and possibly the

introduction of other parameters, such as trends over time, into the

model) might improve the model fit and improve its accuracy, and

should be considered in future study design.

Finally, it is important to remark that the PBC-based method is

not intended to substitute for laboratory-based CD4 testing, not to

establish a ‘‘second tier’’ of healthcare standard to be applied to

developing countries. Rather, we propose that this method is a

potentially useful ‘‘triage’’ tool to direct available laboratory testing

capacity to high-priority patients. As a tool to optimize the use of

existing resources, the implementation of our PBC-based method

would be most beneficial in settings where laboratory resources are

currently limiting due to funding, human resources, or structural

limitations.

Conclusion
We propose a noninvasive, rapid turnaround method that could

be applied to predict CD4 failure (i.e., a drop below clinically

meaningful thresholds) in HIV-infected patients undergoing ART.

By sparing up to 54% of current laboratory-based testing using a

CD4 count threshold of 200 cells/ml, the implementation of our

method could help focus laboratory-based CD4 count testing

capacity on patients with higher likelihood of CD4 failure. This

work provides the basis for future prospective testing of the

model’s overall safety, cost-effectiveness, and clinical outcomes in

low-resource settings.
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Editors’ Summary

Background. AIDS has killed nearly 30 million people since
1981, and about 34 million people (most of them living in
low- and middle-income countries) are now infected with
HIV, the virus that causes AIDS. HIV destroys immune system
cells (including CD4 cells, a type of lymphocyte and one of
the body’s white blood cell types), leaving infected
individuals susceptible to other infections. Early in the AIDS
epidemic, most HIV-infected people died within ten years of
infection. Then, in 1996, antiretroviral therapy (ART) became
available, and for people living in affluent countries, HIV/
AIDS became a chronic condition. However, ART was
expensive, and for people living in developing countries,
HIV/AIDS remained a fatal illness. In 2003, HIV was declared a
global health emergency, and in 2006, the international
community set itself the target of achieving universal access
to ART by 2010. By the end of 2010, only 6.6 million of the
estimated 15 million people in need of ART in developing
countries were receiving ART.

Why Was This Study Done? One factor that has impeded
progress towards universal ART coverage has been the
limited availability of trained personnel and laboratory
facilities in many developing countries. These resources are
needed to determine when individuals should start ART—
the World Health Organization currently recommends that
people start ART when their CD4 count drops below 350
cells/ml—and to monitor treatment responses over time so
that viral resistance to ART is quickly detected. Although a
total lymphocyte count can be used as a surrogate measure
to decide when to start treatment, repeated CD4 cell counts
are the only way to monitor immunologic responses to
treatment, a level of monitoring that is rarely sustainable in
resource-constrained settings. A method that optimizes
resource allocation by prioritizing who gets tested might
be one way to improve treatment monitoring. In this study,
the researchers applied a new tool for prioritizing laboratory-
based CD4 cell count testing in resource-constrained settings
to patient data that had been previously collected.

What Did the Researchers Do and Find? The researchers
fitted a mixed-effects statistical model to repeated CD4
count measurements from HIV-infected individuals from
seven sites around the world (including some resource-
limited sites). They then used model-derived estimates to
apply a mathematical tool for predicting—from a CD4 count
taken at the start of treatment, and white blood cell counts
and lymphocyte percentage measurements taken later—
whether CD4 counts would be above 200 cells/ml (the
original threshold recommended for ART initiation) and 350
cells/ml (the current recommended threshold) for up to three
years after ART initiation. The tool correctly classified 91.5%
of the CD4 cell counts that were below 200 cells/ml in the
first year of ART. With this threshold, the potential savings in

CD4 testing capacity was 54.3%. With a CD4 count threshold
of 350 cells/ml, the potential savings in testing capacity was
34%. The results over a three-year follow-up were similar.
When applied to six representative HIV-positive individuals,
the tool correctly predicted all the CD4 counts above 200
cells/ml, although some individuals who had a predicted CD4
count of less than 200 cells/ml actually had a CD4 count
above this threshold. Thus, none of these individuals would
have been exposed to an undetected dangerous CD4 count,
but the application of the tool would have saved 57% of the
CD4 laboratory tests done during the first year of ART.

What Do These Findings Mean? These findings support
the use of this new tool—the prediction-based classification
(PBC) algorithm—for predicting a drop in CD4 count below a
clinically meaningful threshold in HIV-infected individuals
receiving ART. Further studies are now needed to
demonstrate the feasibility, clinical effectiveness, and cost-
effectiveness of this approach, to find out whether the tool
can be used over extended periods of time, and to
investigate whether the accuracy of its predictions can be
improved by, for example, adding in periodic CD4 testing.
Provided these studies confirm its early promise, the
researchers suggest that the PBC algorithm could be used
as a ‘‘triage’’ tool to direct available laboratory testing
capacity to high-priority individuals (those likely to have a
dangerously low CD4 count). By optimizing the use of
limited laboratory resources in this and other ways, the PBC
algorithm could therefore help to maintain and expand ART
programs in low- and middle-income countries.

Additional Information. Please access these web sites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001207.

N Information is available from the US National Institute of
Allergy and Infectious Diseases on HIV infection and AIDS

N NAM/aidsmap provides basic information about HIV/AIDS
and summaries of recent research findings on HIV care and
treatment

N Information is available from Avert, an international AIDS
charity, on many aspects of HIV/AIDS, including informa-
tion on HIV/AIDS treatment and care and on universal
access to AIDS treatment (in English and Spanish)

N The World Health Organization provides information about
universal access to AIDS treatment (in several languages)

N More information about universal access to HIV treatment,
prevention, care, and support is available from UNAIDS

N Patient stories about living with HIV/AIDS are available
through Avert and through the charity website
Healthtalkonline
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