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Elementary flux modes (EFMs) are non-decomposable steady-state fluxes

through metabolic networks. Every possible flux through a network can be

described as a superposition of EFMs. The definition of EFMs is based on

the stoichiometry of the network, and it has been shown previously that

not all EFMs are thermodynamically feasible. These infeasible EFMs can-

not contribute to a biologically meaningful flux distribution. In this work,

we show that a set of thermodynamically feasible EFMs need not be ther-

modynamically consistent. We use first principles of thermodynamics to

define the feasibility of a flux distribution and present a method to com-

pute the largest thermodynamically consistent sets (LTCSs) of EFMs. An

LTCS contains the maximum number of EFMs that can be combined to

form a thermodynamically feasible flux distribution. As a case study we

analyze all LTCSs found in Escherichia coli when grown on glucose and

show that only one LTCS shows the required phenotypical properties.

Using our method, we find that in our E. coli model < 10% of all EFMs

are thermodynamically relevant.

Introduction

Elementary flux mode analysis (EFMA) is a key concept

in constraint-based modeling, which allows a metabolic

network to be decomposed into irreducible functional

building blocks, called elementary flux modes (EFMs).

An EFM corresponds to a minimal set of reactions that

can operate at steady state, thereby using all irreversible

reactions in the appropriate direction [1]. Here minimal

means that no reaction can be removed from the set

without losing the ability to form a non-zero steady-

state flux. EFMs represent functional units in a meta-

bolic network. In fact, every steady-state flux can be

represented as a nonnegative linear combination of

EFMs without cancelations [S. M€uller and G. Regens-

burger, unpublished results;2,3]; it is always possible to

find such a ‘conformal sum’ [4,5]. The no-cancelation

rule guarantees that every reaction proceeds in the same

direction in all contributing EFMs and accounts for

the fact that, for given metabolite concentrations, only

one direction of a reversible reaction is thermodynami-

cally feasible (TF).

From a systems-biology point of view, the advan-

tage of an unbiased decomposition of a metabolic net-

work into EFMs lies in the ability to fully characterize

the metabolic capabilities of an organism. This can be

used, for instance, to analyze cellular robustness [6] or

in metabolic engineering to turn wild-type organisms

into so-called ‘networks of minimal functionality’ [7].

These (mutant) networks are typically made up of very

few, desired EFMs while all the unwanted (wild-type)

functionality is eliminated by appropriately selected
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gene knockouts [8–12]. Therefore, EFMA is an ideal

tool for metabolic engineering and synthetic biology to

rationally design optimal cell factories [13].

However, a complete EFMA is currently limited to

medium-scale metabolic models since the number of

EFMs explodes with the size of the metabolic network

[14]. Using a massively parallelized approach, the largest

complete EFMA reported to date found almost two bil-

lion EFMs in a metabolic reconstruction of Phaeodacty-

lum tricornutum with 318 reactions [15]. Alternative

methods do not aim to find all EFMs, but limit their

scope to find subsets. Subsets are selected randomly

[16,17] or based on support information [18] or subject

to additional constraints [19–21]. The question remains,

however, whether or not these subsets are biologically

relevant. To find relevant EFMs, Rezola et al. [22] used

gene expression data and identified small subsets of

EFMs that successfully characterized and described key

metabolic features in different tissues. Similarly, Jol

et al. [23] and our group [24,25] used experimentally

determined metabolomes to identify all EFMs that are

TF. However, even if two EFMs are TF, it does not nec-

essarily mean that their convex superposition is TF as

well [23]. This raises the question which TF EFMs can

be combined in a convex superposition such that the

resulting flux distribution will again be TF.

Here, we expand on our earlier work on the thermo-

dynamics of EFMs [24,25] and present a mixed integer

linear program (MILP) that identifies the largest ther-

modynamically consistent sets (LTCSs) of EFMs. These

LTCSs are characterized by the fact that every nonnega-

tive linear combination of its EFMs results in a TF flux

distribution. Moreover, we show that physico-chemical

constraints alone already severely limit the metabolic

capabilities of an organism since only a small fraction of

all EFMs are required to represent TF flux distribu-

tions. This confirms the hypothesis that, under given

conditions, only a few EFMs are actually biologically

relevant and accessible to an organism [26].

Results

Theory

Notation and model assumptions

We consider a metabolic core model of Escherichia coli

[25], referred to as M-glc, to study growth on minimal

medium (containing ammonia, oxygen, phosphate,

protons and water) with glucose as the sole carbon

source. The model is characterized by its stoichiomet-

ric matrix S 2 Rm� r with m = 76 internal metabolites

and r = 101 reactions of which 48 are reversible. The

network contains ntot = 169 916 EFMs of which

n = 32 374 EFMs are TF. Reactions and intracellular

metabolites are thermodynamically characterized by

their Gibbs free energy of reaction DrG and their stan-

dard transformed Gibbs energy of formation DfG
00,

respectively. The latter is estimated using a pH of 7

and an ionic strength I = 0.15 M at a temperature

T = 310.15 K (37�C), according to Alberty [27].

Thermodynamic EFMA

Thermodynamic constraints are often utilized to aug-

ment classical constraint-based approaches [28]. For

instance, Hoppe et al. [29] developed a metabolomics-

integrated flux-balance analysis. Similarly, we

developed thermodynamic EFMA (tEFMA) [25], a

computational tool that calculates all TF EFMs in a

metabolic reconstruction. tEFMA exploits the fact

that, according to the second law of thermodynamics,

an EFM ei is TF if and only if all reactions j which

support ei proceed in the direction of negative Gibbs

free energy [30], that is, DrGj < 0 for all reactions

j with eij [ 0. Based on this fundamental property,

tEFMA avoids the calculation of thermodynamically

infeasible EFMs, which drastically reduces the compu-

tational burden of an EFMA and makes the analysis

of large scale metabolic networks feasible without los-

ing any biologically relevant information [24]. Thus,

given an experimentally measured cellular metabo-

lome, the standard Gibbs free energy of formation for

as many cellular metabolites as possible, and a meta-

bolic reconstruction, tEFMA returns the complete set

of TF EFMs consistent with the measurements.

Largest thermodynamically consistent sets

tEFMA computes all n TF EFMs of a network. How-

ever, not every set of TF EFMs is necessarily thermody-

namically consistent. For example, two EFMs that

utilize the same reversible reaction in different directions

cannot be active simultaneously. This is illustrated in

the simple example network in Fig. 1. Suppose that all

four EFMs are TF. Yet, EFM2 and EFM3 cannot be

active at the same time since DrG cannot be smaller than

zero for both directions of the reversible reaction R3. In

other words, thermodynamics implies the no-cancelation

rule mentioned in the introduction. In this example, the

sets {EFM1, EFM2, EFM4} and {EFM1, EFM3,

EFM4} are the LTCSs, and its elements can contribute to

a TF steady-state flux.

For instance, consider the TF steady-state flux

vT = (v1,. . .,v5) = (1, 2, �1, 2, 1). Obviously, the flux
can be decomposed as v = EFM2 + 2 9 EFM3 (see
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Fig. 2 for an illustration). Although EFM2 and EFM3 are
TF individually, they cannot be active simultaneously
(no-cancelation rule). Hence, this decomposition is not
thermodynamically consistent. In contrast, the representa-
tion v = EFM1 + EFM3 + EFM4 is thermodynamically
consistent. Indeed, these three EFMs form one of the
LTCSs above, and every TF steady-state flux can be repre-
sented by elements of one LTCS. The example raises the
question of how all LTCSs can be computed systemati-
cally, given a set of TF EFMs.

Definition: LTCS. A set of TF EFMs is called ther-

modynamically consistent if every nonnegative linear

combination of its elements is TF. Moreover, a set of

TF EFMs is called an LTCS.

(i) if the set is thermodynamically consistent, and

(ii) if no other TF EFM can be added to the set with-

out losing thermodynamic consistency.

We first determine an LTCS L1 of maximal cardi-

nality. Alternative LTCSs of maximal cardinality or

LTCSs of lower cardinality, Ll with l > 1, can be

found by successively excluding already existing

LTCSs; see constraint (2) below

An LTCS L1 of maximal cardinality is an optimal

solution to the MILP

max
k1;ln c

Xn
i¼1

k1i ; where k1 2 f0; 1gn; ln c 2 Rm; ð1aÞ

s.t. DrGj\0 if qj � 1; for all j 2 f1; . . .; rg; ð1bÞ

where

qj ¼
Xn
i¼1

k1i dij; ð1cÞ

dij ¼ 1 if eij [ 0;
0 otherwise

�
ð1dÞ

and

DrGj ¼
Xm
k¼1

DfG
0
kSkj; ð1eÞ

DfG
0
k ¼ DfG

00
k þ RT lnðck=c0Þ; c0 ¼ 1M; ð1fÞ

lnðcmin
k =c0Þ� lnðck=c0Þ� lnðcmax

k =c0Þ: ð1gÞ

We use the superscript in k1 to denote its associa-

tion with the LTCS L1. Briefly, k
1 indicates the pres-

ence (k1i ¼ 1) or absence (k1i ¼ 0) of EFM ei in the

LTCS L1, and we maximize
Pn

i¼ 1 k
1
i , that is, the car-

dinality of L1, by varying the contributing EFMs and

Fig. 1. Simple example network (leftmost panel), containing two internal metabolites (A and B) and five reactions (of which only R3 is

reversible), and its four EFMs (successive panels to the right; EFMs highlighted in red).

Fig. 2. Exemplary TF overall flux

distribution (top left panel) in the toy

network of Fig. 1, a thermodynamically

inconsistent EFM decomposition (top

centre and top right panels), and a

thermodynamically consistent EFM

decomposition (bottom panels). Non-zero

flux values are represented by an

appropriately scaled line thickness of the

reaction arrows. Zero flux values are

represented by dotted reaction arrows. A

flux from A to B across the reversible

reaction R3 is counted positive; a

backward flux is counted negative. The

uptake fluxes of all EFMs are normalized

to 1.

1784 The FEBS Journal 283 (2016) 1782–1794 ª 2016 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Largest thermodynamically consistent sets M. P. Gerstl et al.



the (logarithms of the) metabolite concentrations ck, as

stated in Eqn (1a).

Most importantly, dij indicates if EFM ei is supported

by reaction j, and qj counts the number of EFMs sup-

ported by reaction j, as stated in Eqns (1d) and (1c). If

at least one EFM is supported by reaction j, that is,

qj ≥ 1, then this reaction must be TF, according to the

main constraint (Eqn 1b). Equivalently, if reaction j is

infeasible, then qj = 0 and hence k1i is forced to 0 for all

EFMs i supported by reaction j.

Finally, Eqns (1e) and (1f) determine the Gibbs

free energy of reaction j, given the (logarithms of

the) metabolite concentrations. Thereby, Skj denotes

the elements of the stoichiometry matrix. The

inequalities (Eqn 1g) constrain the metabolite con-

centrations.

Alternative optima and suboptimal solutions kl with
l > 1 (and the corresponding LTCS Ll) can be found

by successively excluding already existing solutions kj

with j 2 {1,. . .,l�1} from the MILP [9]. This is

achieved by successively adding the constraint

X
i2Z

kli�1; Z¼fi j kli ¼ 0 for all j2f1; . . .; l�1gg ð2Þ

The process terminates when the MILP becomes

infeasible, and no further solutions are found.

In the following, we computed all LTCSs for E. coli

grown on minimal medium with glucose as the sole car-

bon source. Subsequently, we narrowed down the num-

ber of LTCSs to one by successively considering

additional yield, expression and flux data.

LTCSs are much smaller than the set of TF EFMs

As a matter of fact, there are 40 LTCSs for E. coli

grown on minimal medium with glucose as the sole

carbon source. The largest LTCS contains 15 560

EFMs. This corresponds to only 9% of all EFMs or

47% of the TF EFMs (see Fig. 3).

Moreover, we found that in general the relative fre-

quency of biomass producing EFMs is larger in

LTCSs of smaller cardinality. Still, the average number
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Fig. 3. Cardinality of the LTCSs Li as a function of the set index i. Absolute numbers of EFMs nLTCS are displayed on the left axis and

additionally displayed as percentages of the ntot EFMs and the n TF EFMs on the right axis.
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of biomass producing EFMs per LTCS (1984 � 69%)

appeared to be more stable than the average number

of EFMs per LTCS (4316 � 86%).

Yield data identifies biologically relevant LTCSs

An LTCS represents the metabolic capabilities of

E. coli, under the conditions specified in the model. To

characterize these capabilities, we used maximum yield

parameters Y
xi=glc. Y

xi=glc was defined as the maxi-

mum of the yields of all EFMs in an LTCS for a

specific product xi. To identify the biologically relevant

LTCSs, we used typical growth parameters obtained

by Andersen and Meyenburg [31].

Figure 4 shows different maximal yields for each

LTCS in comparison with measured data. Note that

those maximal yields were only achieved by a few

EFMs within an LTCS. Most of the EFMs in any

given LTCS had a smaller or even zero yield. Thus,

every yield between the maximum and zero can be

achieved by a suitable combination of a maximum

yield EFM and a zero yield EFM. In particular, if the

measured yield is below the maximum, then it can be

achieved by an appropriate combination of EFMs.

Conversely, if the achievable maximum yield of an

LTCS is below the measured value, then no combina-

tion of EFMs can result in the observed yield, and

those LTCSs can be excluded from further analysis.

We found that only 12 out of 40 LTCSs were consis-

tent with the measured yields (see Fig. 5). These 12

sets can be calculated directly if the measured yields

are used as additional constraints in the MILP (Eqn

1). Then the modified MILP reads

max
kð1Þ;ln c

Xn
i¼1

kð1Þi ; kð1Þ 2 f0; 1gn; ln c 2 Rm; ð3aÞ
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Fig. 4. Different maximum yields (bars) for growth on glucose (glc) as functions of the LTCS index and in comparison with experimentally

determined yields (horizontal lines) as measured by Andersen and Meyenburg [31]. The measured yields are printed next to the lines on the

right hand side. Colored bars indicate those LTCSs whose maximal yields are concurrently larger than the measured yields in all four cases.

The overlaying boxplots indicate the yield distributions of the EFMs within an LTCS. ATP, adenosine triphosphate; bm, biomass; O2,

dioxygen; CO2, carbon dioxide.
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s.t. DrGj\0 if qj � 1; for all j 2 f1; . . .; rg; ð3bÞ

ru � 1; for all u 2 fATP; CO2; O2; biomassg; ð3cÞ
where

qj ¼
Xn
i¼1

kð1Þi dij; ð3dÞ

dij ¼ 1 if eij [ 0;
0 otherwise;

�
ð3eÞ

ru ¼
Xn
i¼1

kð1Þi eiu; ð3fÞ

eiu ¼ 1 ifYi
u �Ymin;u;

0 otherwise;

�
ð3gÞ

and

DrGj ¼
Xm
k¼1

DfG
0
kSkj; ð3hÞ

DfG
0
k ¼ DfG

00
k þ RT lnðck=c0Þ; c0 ¼ 1M; ð3iÞ

lnðcmin
k =c0Þ� lnðck=c0Þ� lnðcmax

k =c0Þ: ð3jÞ

Here ru counts the number of EFMs that have a

certain minimal yield of metabolite u, cf. Eqn (3f),

and ɛiu indicates if EFM i has the required yield for

metabolite u, cf. Eqn (3g). The constraint (Eqn 3c)

ensures that at least one EFM has the required yield.

All other subequations are also found in the original

MILP (Eqn 1).

Expression data further reduces the number of

relevant LTCSs

We further analyzed the remaining 12 LTCSs, using

expression data. Six LTCSs, L8;L12;L15;L16;

L21 and L38, had an active fumarate reductase

(FrdABCD), but had an inactive succinate dehydro-

genase (SdhCDAB) in all their EFMs. This is in

contrast to experimental findings since, under aerobic

1 3 5 6

7 8 12 15

16 18 21 38

2 4 9 10

11 13 14 22

23 24 30 40

17 19 20 27

28 31 32 35

25 26 29 33

34 36 37 39

Ybm glc QO2 glc YATP glc YCO2 glc

Fig. 5. Venn diagram of the barplot in

Fig. 4. LTCSs are grouped based on their

reachable yields.

Fig. 6. Venn diagram for LTCSs L1, L3, L5, L6, L7, and L18.

Each LTCS is denoted by its set index and printed in the same

color as in Fig. 7. The letters A to L denote different segments in

the diagram, along with the number of TF EFMs in these

segments. Only L1 (full line) was found to be consistent with

yield, expression, and flux data. All other LTCSs (dashed lines)

were eliminated, which turned out to be consistent with

independent 13C flux data.
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conditions, sdhCDAB is optimally expressed [32] while

the frdABCD operon is repressed [33]. Thus only six

LTCSs, L1;L3;L5;L6;L7 andL18, were found to

be consistent with the data.

The Venn diagram in Fig. 6 singled out L3 and

L18 due to their lack of overlap with the other

LTCSs (see the next section for a mechanistic char-

acterization of these sets). In contrast to L3 and

L18, the four remaining LTCSs share some core

functionality, represented by a large fraction of com-

mon EFMs (segment A). We investigated if these

EFMs were characterized by their supports and

observed that on average shared EFMs (contained in

several LTCSs) were shorter than EFMs unique to

an LTCS (see Fig. 7). Functionally, EFMs in seg-

ment A do not invoke the pentose phosphate path-

way and do not produce biomass. However, some

produce maintenance energy (see Table 1). In all

other segments, biomass production is feasible. For

a complete listing see Table 2.

Flux data pinpoint a single relevant LTCS

The metabolic capabilities of E. coli when grown aerobi-

cally on minimal medium under glucose limited

conditions are fully described by the six LTCSs in Fig. 6.

To further narrow down the number of LTCSs, we ana-

lyzed the different segments in Fig. 6, using flux data.

All EFMs in the segments D, E and J (see L3 and

L18 in Fig. 6) were characterized by a reverse flux

across glucose-6-phosphate isomerase (Pgi), directed

towards glucose 6-phosphate (see Table 1). Under the

standard growth conditions investigated here, Pgi is

forward active [34]. Thus we were able to eliminate

L3 and L18 from the set of relevant LTCSs. (Note

that segment G, which is the largest subset of L3,

was not removed since EFMs in G have zero flux

across Pgi.).

We further investigated if the remaining segments

(A, B, C, F, G, H, I, K and L) could be distinguished

by the directions of reversible reactions. In particular,

20
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LTCS
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ng

th
 o

f E
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M
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1 3 5 6 7 18 A B C D E F G H I J K L

Fig. 7. Boxplots showing the distribution

of the cardinalities of the TF EFMs in the

LTCSs shown in Fig. 6 as function of the

set index (left panel) and the segment

label of the Venn diagram in Fig. 6 (right

panel).

Table 1. Relative frequency (in %) of EFMs in segments A–L of the Venn plot in Fig. 6 supported by certain reactions. Negative numbers

indicate that reactions are used in the backward direction. Reactions are either specified explicitly or represented by their SMBL id. The

SBML file of the metabolic model is available at https://github.com/mpgerstl/ltcsCalculator and the comprehensive list for all reactions is

available in Table 2. Ery4P, erythrose 4-phosphate; Fru6P, fructose 6-phosphate; Gra3P, glyceraldehyde 3-phosphate; Glc6P, glucose

6-phosphate; R_ATPM, non-growth-associated ATP maintenance reaction; Xyl5P, xylulose 5-phosphate.

Gene or function Reaction A B C D E F G H I J K L

Biomass production R_BIOMASS 0 100 100 23 3.7 100 17 64 100 95 100 100

Maintenance energy R_ATPM 18 2 3 11 3.7 3 15 6 3 2 0 0

pgi Glc6P ⇌ Fru6P 100 100 100 �100 �100.0 100 0 100 100 �100 100 100

tktA, tktB Ery4P + Xyl5P

⇌ Fru6P + Gra3P

0 0 �100 100 100.0 �100 100 100 �100 100 �100 �100
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Table 2. Relative frequency (%) of reactions supporting the EFMs in the segments (A–L) of the Venn plot in Fig. 6. Negative numbers

indicate that reactions are used in the backward direction. Reactions are grouped in biologically defined subsystems.

Reaction A B C D E F G H I J K L

Anaplerotic reactions

R_ME2 44 37 38 16 7.5 37 27 21 43 6 40 4

R_ME1 34 30 30 16 7.5 30 27 26 35 10 20 26

R_MALS 50 57 55 63 60.7 56 54 63 54 73 0 37

R_ICL 50 57 55 63 60.7 56 54 63 54 73 0 37

R_PPC 81 88 88 46 13.1 88 85 90 87 39 100 100

R_PPCK 17 3 4 23 23.4 4 15 7 4 1 0 0

Biomass

R_BIOMASS 0 100 100 23 3.7 100 17 64 100 95 100 100

Citric acid cycle

R_AKGDH 45 48 49 19 15.0 48 32 18 49 12 87 59

R_CS 97 100 100 90 77.6 100 97 99 100 100 100 100

R_ACONTb 97 100 100 90 77.6 100 97 99 100 100 100 100

R_ACONTa 97 100 100 90 77.6 100 97 99 100 100 100 100

R_MDH 32 37 36 57 68.2 37 37 34 30 77 33 56

R_ICDHyr 57 100 100 56 33.6 100 64 85 100 95 100 100

R_FUM 85 67 67 63 60.7 67 53 26 82 67 80 74

R_SUCOAS �45 �48 �49 �19 �15.0 �48 �32 �18 �49 �12 �87 �59

Exchange

R_EX_for_e 47 62 64 48 42.5 63 50 64 64 54 100 96

R_EX_pi_e 0 �100 �100 �23 �3.7 �100 �17 �64 �100 �95 �100 �100

R_EX_h_e 84 100 100 85 69.6 100 92 100 100 100 100 100

R_EX_gln_L_e 0 0 0 0 0.0 0 0 0 0 0 0 0

R_EX_glyc_e 0 0 0 0 0.0 0 0 0 0 0 0 0

R_EX_nh4_e �8 �100 �100 �35 �11.2 �100 �29 �76 �100 �95 �100 �100

R_EX_bm 0 100 100 23 3.7 100 17 64 100 95 100 100

R_EX_mal_L_e 0 0 0 0 0.0 0 0 0 0 0 0 0

R_EX_glu_L_e 8 7 6 13 7.5 6 14 20 6 6 0 7

R_EX_pyr_e 14 20 19 7 3.7 20 16 18 15 12 13 15

R_EX_fru_e 0 0 0 0 0.0 0 0 0 0 0 0 0

R_EX_o2_e �100 �100 �100 �100 �100.0 �100 �100 �100 �100 �100 �100 �100

R_EX_fum_e 0 0 0 0 0.0 0 0 0 0 0 0 0

R_EX_h2o_e 99 100 100 100 100.0 100 100 100 100 100 100 100

R_EX_lac_D_e 13 20 20 6 2.8 20 16 18 16 12 20 11

R_EX_succ_e 16 35 35 19 15.0 35 34 56 28 19 13 19

R_EX_akg_e 7 29 32 9 7.5 31 14 14 33 6 93 93

R_EX_co2_e 94 65 61 100 100.0 62 100 72 62 100 7 4

R_EX_glc_e �100 �100 �100 �100 �100.0 �100 �100 �100 �100 �100 �100 �100

R_EX_ac_e 16 20 19 9 7.5 20 17 20 15 12 7 15

R_EX_acald_e 0 0 0 0 0.0 0 0 0 0 0 0 0

R_EX_etoh_e 0 0 0 0 0.0 0 0 0 0 0 0 0

Glutamate metabolism

R_GLNS 41 100 100 53 18.7 100 55 85 100 97 100 100

R_GLUN 18 2 3 11 3.7 3 15 6 3 2 0 0

R_GLUSy 25 100 100 44 15.0 100 42 81 100 96 100 100

R_GLUDy 18 2 3 11 3.7 3 15 6 3 2 0 0

Glycerolipid metabolism

R_G3PD2 �61 �31 �29 �64 �63.1 �30 �64 �53 �29 �66 0 �15

R_GLYK 0 0 0 0 0.0 0 0 0 0 0 0 0

R_G3PD5 61 31 29 64 63.1 30 64 53 29 66 0 15

Glycolysis/gluconeogenesis

R_PYK 26 30 29 16 0.9 29 19 22 37 4 7 4

R_GAPD 100 100 100 100 91.6 100 100 100 100 100 100 100

R_PDH 52 47 47 48 42.5 47 49 36 45 46 20 19

R_TPI 100 100 100 0 �100.0 100 100 100 100 100 100 100

R_PGK �100 �100 �100 �100 �91.6 �100 �100 �100 �100 �100 �100 �100
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Table 2. (Continued)

Reaction A B C D E F G H I J K L

R_PFK 100 100 100 11 3.7 100 100 100 100 100 100 100

R_PGM �100 �100 �100 �100 �91.6 �100 �100 �100 �100 �100 �100 �100

R_PGI 100 100 100 �100 �100.0 100 0 100 100 �100 100 100

R_ENO 100 100 100 100 91.6 100 100 100 100 100 100 100

R_FBP 18 2 3 11 100.0 3 15 6 3 2 0 0

R_FBA 100 100 100 0 �100.0 100 100 100 100 100 100 100

R_PPS 23 13 13 53 77.6 13 21 15 8 3 27 4

Inorganic ion transport and metabolism

R_NH4t 8 100 100 35 11.2 100 29 76 100 95 100 100

R_PIt2r 0 100 100 23 3.7 100 17 64 100 95 100 100

Oxidative phosphorylation

R_NADTRHD 34 19 17 45 46.7 18 45 7 17 43 0 15

R_CYTBD 100 100 100 100 100.0 100 100 100 100 100 100 100

R_ADK1 23 13 13 53 77.6 13 21 15 8 3 27 4

R_ATPM 18 2 3 11 3.7 3 15 6 3 2 0 0

R_NADH16 59 84 85 63 60.3 85 63 54 84 60 100 100

R_ATPS4r 22 35 38 34 26.2 37 27 24 38 27 100 78

R_SUCDi 85 67 67 63 60.7 67 53 26 82 67 80 74

R_THD2 52 41 40 45 44.9 40 46 57 41 49 0 11

R_FRD7 0 0 0 0 0.0 0 0 0 0 0 0 0

Pentose phosphate pathway

R_TKT2 0 0 �100 100 100.0 �100 100 100 �100 100 �100 �100

R_GND 0 100 100 100 100.0 100 100 100 6 100 100 100

R_TKT1 0 100 0 100 100.0 100 100 100 �100 100 100 100

R_PGL 0 100 100 100 100.0 100 100 100 6 100 100 100

R_RPI 0 �100 �100 �100 �100.0 �100 �100 �100 �100 �100 �100 �100

R_RPE 0 100 �100 100 100.0 0 100 100 �100 100 �100 100

R_G6PDH2r 0 100 100 100 100.0 100 100 100 6 100 100 100

R_TALA 0 100 0 100 100.0 100 100 100 �100 100 100 100

Pyruvate metabolism

R_ACKr �16 �20 �19 �9 �7.5 �20 �17 �20 �15 �12 �7 �15

R_ACALD 0 0 0 0 0.0 0 0 0 0 0 0 0

R_ALCD2x 0 0 0 0 0.0 0 0 0 0 0 0 0

R_PTAr 16 20 19 9 7.5 20 17 20 15 12 7 15

R_PFL 47 62 64 48 42.5 63 50 64 64 54 100 96

R_LDH_D �13 �20 �20 �6 �2.8 �20 �16 �18 �16 �12 �20 �11

Transport/extracellular

R_GLUt2r �8 �7 �6 �13 �7.5 �6 �14 �20 �6 �6 0 �7

R_FUMt2_2 0 0 0 0 0.0 0 0 0 0 0 0 0

R_ETOHt2r 0 0 0 0 0.0 0 0 0 0 0 0 0

R_FRUpts2 0 0 0 0 0.0 0 0 0 0 0 0 0

R_GLYCt 0 0 0 0 0.0 0 0 0 0 0 0 0

R_FORt2 22 22 22 26 28.5 22 27 12 22 26 0 7

R_SUCCt3 36 49 49 40 37.9 49 52 61 43 41 13 26

R_GLNabc 0 0 0 0 0.0 0 0 0 0 0 0 0

R_CO2t �94 �65 �61 �100 �100.0 �62 �100 �72 �62 �100 �7 �4

R_H2Ot �99 �100 �100 �100 �100.0 �100 �100 �100 �100 �100 �100 �100

R_PYRt2r �14 �20 �19 �7 �3.7 �20 �16 �18 �15 �12 �13 �15

R_GLCpts 100 100 100 100 100.0 100 100 100 100 100 100 100

R_ACt2r �16 �20 �19 �9 �7.5 �20 �17 �20 �15 �12 �7 �15

R_FORti 59 71 72 61 58.4 72 64 66 72 67 100 96

R_AKGt2r �7 �29 �32 �9 �7.5 �31 �14 �14 �33 �6 �93 �93

R_D_LACt2 �13 �20 �20 �6 �2.8 �20 �16 �18 �16 �12 �20 �11

R_SUCCt2_2 22 22 22 26 28.5 22 27 12 22 26 0 7

R_ACALDt 0 0 0 0 0.0 0 0 0 0 0 0 0

R_MALt2_2 0 0 0 0 0.0 0 0 0 0 0 0 0

R_O2t 100 100 100 100 100.0 100 100 100 100 100 100 100
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we analyzed the flux across transketolase (TktA, TktB)

and found that all EFMs in the segments A and B car-

ried no flux, whereas all EFMs in the segments C, F,

I, K and L had a reverse flux and all EFMs in G and

H had a forward flux. Under the standard growth con-

ditions investigated here, transketolase is forward

active [34]. Thus we concluded that L1 is the only

biologically relevant LTCS.

In L1 (as in every other LTCS) all reversible reac-

tions have a fixed direction (due to the no-cancelation

rule). The predicted directions were fully consistent

with independent 13C flux data [35].

To summarize, we found that from 40 LTCSs

only L1 was consistent with all data. L1 contains

15 559 TF EFMs, which represent only 9% of all

EFMs. More specifically, 4486 EFMs produce bio-

mass, 2024 produce maintenance energy, and 54 pro-

duce both. In fact, L1 is composed of several

segments: all EFMs in segment A do not invoke the

pentose phosphate pathway and do not produce bio-

mass, but are responsible for the production of

maintenance energy; all EFMs in segment B produce

biomass without invoking TktA or TktB; all EFMs

in segment G do not carry flux across Pgi, but are

able to produce biomass and/or maintenance energy.

Finally, EFMs in segment H are not characterized

by a single common property.

General remarks on LTCSs

Using E. coli as an example, we outlined a procedure

that narrowed down the feasible solution space and

eventually identified a single LTCS. The success of

such an analysis is dependent on the quality of the

measured metabolome. However, the general concept

of LTCSs is not affected by the metabolome’s qual-

ity. In fact, we can find LTCSs even if the metabo-

lome is unknown. As soon as a network contains at

least two EFMs that are supported by a reversible

reaction carrying fluxes in opposite directions, differ-

ent LTCSs exist. Moreover, the cardinalities of these

LTCSs are always smaller than the total number of

EFMs in a system (see for instance Fig. 1, where

4 ¼ ntot [ jL1j ¼ jL2j ¼ 3). Thus even in the

absence of a measured metabolome it is useful to

look at LTCSs, as only then is a thermodynamically

consistent understanding guaranteed. Although an

LTCS is less complex than the complete set of

EFMs, one now has to analyze multiple LTCSs. In

general the number of LTCSs scales combinatorially

with the number of reversible reactions in a network.

Practically, that is why an accurately measured meta-

bolome is essential.

Discussion

Every intercellular flux distribution is TF and can be

decomposed into TF EFMs. However, the reverse is

not necessarily true. That is, the conformal superposi-

tion of any two TF EFMs is itself not necessarily TF.

Here we developed a method that identifies the lar-

gest sets of TF EFMs that are thermodynamically con-

sistent (LTCSs). Within an LTCS every nonnegative

linear combination of its elements results in a TF flux

distribution. A necessary condition for an LTCS is

that all reactions supporting the EFMs of an LTCS

operate in the same direction. This is known as the

no-cancelation rule [2,3].

Geometrically, an LTCS spans a TF subcone of the

flux cone (see Fig. 8). In fact, thermodynamic

constraints segment the flux cone into LTCSs.

Although subcones corresponding to LTCSs may over-

lap (see Fig. 6), each LTCS has unique metabolic

capabilities.

We found that shorter TF EFMs are more likely to

be elements in multiple LTCSs than longer TF EFMs.

More specifically, we found that segment A in Fig. 6

contains only EFMs producing maintenance energy,

but no EFM producing biomass. This can be under-

stood considering the number of reactions involved.

Whereas biomass requires the production of many

precursors which involves long pathways, maintenance

energy requires only the production of adenosine

triphosphate (ATP), which can be achieved by short

routes. Since every reaction has to comply with the

second law of thermodynamics, the likelihood of ther-

modynamical feasibility decreases with increasing num-

ber of contributing reactions.

Fig. 8. Graphical representation of the segmented steady-state flux

cone (grey) containing two partially overlapping subcones spanned

by LTCSs.
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Every metabolic phenotype can be described by an

LTCS. Conversely, if an EFM is not part of an LTCS,

it is biologically irrelevant, since it does not contribute

to a thermodynamically consistent decomposition of a

TF flux distribution. In general, decompositions into

EFMs are not unique, and several methods have been

proposed [36–40]. However, none of these methods

takes thermodynamics into account, which may lead

to inconsistent decompositions. Therefore, it is even

more important to identify those LTCSs that

consistently describe a phenotype.

We outlined a systematic procedure to identify

biologically relevant LTCSs. Based on the integration

of additional (omics) data, we successively narrowed

down the number of LTCSs. In fact, most LTCSs

were found to be inconsistent with commonly avail-

able growth parameters. Further consideration of

expression and flux data eventually identified a single

LTCS that characterizes the phenotype. The addi-

tional information could have been used to adapt

the network first. Doing so would have reduced the

number of LTCSs from 40 to four (L1;L2;L31;

and L36), and a comparison with growth parameters

would have identified L1, the same LTCS as before.

However, for less studied organisms detailed data

may not be available. In this case, an analysis of

phenotypical properties like in Tables 1 and 2 will

identify the most valuable piece of information to

narrow down the number of LTCSs.

Our method is able to compute LTCSs if all TF

EFMs are known, and we showed that the set of TF

EFMs characterizing a phenotype is smaller than the

set of all TF EFMs. However, currently our method

does not allow computation of LTCSs directly. It

would be desirable to enumerate only the biologically

relevant EFMs, which would facilitate an unbiased

analysis of metabolic systems even on a genome-scale

level. Recent progress enabled the selective calculation

of subsets of EFMs [21] and the identification of rele-

vant regulated EFMs [41,42]. Combining these ideas

with our current approach may lead to promising lines

of future research.

Methods

We used the software package tEFMA [24] together with

published metabolite concentration data [43] to calcu-

late all TF EFMs in a core metabolic model of E. coli

[25] growing on a glucose limited minimal medium.

For all unmeasured metabolites in this model we used

conservative default concentration ranges between

cmin
k ¼ 10�7 m and cmax

k ¼ 1m. DfG
0 values were

obtained from the online version of EQUILIBRATOR [44].

For two metabolites (ubiquinol-8 and biomass) no DfG

values were available. Reactions to which those

metabolites contributed were not checked for thermo-

dynamic feasibility to avoid false conclusions [25].

The set of Eqns (1) and (2) were solved with the

IBM ILOG CPLEX Optimization Studio, version 12.5. A

Perl-script that sets up the systems equations and

invokes the CPLEX LP solver, and the metabolic

model and all data used in this study are available at

https://github.com/mpgerstl/ltcsCalculator. Note that

CPLEX is a commercial software product although free

academic licenses are available.
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