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ABSTRACT Mobile genetic elements contribute to the emergence and spread of multi-
drug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resist-
ance among different bacterial species and genera. This study characterizes the genetic
backbone of blaGES in Aeromonas spp. and Klebsiella spp. isolated from untreated hospital
effluents. Plasmids ranging in size from 9 to 244 kb, sequenced using Illumina and
Nanopore platforms, revealed representatives of plasmid incompatibility groups IncP6,
IncQ1, IncL/M1, IncFII, and IncFII-FIA. Different GES enzymes (GES-1, GES-7, and GES-16)
were located in novel class 1 integrons in Aeromonas spp. and GES-5 in previously
reported class 1 integrons in Klebsiella spp. Furthermore, in Klebsiella quasipneumoniae,
blaGES-5 was found in tandem as a coding sequence that disrupted the 39 conserved seg-
ment (CS). In Klebsiella grimontii, blaGES-5 was observed in two different plasmids, and one
of them carried multiple IncF replicons. Three Aeromonas caviae isolates presented
blaGES-1, one Aeromonas veronii isolate presented blaGES-7, and another A. veronii iso-
late presented blaGES-16. Multilocus sequence typing (MLST) analysis revealed novel
sequence types for Aeromonas and Klebsiella species. The current findings highlight
the large genetic diversity of these species, emphasizing their great adaptability to
the environment. The results also indicate a public health risk because these anti-
microbial-resistant genes have the potential to reach wastewater treatment plants
and larger water bodies. Considering that they are major interfaces between
humans and the environment, they could spread throughout the community to
clinical settings.

IMPORTANCE In the “One Health” approach, which encompasses human, animal,
and environmental health, emerging issues of antimicrobial resistance are associated
with hospital effluents that contain clinically relevant antibiotic-resistant bacteria
along with a wide range of antibiotic concentrations, and lack regulatory status for
mandatory prior and effective treatment. blaGES genes have been reported in aquatic
environments despite the low detection of these genes among clinical isolates
within the studied hospitals. Carbapenemase enzymes, which are relatively unusual
globally, such as GES type inserted into new integrons on plasmids, are worrisome.
Notably, K. grimontii, a newly identified species, carried two plasmids with blaGES-5,
and K. quasipneumoniae carried two copies of blaGES-5 at the same plasmid. These
kinds of plasmids are primarily responsible for multidrug resistance among bacteria
in both clinical and natural environments, and they harbor resistant genes against
antibiotics of key importance in clinical therapy, possibly leading to a public health
problem of large proportion.
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Horizontal gene transfer through mobile genetic elements (MGEs), such as transpo-
sons (Tns), insertion sequences (ISs), and integrons (Ins), plays an important role in

spreading antimicrobial resistance, a significant global threat to public health, animals,
and the environment. The most clinically significant antimicrobial resistance genes
(ARGs) are usually located on different MGEs that can move intracellularly or intercellu-
larly. In hospital effluents, the presence of diverse selection pressures combined with a
high concentration of pathogenic/commensal microbes creates favorable conditions
for the transfer of ARGs and the proliferation of antibiotic-resistant bacteria (1).

Interactions between MGEs contribute to the rapid evolution of diverse multidrug-re-
sistant pathogens in antimicrobial chemotherapy. ISs and Tns are discrete DNA segments
that can carry resistance genes to genetic locations in the same or different DNA mole-
cules within a single cell. Integrons harbored by plasmids, Tns, and other mobile structures
are called “mobile integrons” (MIs) because MGEs promote their dissemination. Therefore,
special attention has been given to MIs from natural environments to gather information
on their ecology and diversity and understand their role in bacterial adaptation (2).

Integrons are genetic systems that allow bacteria to capture and express gene cas-
settes. They typically consist of an intI gene encoding an integrase that catalyzes the incor-
poration or excision of gene cassettes by site-specific recombination, a recombination site
attI, and one or two promoters responsible for the expression of inserted gene cassettes.
Several promoter variants that vary in strength have been identified, and integrons with
weaker promoters often have higher excision activity of integrase (3).

GES-type b-lactamases are rarely encountered. To date, 51 variants have been
described (http://bldb.eu/, last updated on 4 June 2022) (4), of which 17 have carbape-
nemase-hydrolyzing activity due to their amino acid substitutions (Gly170Asn or
Gly170Ser) (5). blaGES has been described as gene cassettes associated with class 1 inte-
grons on plasmids with different types of replicons (6). Since the first description of
Klebsiella pneumoniae from France in 2000 (7), several human outbreaks of GES-pro-
ducing Gram-negative bacteria have been described worldwide (8–12). Some GES-type
carbapenemases have been found in environmental matrices (13) and clinical isolates,
most frequently associated with single occurrences (14).

Despite worldwide reports, GES enzymes are not among the most widespread carbape-
nemase families (14). In southern Brazil, epidemiological studies conducted by our group
have shown a gradual increase in antimicrobial resistance in hospitalized patients in the
last 20 years (15–17). However, GES enzymes were not found (18, 19). Although GES
enzymes have already been reported in several countries, few studies have explored the
genetic context of these ARGs, especially in Brazil. Therefore, we performed whole-ge-
nome sequencing (WGS) and analysis of GES-producing Aeromonas spp. and Klebsiella
spp. from two hospital effluents to provide genetic information about resistance determi-
nants. These enzymes may be associated with genetic elements that can provide mobility,
facilitating their transfer to clinically relevant mobile vectors. Knowledge of the genetic
contexts of blaGES will enable a better understanding of the molecular mechanisms driving
mobilization and the emergence of resistance genes in different microorganisms that,
through hospital effluents, will reach wastewater treatment plants, the major interfaces
between humans and the environment.

RESULTS
Antimicrobial resistance profile of GES type-producing Aeromonas spp. and

Klebsiella spp. In the seven isolates studied (Aeromonas spp., n = 5, and Klebsiella spp.,
n = 2), we observed a resistance to b-lactams and aminoglycosides, being that Aero28
and KPN47 were multidrug resistant. In addition, Aero28 was resistant to meropenem-
vaborbactam and imipenem-relebactam, but not to ceftazidime-avibactam. All phenotypic
tests to determine extended-spectrum b-lactamase (ESBL) and carbapenemases producers
converged with the catalytic property of each GES variant. The Aeromonas veronii isolates
were inhibited by EDTA due to an intrinsic metallo-b-lactamase (CphA) (Table 1).

Furthermore, plasmid DNA from Aero22, Aero28, and KOX60 strains was success-
fully transferred by electroporation into Escherichia coli TOP10 cells, and conjugation
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experiments of blaGES-encoding plasmids were successfully performed only for Aeromonas
caviae (Aero21); this plasmid harbored all the genes required to autonomously conjugate
(GenBank accession no. CP068231). Additionally, repeated attempts to transfer resistance by
conjugation or transformation were unsuccessful to Aero19, Aero52, and KPN47. GES-type
ESBL transconjugants and transformants showed similar resistance profiles to cephalospo-
rins as those of the donor strains. Moreover, GES-type carbapenemases transformants were
susceptible to carbapenems in comparison to the donor strains (Table 1).

Resistome and blaGES-encoding plasmid configurations. Table 2 summarizes ge-
nome information of GES type-producing Aeromonas spp. and Klebsiella spp. The sequence
analysis of plasmids of three A. caviae isolates carrying blaGES-1 showed that p1Aero19 and
p1Aero52, nonmobilizable plasmids, presented tellurite resistance (terB). Conversely, the
p1Aero21, a conjugative plasmid, harbored cobalt, zinc, and cobalt-zinc-cadmium resist-
ance gene (czcD) and mercury operon (mer). All of these plasmids were nontypeable.

BLASTn analysis showed low similarity (23% coverage and 98.4% identity) among
two IncP6 plasmids, p1Aero22 from A. veronii and pKRA-GES-5 from a clinical K. pneu-
moniae strain (GenBank accession no. MN436715) (20). Only replication initiation and
partitioning genes showed similarity. P1Aero22 presented other resistance genes, such
as blaTLA-1 and tetC, in a composite transposon, ISKpn15. The other important resistance
genes were found in different integrons. The IncQ1 plasmid (p2Aero28) shares high
similarity (100% coverage and 99.94% identity) with a plasmid from a clinical Klebsiella
variicola isolate (GenBank accession no. CP066873), showing a difference in GES type.
Both plasmids had mobilization elements (mob genes).

A conjugative plasmid (p1KPN47) from K. quasipneumoniae (IncM1) showed the BLASTn
analysis similarity (86% coverage and 99.99% identity) with a clinical K. pneumoniae isolate
(GenBank accession no. KT935445) (21, 22). Similar transfer regions and replication initiation
and partitioning genes were found. Both plasmids were identified in isolates from Brazil and
characterized as coproducers of carbapenemases and 16S-RMTase, with multiple copies of
IS26 and rmtD1-contanining regions duplicated in tandem (Fig. 1F). Among chromosome-
related resistant genes, an rmtD copy was also recognized in K. quasipneumoniae (Table 2).
Nucleotide insertions in the loop three regions of OmpK36 and OmpK37 were observed by
DNA sequencing, and this type of mutation increases carbapenemMICs.

K. grimontii carried two conjugative distinct plasmids carrying blaGES-5 (p2KOX60 and
p3KOX60) (Fig. 2). The p2KOX60 harbored multiple replicons (FII-FIA) and displayed similarity
(80% coverage and 99.99% identity) with a plasmid from wastewater K. grimontii strain
(GenBank accession no. CP055312). The p3KOX60 carried an FII replicon and exhibited simi-
larity (74% coverage and 99.14% identity) with a plasmid from freshwater Klebsiella michiga-
nensis strain (GenBank accession no. CP058121). The main difference between these plas-
mids was the presence of integrons carrying blaGES.

By PFGE-S1 experiment and hybrid assembly, we found a unique plasmid in Aero19
(110 kb) and Aero21 (244 kb), 2 plasmids in Aero28 (9 and 59 kb), 3 plasmids in Aero22
(5.8, 23.9, and 80.5 kb) and Aero52 (9.7, 24.1, and 111.6 kb), 8 plasmids in KOX60 (rang-
ing from 48 to 179.9 kb), and 10 plasmids in KPN47 (ranging from 10.2 to 170.9 kb).

Novel class 1 integrons carrying blaGES in Aeromonas spp. The hybrid assembly
analysis revealed that blaGES from Aeromonas spp. was located in novel functional class
1 integrons (Fig. 1). Integrons with new and completely sequenced gene cassette
arrays were considered for the attribution of new In numbers (23).

The In2062 (Fig. 1A and C) from A. caviae (Aero19 and Aero52) contained a blaGES-1-
arr6b-dfrA22 gene cassette array. Both integrons harbored the PcH1TGN-10 promoter var-
iant (3, 23). In2029 (Fig. 1B) from A. caviae (Aero21) presented three gene cassettes,
aacA7-blaGES-1 and catB3-dfrA22. The blaGES-1 and catB3 cassettes were fused. This inte-
gron contained the strongest PcS variant. Both integrons carried a 59 conserved seg-
ment (59 CS) and 39 conserved segment (39 CS), followed by an IS6100.

In2059 (Fig. 1D) from A. veronii (Aero22) consisted of a weak variant (PcW) combined with
a second promoter (P2), and the variable region comprised one gene cassette, blaGES-16, and a
39 CS truncated by IS26. In2061 (Fig. 1E) was identified in A. veronii (Aero28) containing blaGES-
7-aacA49-3 gene cassettes and presented the strong PcWTGN-10 variant (3, 23). The attC of
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FIG 1 Schematic representation of regions enclosing class 1 integrons detected among the bacterial
population analyzed in the present survey. (A) A. caviae (Aero19) In2062; (B) A. caviae (Aero21)

(Continued on next page)
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aacA49-3 is disrupted, and, therefore, the gene cassette cannot be mobilized anymore.
The 39 CS region was absent, and IS6100 was adjacent to the gene cassette.

Genetic plasticity in known class 1 integrons carrying blaGES-5 in Klebsiella spp.
The plasmid of K. quasipneumoniae (KPN47) displayed two copies of the In200 class 1
integron (GenBank accession no. AJ968952) and presented dfrA22b as gene cassettes,
both with a PcH1promoter variant (3, 23). The blaGES-5 gene, usually located as an integron

FIG 1 Legend (Continued)
In2029; (C) A. caviae (Aero52) In2062; (D) A. veronii (Aero22) In2059. The 39 CS in In2059 is truncated
by IS26. (E) A. veronii (Aero28) In2061. The yellow ray means the attC is disrupted, and therefore, the
gene cassette cannot be mobilized anymore. The 39 CS is truncated by IS6100. (F) K. quasipneumoniae
(KPN47) In200. A star means premature intI1 STOP codon and frameshift in orf5. (G) K. grimontii
(p2KOX60), In174; (H) K. grimontii (p3KOX60), In174. Blue, conserved 59 CS and 39 CS; green, gene
cassettes; purple, insertion sequences; //, 10-kb gap with different genes.

FIG 2 Map of the plasmids carrying blaGES-5 from KPN47 and KOX60 recovery at CHC/UFPR effluents. (A) The representative genes of the K. quasipneumoniae from
the CP066860 plasmid are shown in colored boxes. (B) The representative genes of the K. grimontii from the CP067435 plasmid and CP067436 plasmid are shown in
colored boxes.
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gene cassette, was found between the 39 CS and orf5D but was not associated with any
attC and, therefore, not embedded as a mobilizable integron gene cassette. We observed
the presence of an IS1595 truncating the gene cassette, which may have caused the dis-
placement of blaGES-5. The first 113 bp of the 59 CS were deleted due to IS26 insertion (IS26/
D59 CS); the 39 CS included a truncated orf5D and an IS26 (Fig. 1F).

K. grimontii (KOX60) exhibited two previously reported class 1 integrons, usually referred
to as In174 (GenBank accession no. EU266532), containing one gene cassette (blaGES-5) in
two different plasmids. In174 from p2KOX60 presented a strong promoter PcS and a novel
group IIc intron that displayed 77% nucleotide identity with Se.ma.I3 (GenBank accession
no. AY884051) disrupting attC upstream of the 39 CS region. This integron was bounded by
two copies of IS26, forming a composite transposon (Fig. 1G). The second integron from
p3KOX60 presented the strong PcWTGN-10 promoter variant and terminated in a tniC instead
of a 39 CS (Fig. 1H).

Phylogenetic characteristic. Multilocus sequence typing (MLST) based on the
genomic data assigned six isolates to different STs, A. caviae (Aero19 and Aero52) ST884, A.
caviae (Aero21) ST885, A. veronii (Aero22) ST886 (https://pubmlst.org/organisms/aeromonas
-spp), K. quasipneumoniae (KPN47) ST5527 (http://bigsdb.pasteur.fr/), and K. grimontii
(KOX6060) ST350 (https://pubmlst.org/organisms/klebsiella-oxytoca). The isolate A. vero-
nii (Aero28) belongs to ST257 identified in China in 2013 (https://pubmlst.org/organisms/
aeromonas-spp) (Table 2). KPN47 and KOX60 isolates, initially identified as K. pneumoniae
and Klebsiella oxytoca by matrix-assisted laser desorption ionization–time of flight mass
spectrometry (MALDI-TOF MS) (18), were redefined based on whole-genome sequencing
as K. quasipneumoniae and K. grimontii, respectively.

DISCUSSION

This study reports different GES-type enzymes from hospital effluents. The epidemiology
of GES producers is not completely known, and its prevalence or transmission seems to be
underestimated. However, there are some reports of environmental bacteria such as
Aeromonas spp. (19, 24, 25). Our findings showed great potential of the environment in pro-
moting genetic variability, a fact observed by the presence of novel integrons and the plas-
ticity among the plasmids found. These scenarios are more common in natural environ-
ments than clinical settings, suggesting a general role in bacterial adaptation (26).

Antimicrobial resistance genomic analysis revealed that Aeromonas veronii isolates
possess chromosomally encoded genes, including blacphA3. As a resultant, this led to
increased resistance to carbapenems. The Aero28 isolate presented also showed resist-
ance to the novel carbapenem-b-lactamase inhibitor combinations, suggesting that,
unlike in Aero22, an induction of the cphA gene may have occurred (27). The absence
of this gene led to the reduction of MIC to carbapenems observed in GES-7 and GES-16
transformants. In addition, the MIC of ceftazidime in the GES-16 transformant dramati-
cally declined. Some studies showed that the substitution of Gly170Ser in GES-carbape-
nemase reduces the hydrolytic efficiency against ceftazidime (28–31).

In Brazil, the presence of blaGES-16 was first reported in two carbapenem-resistant
Serratia marcescens clinical isolates in Rio de Janeiro and did not show any relationship
with the integron found in our study (28). We identified a novel mobilizable IncP6 plas-
mid carrying a novel integron that, compared to pKRA-GES-5 (20), had additional
acquired resistance genes like tetC, mphE, msrE, and blaTLA-1 and a large number of mo-
bile elements such as ISs, composite transposon, and different integrons. This plasmid
group was reported in several species from clinical and wastewater sources, suggesting
that they have a vast range of hosts and are associated with bacteria that can persist in
the environment for long periods (32).

Genomic analysis of Aero28 showed that the integron (In2061) carrying blaGES-7
belongs to a novel IncQ1 plasmid, which is capable of replication in a very broad range
of hosts and is readily mobilizable (33). The comparative BLAST analysis showed that
this plasmid was homologous to another plasmid from a K. variicola clinical isolate har-
boring blaGES-5, deposited by our group in the GenBank database. These plasmids did
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not show significant homology with the other published IncQ-type plasmids carrying
blaGES that are inserted in different mobile elements, two from clinical origin (34, 35)
and one from river water (36). Therefore, these findings highlight the spread of the
IncQ1 plasmid between different species and environments.

The two isolates of Klebsiella spp. showed resistance to carbapenems and, as
observed in GES-16, the b-lactam and aminoglycoside resistance decreased in the
GES-5 transformant. Other mechanisms, such as porin loss in KOX60 or modifications
in porins such as OmpK36 and OmpK37 in KPN47, are critical for expression of high-
level resistance to carbapenems (17).

Members of the genus Klebsiella are known to have stronger associations between
ISs and ARGs. Persistent exposure to antibiotics has likely enhanced this association of
ISs with ARGs in their genomes (37). In the K. quasipneumoniae isolate (KPN47), a high
frequency of IS26 was noted. Furthermore, the ability of IS26 transposase (Tnp26) to
function in replicative mode formed two identical large regions of DNA sequences car-
rying blaGES-5 within class 1 integrons and arrays of important ARGs (2). This plasmid
contains a wide range of transposable elements, an important evolutionary feature
allowing for frequent genetic transposition leading to a plasmid fusion and, presum-
ably, a better adaptation of the plasmid to the bacterial host (38). A similar situation
involving blaGES-5 was recently reported in C. freundii isolated from a hospital waste-
water treatment plant in Taiwan (39), drawing attention to hospital effluents.

Another interesting insight in K. quasipneumoniae isolate refers to identifying 16S
rRNA-methyltransferase (rmtD1) in both plasmid and chromosome, showing a high re-
sistance level against all aminoglycosides. It is noteworthy that most genes encoding
16S RMTases are typically located on plasmids that also encode ESBLs and carbapene-
mases determinants (40). Comparing the genetic environment of rmtD1 with pKp64/
11, we observed, in both plasmids, an rmtD1-containing region flanked by IS26, form-
ing composite transposons. IS26 may have played a role in the mobilization of rmtD1
between different species (22, 41). Consequently, the duplication of IS26-flanked struc-
tures in a tandem array formation has been observed in the presence of selective pres-
sure from the corresponding antimicrobial agents (22).

The duplicity of blaGES-5 was also observed in K. grimontii (KOX60), presented as gene cas-
settes in class 1 integrons in two distinct plasmids, as recently reported in a P. aeruginosa
clinical isolate harboring two plasmids carrying blaIMP (42). One integron (In174, p2KOX60)
was located in a composite transposon (IS26), and the second (In174, p3KOX60), despite
having the same gene cassette array, presented a different promoter variant and was not
flanked by IS26, showing that these integrons are unrelated (39). Carbapenem-resistant K.
grimontii (KPC-2) has been reported once, recovered from clinical samples in China (43), but
K. grimontii carrying blaGES-5 recovered from hospital effluent in the first report.

By analyzing the complete sequence of the two IncF plasmids, we note the presence of
multireplication proteins in p2KOX60 (repA and repE), featuring a replicon-type IncFII-FIA,
whereas p3KOX60 had only repA. The presence of multiple replicons can allow those that
are not driving replication to diverge, potentially changing incompatibility (44). These repli-
cation proteins, partitioning genes, and tra genes were responsible for the similarity of our
plasmids to others recovered from the water environment in the United Kingdom. Our plas-
mids differ mainly by the acquisition of carbapenem resistance genes.

Although several Pc variants with different strengths were found in our isolates, including
a Pc promoter combined with a second P2 promoter (Aero22), we were unable to observe a
significant change in the MICs of the transconjugants. Notably, in the context of greater anti-
biotic selective pressure, the need to express gene cassettes more efficiently may lead to
the selection of more efficient Pc sequences (3, 45). Further experimental studies covering
the relative strengths of these Pc variant promoters should be performed.

Among all isolates, we achieved a transconjugant only for A. caviae (Aero21). Based
on sequence analysis, p1Aero21 exhibits machinery needed for conjugation, all tra
genes, and the type IV secretion system (T4SS). Genes transfer by conjugation is known
to contribute to the genetic dynamics of bacterial populations living in a variety of
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environments (46). In the K. grimontii plasmid, we observed the presence of fertility in-
hibition protein (FinO) that may have decreased conjugation efficiency (2, 47). Further,
in the K. quasipneumoniae plasmid, despite the presence of a tra region that included
genes essential for F transfer, the conjugation was unsuccessful.

In summary, our study reports different blaGES in novel plasmids within novel class 1
integrons and different STs of Aeromonas spp. and Klebsiella spp. recovered from hos-
pital effluents, reflecting what could be found within the patient’s gut. We share an in-
depth exploration of understanding the molecular evolutionary mechanisms of blaGES
mobilome, along with their potential dynamic transmission and plasmid plasticity.

The presence of novel mobilizable or conjugative plasmids under different contexts,
including an impressive mesh of interactions with transposable elements, resulting in
plasmid fusion and acquisition of multireplicons, can translate into a problem of large
proportion. This is because wastewater treatment plants cannot eliminate these MGEs
and antibiotic-resistant bacteria (ARB) that can persist in river water and thus consti-
tute a threat of dissemination in the environment.

MATERIALS ANDMETHODS
Study settings and ethics statement. The Institutional Ethics Review Board of the Complexo

Hospital de Clínicas, Universidade Federal do Paraná (CHC/UFPR), approved this study under the refer-
ence number CAAE 11087012.0.0000.0096.

Characterization of bacterial isolates and antimicrobial resistance.We selected a group of seven
GES type-producing isolates from hospital effluents, as identified in previous studies (18, 19). Wastewater sam-
ples were collected at the CHC/UFPR, a 640-bed academic care hospital, and Hospital Pequeno Principe (HPP),
a 390-bed pediatric academic care hospital. The hospitals are located in Curitiba, Paraná, southern Brazil. These
isolates were identified using the Vitek 2 compact system (bioMérieux, Marcy-l’�Etoile, France) and mass spec-
trometry (matrix-assisted laser desorption ionization–time of flight mass spectrometry [MALDI-TOF MS]) using
microflex LT Biotyper 3.0 (Bruker Daltonics, Bremen, Germany) and Vitek MS (bioMérieux) instruments. All iso-
lates were stored in 15% glycerol-containing tryptic soy broth and frozen at280°C until further use.

Antimicrobial susceptibility testing was performed by agar or broth dilution as recommended by
CLSI (48, 49). The tests were interpreted according to CLSI standards (49, 50). Double-disk synergy was
assessed to detect ESBL (51) and class A and B carbapenemases (52).

Plasmid profile and translocation of blaGES. Total plasmid DNA extraction of Klebsiella species and
Aeromonas species isolates harboring blaGES was performed using the GenElute plasmid midiprep kit
(Sigma-Aldrich, St. Louis, MO, USA) according to the manufacturer’s instructions. To define the size and number
of plasmids in each isolate, S1 nuclease pulsed-field gel electrophoresis (PFGE-S1) was performed as described
by Kaufmann (53). Conjugation experiments were performed using Aeromonas and Klebsiella isolates as donors
and azide-resistant E. coli J53 as receptor strain. Transconjugants were selected on MacConkey agar containing
150 mg/L sodium azide and 50 mg/L ampicilin. Additionally, DNA plasmids obtained from the extraction by
NucleoBond Xtra Plus midikit (Macherey-Nagel, Duren, Germany) were transformed by electroporation into E.
coli TOP10. Electroporation conditions were 100 X, 13 kV/cm, and 25mF (54), and transformants were selected
with ceftazidime (0.5 mg/L).

Genome sequencing, assembly, and annotation. Genomic DNA was extracted using the GenElute
bacterial genomic DNA kit (Sigma-Aldrich) and quantified using the Qubit double-stranded DNA
(dsDNA) high-sensitivity (HS) assay kit (Thermo Fisher Scientific Inc., Waltham, USA). Illumina sequencing
libraries with an average insert size of 600-bp fragments were generated using an Illumina Nextera XT
DNA library kit (Illumina Inc., San Diego, CA, USA). Libraries were quantified, and their quality was veri-
fied using a Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA). Whole-genome
sequencing of paired-end libraries (PE; 2 � 250 bp) was performed using the Illumina MiSeq platform
(Illumina Inc.). In addition, long-read WGS was performed using a MinION sequencer (Nanopore, Oxford,
UK). MinION sample preparation was carried out using the rapid barcoding kit SQK-RBK-004 and the
flow cell priming kit EXP-FLP002 (Oxford Nanopore), following the manufacturer’s instructions.

Raw read quality was checked using FastQC version 0.11.15 (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/), and quality-based trimming and filtering were performed using Trimmomatic version 0.35
(55). SPAdes version 3.12.0 (56) was used to combine MinIon and Illumina data to produce a hybrid assembly
of chromosomes and plasmids. The number of contigs was more contiguous than the assembly using Illumina
data alone, with SPAdes producing a single chromosomal contig. Completeness and taxonomic classification
of the assemblies were verified using the DFAST tool (https://dfast.nig.ac.jp/dqc/submit/; accessed in
September 2020). Chromosomal and plasmid sequences were annotated using Prokka version 1.12 (57). Rapid
Annotation using Subsystem Technology (RAST) version 1.073 (58) and Artemis version 18.0.0 (59) were
applied to predict coding sequences (CDSs). We searched all the plasmids of the GenBank database (accessed
in May 2022) using BLASTn (60). Comparative plasmid maps of blaGES-5 were generated from the assembled
contigs using BLAST Ring Image Generator (BRIG) version 0.95 (61).

Profiling of mobile genetic elements and antimicrobial resistance genes. Chromosomal and plas-
mid resistome were predicted using the Comprehensive Antibiotic Resistance Database (CARD) version
3.1.2 (https://card.mcmaster.ca/, accessed January 2020) and ResFinder database version 4.1 (https://cge
.cbs.dtu.dk/services/ResFinder/, accessed December 2020).
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Plasmid replicon types in the assemblies were determined using the PlasmidFinder tool 2.0.1 (https://cge.cbs
.dtu.dk/services/PlasmidFinder/, accessed December 2020). Moreover, the allele types of IncF plasmids were
assigned using IncF replicon typing pMLST, available at the Center for Genomic Epidemiology (https://cge.cbs
.dtu.dk/services/pMLST/, accessed December 2020). Chromosomal and plasmid transposons were identified using
Mobile Element Finder 1.0.3 (https://cge.cbs.dtu.dk/services/MobileElementFinder/, accessed December
2020) and ISfinder (https://isfinder.biotoul.fr/index.php, accessed January 2021). Plasmid integrons, integra-
ses, and gene cassettes were predicted using the INTEGRALL database version 1.2 (http://integrall.bio.ua
.pt/, accessed June 2021).

Molecular typing. Sequences of housekeeping genes of unknown STs were curated at the K. pneu-
moniae MLST database at the Pasteur Institute (http://bigsdb.pasteur.fr/), the K. grimontii MLST website
(https://pubmlst.org/organisms/klebsiella-oxytoca), and the Aeromonas spp. MLST website (https://
pubmlst.org/organisms/aeromonas-spp).

Data availability. Genomic assemblies of chromosomes and plasmids of the seven isolates were
submitted to GenBank under the accession numbers CP068232 and CP068233 (Aeromonas caviae 19),
CP068231 (Aeromonas caviae 21), JAEMTZ000000000 (Aeromonas veronii 22), JAEMUA000000000
(Aeromonas veronii 28), CP066813 to CP066816 (Aeromonas caviae 52), CP066859 to CP066869 (Klebsiella
quasipneumoniae 47), and CP067433 to CP067441 (Klebsiella grimontii KOX 60).
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