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ScatLay: utilizing 
transcriptome‑wide noise 
for identifying and visualizing 
differentially expressed genes
Thuy Tien Bui1, Daniel Lee2 & Kumar Selvarajoo1,3*

Differential expressed (DE) genes analysis is valuable for understanding comparative transcriptomics 
between cells, conditions or time evolution. However, the predominant way of identifying DE genes is 
to use arbitrary threshold fold or expression changes as cutoff. Here, we developed a more objective 
method, Scatter Overlay or ScatLay, to extract and graphically visualize DE genes across any two 
samples by utilizing their pair-wise scatter or transcriptome-wide noise, while factoring replicate 
variabilities. We tested ScatLay for 3 cell types: between time points for Escherichia coli aerobiosis 
and Saccharomyces cerevisiae hypoxia, and between untreated and Etomoxir treated Mus Musculus 
embryonic stem cell. As a result, we obtain 1194, 2061 and 2932 DE genes, respectively. Next, we 
compared these data with two widely used current approaches (DESeq2 and NOISeq) with typical 
twofold expression changes threshold, and show that ScatLay reveals significantly larger number 
of DE genes. Hence, our method provides a wider coverage of DE genes, and will likely pave way for 
finding more novel regulatory genes in future works.

High-throughput and next generation sequencing data analyses have dominated much of biological research 
in the last decade. The major challenge is to tackle the large dataset into a manageable way for key biological 
inference. There has been much effort in the development of statistical tools to interpret the data, especially to 
identify genes that act differently between any two samples, for example, between wild type and mutants or 
across time for a given stimulus1–4.

Till today, the predominant way is to input user defined parameters to select genes for evaluation, such as 2 
or threefold differently expressed, sometimes with a given minimum expression value and/or with a statistical 
null hypothesis (p value) criteria5–7. These approaches have provided valuable insights into the underlying dif-
ferential activation mechanisms, nevertheless, to overcome the arbitrarily or biasedly used selection criteria, we 
require newer methods that provide alternative solutions.

Previously, to reveal how the transcriptional machineries of human and mouse embryonic developmental 
cells evolve with time, we had quantified and used transcriptome-wide noise (squared coefficient of variation) 
as a non-parametric metric to observe key differences between the developmental stages8. Here, we set a similar 
approach to track genes that vary or scatter significantly compared with replicate (technical or operator induced) 
variability.

Results and discussion
Transcriptome‑wide scatter.  We obtained RNA-Seq dataset, from the NCBI GEO database, for Escheri-
chia coli in aerobiosis, Saccharomyces cerevisiae in hypoxia, and Mus Musculus embryonic stem cell (ESC) with 
and without Etomoxir (ETO) treatment (see Materials and Methods). After performing Transcripts Per Kilobase 
Million or Transcripts Per Million (TPM) normalization of the read counts for all samples, we plotted transcrip-
tome-wide expression scatter between any two replicates and between the anchor time (t = 0) and the last time 
points for both E. coli and S. cerevisiae, and between untreated and ETO treated mouse ESC cells (Fig. 1a–c).
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In all the replicate plots, we observe a scatter that reduces with higher expression values resulting in an 
increase of Pearson correlation R with increasing expressions (Fig. 1a–c, left and middle panels). This is expected 
as the effect of noise, such as due to technical variability, tend to become less significant for higher expressions8–10. 
Thus, noise is usually a concern for lower gene expressions. We also observe for all cell types that the transcrip-
tome-wide expression scatter widens, with decreasing R, when samples are compared from anchor time with 
other times (Fig. 1a,b, right panels), or untreated with treated (Fig. 1c). This is an indication that certain number 
of genes are differentially regulated in time or condition; the widening of those gene expressions contributing 
to the observed scatter.

Statistical distribution fitting to remove lower expression or noisy genes.  It is now known that 
gene expressions follow certain statistical distributions, such as Pareto (power-law) or lognormal11–14. Noting 
that lowly expressed genes are generally prone to noise8–10 (Fig. 1), previously we used the statistical distribution 
fittings (Materials and Methods) to select genes for further evaluation13,14. Here, we adopted the same approach 
to remove lowly expressed “noisy” genes.

Figure 1.   Transcriptome-wide expression scatter. (a) E. coli (purple), (b) S. cerevisiae (burgurdy), and (c) mouse 
embryonic stem cell (ESC) derived from blastocysts (green) gene expression scatter between 2 replicates at 
anchor condition (t = 0) for E. coli and S. cerevisiae, and control condition for mouse ESC, (denoted as cond1, 
left panel); between 2 replicates at target condition for E. coli (t = 10 min) and S. cerevisiae (t = 240 min), and 
Etomoxir treated condition for mouse ESC, (denoted as cond2, middle panel); between anchor and target 
condition (right panel).
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Figure S1 shows the transcriptome-wide distribution of the E. coli and S. cerevisiae data for all time points, 
and mouse ESC for control and different treated conditions (Materials and Methods). Comparing with a number 
of statistical distributions and using Akaike information criterion15, we concur that lognormal distribution is the 
best fit for both E. coli and mouse ESC data, while Burr distribution for S. cerevisiae (Fig. S1 and Table S1). Using 
the lower end tail intersection as a threshold, we obtain TPM > 5 for E. coli, while TPM > 2 for both S. cerevisiae 
and mouse ESC as the lower expression noise cut-off level. Overall, for subsequent DE gene analysis, we retained 
3758, 5330, and 11,787 genes for E. coli, S. cerevisiae and mouse ESC data, respectively.

Quantifying transcriptome‑wide scatter as noise.  To quantify or estimate the transcriptome-wide 
scatter of the selected genes, we revisit gene expression noise, which is defined by expression variance over 
square of expression mean (Materials and Methods). Figures 2a and S2 show that transcriptome-wide noise is 
lower between replicates at any time, compared with the anchor time (t = 0) and other time points, or between 
untreated and treated conditions. The higher noise is mainly due to the differentially expressed genes (DE genes). 
Note that the level of noise between any two replicates is almost similar (approximately 0.05) for any time points 
or conditions (Fig. 2a). This indicate the level of noise that one could expect between any two experimental 
samples due to technical, operator or culture media induced variability8,16. Any values beyond this level are most 
likely a result of the differential transcriptional mechanisms that occurs in time, such as for aerobiosis, hypoxia 
or between different experimental treatments.

Identifying differentially expressed genes.  The predominant way of identifying DE genes is based 
on setting arbitrary expression fold change cutoff, e.g. 1.5, 2 or threefold changes17,18. Although these methods 
are generally acceptable for selecting the most highly variable genes, recent works indicate even lowly changing 
genes play key regulatory roles19,20. Hence, a more objective way to identify DE genes can provide a wider spec-
trum of transcriptional processes at play.

Here, we developed a software with graphic user interface (GUI) to overlay and visualize the transcriptome-
wide scatter between any 2 samples (replicates/conditions/time points). The scatters are overlaid over each 
other, and when the expression of any element (gene) of the dataset become overlapping, its original color (e.g. 
green) will change (e.g. to orange). In this simple way, we are able to distinguish and separate genes that are not 
overlapping and are, therefore, differentially expressed.

However, from Fig. 1, it is important to note that gene expressions are variable even between replicates and 
this fact should also be considered when determining DE genes. Thus, we overlaid the replicate data with the 
between condition data as well, and choose the DE genes as the ones that do not overlap in all overlaid scatters. 
To determine DE genes between anchor time (e.g. t = 0) and target time (e.g. t = 10 min) for E. coli and S. cerevi-
siae, and between untreated and ETO treated mouse ESC cells, we overlaid the anchor time (or untreated) and 
target time (or treated) replicate data together onto the required axes (Fig. 2b). As the 2 replicates for each of 
the two conditions resulted in 4 combinatory comparisons (replicate 1-condition 1 vs. replicate 1-condition 2, 
replicate 2-condition 1 vs. replicate 1-condition 2, and so on), we chose DE genes as those that do not overlap in 
all combinations. In other words, the genes from the two-condition scatter that do not overlap (green dots) are 
the actual DE genes, considering the replicate combinatorial variability. In this way, we can visualize and track DE 
genes more objectively for every time point or condition than setting an arbitrary expression threshold cut-off.

One limitation of this approach, however, is the size of dot used to represent a gene; a larger size will result in 
less DE genes compared to a smaller size used as there will be larger artificial overlap due to size on the scatter 
plots (Fig. S3). To overcome this, we performed scatter plot overlay for a range of dot size and computed noise 
(see above section) for the DE genes,  as well as for the remaining (non-DE) genes for each dot size used (Fig. 2c 
and Table 1). As expected, as the dot size increases, the number of DE genes decreased.

To determine a more objective way to choose the correct dot size for selecting DE genes, we utilized the noise 
analysis again. As shown in Fig. 2a, the increased noise between conditions compared to replicates is due to DE 
genes, thus we used the average replicate noise threshold as a means to select the dot size (Fig. 2c). For E. coli, 
the size is 0.004 log10(TPM) which indicates 1194 DE genes while for S. cerevisiae, the indicated size is 0.001 
log10(TPM) resulting in 4455 DE genes. For mouse ESC, dot size of 0.002 log10(TPM) yields 5019 DE genes. 
However, for simplicity, we used the most conservative dot size of E. coli, 0.004 log10(TPM), for all cell types. For 
this, we obtained 2061 and 2932 DE genes for S. cerevisiae and mouse ESC, respectively.

Particularly, when we evaluate the noise of the DE genes and the remaining non-DE genes, we find the latter’s 
noise similar to replicate noise levels and remarkably lower than DE genes’ noise (Fig. 2d). This confirms that our 
selected DE genes are responsible for increasing noise observed between time points. Note that the overlay of 
data is not restricted to replicate data, it can also be overlaid across multiple repeat datasets but with 2 replicates 
at a time. Figure S4 and Table S2 shows the triplicate data, available only for E. coli, is compared at all 3 possible 
combinations, and the total number of DE genes was almost the same (between 1191 and 1194).

Correlation and PCA shows significant response of DE genes.  Previously, we have used Pearson 
auto-correlation and principal component (PC) metrics to track the global, local and attractor gene expression 
responses of several cell types13,21–23. For studying Toll-like receptor induced immune response, the correlation 
metrics revealed that immune-related local genes were highly responsive while myriad global genes showed 
significantly less response21,22. In a similar way, for E. coli, we showed the subset of attractor genes, crucial for 
cell state transition, showed the most pronounced correlation metrics, while the rest of transcriptome lacked 
significance23. The PC metrics revealed that the attractor genes tracked almost identical trajectory compared 
with the transcriptome-wide response23. These data revealed that both correlation and PC metrics can be used 
to test the significance of Scatlay-derived DE genes.
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Figure 2.   Transcriptome-wide expression noise as an indicator for differential expressions. (a) Expression noise 
between 2 replicates at the same time point (between replicate 1 and replicate 2 of condition 1, denoted as r1_c1/
r2_c1 and between replicate 1 and replicate 2 of condition 2, denoted as r1_c2/r2_c2) and between anchor and target 
conditions in 4 combinations of 2 replicates and 2 conditions, after the removal of lowly expressed genes (Fig. S1). 
(b) Distinction between differentially expressed (DE) genes (green) and non-DE genes (orange) by overlaying 
expression scatter between 2 conditions and 2 replicates at all conditions in E. coli (left panel), S. cerevisiae (middle 
panel), and mouse ESC (right panel). (c) Expression noise between anchor and target time points due to DE genes 
(filled circle) and non-DE genes (filled triangle) with scatter dot size ranging from 0.001 to 0.01 log10(TPM)) in E. 
coli (left panel), S. cerevisiae (middle panel), and mouse ESC (right panel). Scatter dot size at 0.004 log10(TPM) for 
E. coli, 0.001 log10(TPM) for S. cerevisiae, and 0.002 log10(TPM) for mouse ESC resulted in non-DE gene set whose 
expression noise between anchor and target time points is comparable to the averaged whole-transcriptome noise 
between 2 replicates (dashed blue line). The most conservative dot size of E. coli, 0.004 log10(TPM) was applied for 
all cell types. (d) Expression noise at scatter dot size 0.004 for transcriptome-wide replicates (Rep), non-DE and DE 
genes between 2 different conditions.
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Here, we checked the progressive time response of (i) whole transcriptome, (ii) DE genes, (iii) rest of tran-
scriptome without DE genes (non-DE), using the same statistical metrics for E. coli and S. cerevisiae only, as the 
time-series data is not available for mouse (Fig. 3). Both auto-correlation and PC metrics reveal that the DE 
genes dominates transcriptome-wide response, while removing them (rest of transcriptome or non-DE) show 
highly subdued response. In other words, the ScatLay-derived DE genes are key for the progressive response of 
both cell types.

Comparison of ScatLay with other DE gene methods.  Next, we compared our results with other 
commonly used techniques based on DESeq2 and NOISeq methods with the conventional threshold of twofold 

Table 1.   Number of differentially expressed genes detected by ScatLay at various scatter dot sizes.

Scatter dot size Number of DE genes in E. coli Number of DE genes in S. cerevisiae Number of DE genes in mouse ESC

0.001 3169 4455 7916

0.002 2216 3191 5019

0.003 1569 2483 3704

0.004 1194 2061 2932

0.005 975 1798 2445

0.006 832 1626 2091

0.007 741 1461 1807

0.008 679 1333 1576

0.009 622 1241 1410

0.01 582 1159 1243

Figure 3.   Auto-correlation and principal component (PC) analysis of whole transcriptome, DE genes and 
non-DE genes. (a) Pearson correlation and (b) Gene expression trajectory on PC1-PC2 space between time t0 
(0 min) and ti (0, 0.5, 1, 2, 5, 10 min for E. coli – left panels) and 0, 30, 60, 120, 180, 240 min for S. cerevisiae – 
right panel) of whole transcriptome (solid black), DE genes at scatter dot size 0.004 log(TPM) (solid orange), 
and non-DE genes (dashed pink). The PC trajectories were obtained by taking the average trajectories of 2 
replicates. The first 2 PCs account for 91.76% total variance in E. coli and 80.25% in S. cerevisiae.
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Figure 4.   Comparison of DE genes by ScatLay, DESeq2, and NOISeq. (a) Number of DE genes detected 
by ScatLay at dot size 0.004 (green), DE genes detected by DESeq2 (dark yellow) and NOISeq (light purple) 
methods with expression fold change above 2 and adjusted p value below 0.05 for E. coli (top panel), S. cerevisiae 
(middle panel), and mouse ESC (bottom panel). (b) Expression noise due to the respective DE genes detected 
by ScatLay, DESeq2 and NOISeq. (c) Averaged expression noise between 2 time points due to the non-DE genes 
detected by DESeq2 (blue) and NOISeq (yellow) with expression fold-change threshold varying from 1.0 to 2.0, 
with adjusted p value below 0.05, in comparison to whole-transcriptome noise between replicates of the same 
condition (dashed line). Non-DE noise level by NOISeq method at 1.75-fold threshold for E. coli (top panel) and 
mouse ESC (bottom pabel), and 1.5-fold threshold for S. cerevisiae (middle panel) are similar to the replicate 
noise level. With p value cut-off at 0.05, DESeq2 non-DE genes show higher noise value than replicate noise at 
every fold change threshold. For DESeq2, p-value was raised to 0.25 to attain similar noise level of non-DE genes 
with replicate noise.
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expression changes and 0.05 p value cut-offs. Notably, ScatLay produces more DE genes than both DESeq2 (261 
genes in E. coli, 494 genes in S. cerevisiae and 553 in mouse ESC) and NOISeq (597 genes in E. coli, 1526 genes 
in S. cerevisiae and 1865 in mouse ESC) (Fig. 4a). One of the reasons for this, based on our noise evaluation 
(Fig. 4b), is that both methods adopt arbitrary threshold cutoffs that are generally more conservative. The strin-
gent thresholds applied on NOISeq and DESeq2 give rise to DE genes with higher noise level than ScatLay DE 
genes for all 3 cell types. In this case, our noise analysis could help determine a better threshold cutoff for higher 
coverage (Fig. 4c). For NOISeq, we observe that, with a p value cut-off at 0.05, expression fold threshold for E. 
coli and mouse ESC yields a value of 1.75, giving rise to 780 and 2705 DE genes, respectively, while it is 1.5 for S. 
cerevisiae, providing 2734 DE genes when matched with ScatLay noise benchmark.

For DESeq2, however, at any expression fold threshold cutoff above 1 with p value at 0.05 yields noise that 
are greater than ScatLay noise benchmark for all cell types. This indicate that DESeq2 is very stringent initially 
and our noise analysis could be used in conjunction to improve the overall coverage of DE genes. Thus, expres-
sion noise analysis is a useful tool to provide higher coverage of DE genes, and it can be used in conjunction 
with both ScatLay and other DE analysis methods like the popularly used DESeq2 or NOISeq, as discussed here.

To obtain a reduced or finer set of DE genes in ScatLay, we derived a method to determine a threshold cutoff 
based on p value estimation from kernel density estimation (Materials and Methods). To determine the prob-
ability whether a gene is DE, 2D kernel density estimation allows determining the possibility for a gene in the 
between-condition scatter to be overlapped by the between-replicate scatter (Fig. S5a). We applied the conven-
tional p value cutoff of 0.05, in conjunction with ScatLay at scatter dot size 0.004 log10(TPM) (Fig. 2c), and found 
815, 1744 and 2091 DE genes in E. coli, S. cerevisiae, and mouse ESC data, respectively. We also further included 
two fold expression threshold to ScatLay DE genes, and most of ScatLay-specific DE genes were eliminated 
by this criterion (Fig. S5b). For these 2 commonly used arbitrary cutoffs, ScatLay DE genes consist mainly of 
the overlapping DESeq2 and NOISeq DE genes. Notably, ScatLay still show higher coverage than NOISeq and 
DESeq2 DE genes. (Fig. S5b and Table 2).

Finally, we conducted gene enrichment analysis (Gene Ontology Consoritum24) on the DE genes detected by 
ScatLay with a p value threshold of 0.05. We observed that the 815 DE genes of E. coli in aerobiosis are mostly 
enriched in cellular respiration, DNA processes and homeostasis (Fig. 5 and Table S3). The 1744 DE genes of 
S. cerevisiae in hypoxia largely consist of RNA metabolism, ribosome biogenesis, and methylation, whereas, 
processes such as anatomical structure development, smell sensory perception, and cell cycle are elucidated for 
the 2091 DE genes of mouse ESC in ETO treatment (Fig. 5 and Table S3).

Notably, we observe that a small number of DE genes detected by NOISeq were not picked up by ScatLay at 
p value < 0.05 (34 genes in E. coli, 171 genes in S. cerevisiae and 478 genes in mouse ESC—Fig. S5b, top panel). 
Nevertheless, gene enrichment analysis did not show any known biological function for these NOISeq-specific 
DE genes from E. coli and S. cerevisiae types. For mouse ESC, the 478 NOISeq-specific genes are enriched in 
9 biological processes only, consisting of mostly regulation of cellular process and phosphorous metabolism 
(Table S4). On the other hand, the 252 ScatLay-specific DE genes (p value < 0.05) in E. coli show enrichment in 
serine amino acid metabolism, locomotion, and translation processes. In S. cerevisiae, the 389 ScatLay-specific 
genes are enriched in 128 biological processes, including ribosome biogenesis, translation, and gluconeogenesis. 
In mouse ESC, 430 enriched biological processes are detected for the 704 ScatLay-specific genes, such as devel-
opmental process, cell cycle phase transition, and regulation of apoptosis (Table S5).

Table 2.   Number of differentially expressed genes detected by ScatLay with different cutoff criteria and their 
percentage coverage of DESeq2 and NOISeq DE genes.

Number of genes DESeq2 Coverage NOISeq Coverage

E. coli

ScatLay 1194 100% 100%

ScatLay with p value cutoff 815 100% 94.50%

ScatLay with p value and expression fold cutoff 563 100% 94.00%

NOISeq with p value and expression fold cutoff 597 100% –

DESeq2 with p value and expression fold cutoff 261 – 43.70%

Yeast

ScatLay 2061 100% 90.60%

ScatLay with p value cutoff 1744 99.80% 88.90%

ScatLay with p value and expression fold cutoff 1353 99.80% 88.50%

NOISeq with p value and expression fold cutoff 1526 100% –

DESeq2 with p value and expression fold cutoff 494 – 32.30%

Mouse

ScatLay 2392 95.50% 82.30%

ScatLay with p value cutoff 2091 95% 74.40%

ScatLay with p value and expression fold cutoff 1382 95% 73.70%

NOISeq with p value and expression fold cutoff 1865 99.10% –

DESeq2 with p value and expression fold cutoff 553 – 29.40%
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Figure 5.   Enriched gene ontology of DE genes detected by ScatLay at scatter dot size 0.004 log10(TPM) and 
p value threshold at 0.05 for E. coli (top panel), S. cerevisiae (middle panel), and mouse ESC (bottom panel). 
Enrichment analysis were first retrieved from Gene Ontology Consortium with defaulted over-representation 
test parameters, and then refined and visualized by REVIGO tool32. The full list of enriched gene ontology terms 
is shown in Table S3.



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17483  | https://doi.org/10.1038/s41598-020-74564-1

www.nature.com/scientificreports/

Overall, ScatLay elucidates statistically reliable DE genes with overall higher coverage, without or with thresh-
old cutoff, as compared with DESeq2 and NOISeq. As the 3 methods compared originate from distinct statistical 
methodologies and assumptions, it is inevitable to obtain a small number of distinct DE genes pertaining to 
each method. Notably, even with p value and expression threshold cutoff, ScatLay covered almost all the genes 
of DESeq2. However, NOISeq picks up several distinct DE genes not captured by ScatLay. Nevertheless, further 
experimental work is necessary to investigate these distinct DE genes captured by each method.

Conclusion
Here, we developed a new method, implemented in R programming language with a graphical user interface, to 
identify and visualize DE genes through overlaying transcriptome-wide expressions between samples (replicates, 
condition or time points). Unlike approaches that uses arbitrary threshold levels to select DE genes, here the genes 
are checked for replicate variability before sample variability by our noise analyses. Overall, our method provides 
a novel way to uncover DE genes that are not biased by user defined threshold cutoff and are able to produce a 
larger overall coverage. Nevertheless, we also provide an optional utilization of p value cut-off, derived from 2D 
kernel density of between-replicate scatter plots, if further reduction of DE genes is required, for example, to 
focus only on the highly variable genes.

Materials and methods
Data.  We obtained time-series RNA-Seq dataset, in raw read counts, for Escherichia coli in aerobiosis (GEO 
accession number GSE71562)25, Saccharomyces cerevisiae in hypoxia (GEO accession number GSE85595)26, and 
Mus Musculus embryonic stem cell in different treatment or gene knock-out conditions (GEO accession number 
GSE137138)27.

Briefly, for the E. coli, K-12 strain W3110 was grown in a 3-L continuously stirred tank bioreactor anaerobi-
cally at pH7 and 37 °C. The first sample was drawn (t = 0) when OD of 3 at 600 nm was achieved, and air supply 
of 1L/min was then initiated. Subsequent samples were taken, at t = 0.5, 1, 2, 5 and 10 min25.

For S. cerevisiae (strain yMH914 with wildtype HAP1), cells were subjected to 100% nitrogen gas and col-
lected after 0, 5, 10, 30, 60, 120, 180, and 240 min26. Total RNA was extracted and mRNAs were enriched by 
polyA selection.

Mouse ESCs were derived from blastocysts of 2–6-month-old male mice from C57BL/6 strain. Mouse ESCs 
from E14tg2a cell lines were cultured in 2i/LIF medium, and treated with H2O (control), or Etomoxir (ETO), 
or then released from ETO for another 4 days (ETO-released). Wild-type mouse ESCs and Mof-deleted (Mof 
knock-out or Mof-KO) mouse ESCs were cultured in 2i/LIF medium with Ethanol (WT) or 4-OHT (Mof-KO)27. 
In this study, we selected only the control and ETO conditions for DE analysis.

In all datasets, the cDNAs were prepared into a sequencing library, multiplexed and sequenced by an Illumina 
HiSeq 2500 sequencer. In total, there were 4240, 6494 and 17,392 non-zero gene expressions with gene lengths 
for E. coli, S. cerevisiae and mouse ESC, respectively. For our analysis, we chose replicate data with best pairwise 
correlation for each species at each time point.

Statistical distributions fitting.  Fitting gene expression distributions was performed using the Maxi-
mum-likelihood Fitting method (fitdistplus packge28 for parameter fitting and the mass package29 for log-nor-
mal, Pareto, Burr, Loglogistic, Weibull and Burr distributions30).

Gene expression noise.  Gene expression noise, η2, is defined by gene expression variance (σ2) over square 
of mean (μ2)8,10,16. To compute transcriptome-wide noise, we need to first evaluate noise of each gene (i = 1, …, 
m) between pairs of replicates or samples (j,k = 1,…,n):

where xij and xik is the expression value of the ith gene in the jth and kth replicates/samples, and 
σ 2

i(jk)
= (xij − xik)

2/2 and µ2

i(jk)
= (xij + xik)

2/4 are the variance and square mean expression. We then summed 

the noise values of all genes between pairs of samples (j,k = 1,…,n) to calculate the total noise for each transcrip-
tome, such as

where m is the total number of genes.

Probability of differential expression for Scatlay.  We select DE genes from the between-condition 
scatter as those not overlapped onto the between-replicate scatters. Thus, the probability whether a gene is dif-
ferentially expressed equates the probability for its between-condition gene expression vector [ xi1,xi2 ] (with i = 1, 
…, m) to fall into the cloud of gene expression scatter between 2 replicates:

η2i(jk) =
σ 2

i(jk)

µ2

i(jk)

= 2

(

xij − xik
)2

(

xij + xik
)2

η2 =

m
∑

i=1

η2i
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in which f is the estimated kernel density function on between-replicate scatters:

where Xk is the concatenated gene expression vector in 2 conditions at replicate k (k = 1,2), GH is 2D Gaussian 
kernel function at variance matrix (bandwidth) H, and the variance matrix H was estimated based on X1 and X2 
vectors using hpi function from ks package31.

Code availability
The ScatLay source code with user instructions can be found on URL: https​://githu​b.com/buith​uytie​n/ScatL​ay.
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