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Abstract

The outbreak of the COVID-19 disease was first reported in Wuhan, China, in December

2019. Cases in the United States began appearing in late January. On March 11, the World

Health Organization (WHO) declared a pandemic. By mid-March COVID-19 cases were

spreading across the US with several hotspots appearing by April. Health officials point to

the importance of surveillance of COVID-19 to better inform decision makers at various lev-

els and efficiently manage distribution of human and technical resources to areas of need.

The prospective space-time scan statistic has been used to help identify emerging COVID-

19 disease clusters, but results from this approach can encounter strategic limitations

imposed by constraints of the scanning window. This paper presents a different approach to

COVID-19 surveillance based on a spatiotemporal event sequence (STES) similarity. In this

STES based approach, adapted for this pandemic context we compute the similarity of

evolving daily COVID-19 incidence rates by county and then cluster these sequences to

identify counties with similarly trending COVID-19 case loads. We analyze four study peri-

ods and compare the sequence similarity-based clusters to prospective space-time scan

statistic-based clusters. The sequence similarity-based clusters provide an alternate surveil-

lance perspective by identifying locations that may not be spatially proximate but share a

similar disease progression pattern. Results of the two approaches taken together can aid in

tracking the progression of the pandemic to aid local or regional public health responses

and policy actions taken to control or moderate the disease spread.

Introduction

The first reported case of Coronavirus disease 2019 (COVID-19) appeared in the US in Wash-

ington State in January 2020. Cases then began to appear around the country, creating an out-

break more severe than that experienced in the city of Wuhan, China, where the initial

outbreak occurred [1], as well as in many European countries [2, 3]. By mid-March 2020 the

outbreak had spread to many states and by late April over one million confirmed cases had

been reported in the US.

To anticipate and detect outbreaks, the World Health Organization (WHO), many national

and local health departments, academic or other non-profit organizations continuously
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collected information about occurrences of COVID-19. Incidence cases were cumulatively

added to different online repositories [4–6]. Quick detection of emerging geographical clusters

or space-time clusters of COVID-19 can aid public health agencies in prioritizing spatial loca-

tions for allocation of different kinds of medical resources including testing kits and applying

efficient and publicly acceptable interventions. Versions of space-time scan statistics have been

widely used to identify significant clusters of various diseases [7–11] as well as in the current

COVID-19 crisis [12, 13]. Space-time scan statistics use circular or elliptical scanning windows

of a series of sizes in combination with varying time intervals to systematically scan a study

area to detect clusters of disease cases. The Poisson based space-time scan statistic evaluates

each scan window for numbers of cases and tests for locations exceeding the number of

expected cases under a Poisson distribution.

The prospective Poisson space-time scan statistic has been successfully used for space-time

surveillance of different epidemic diseases. As Kulldorff et al. proposed [9, 10], this method

focuses on detecting emerging clusters that start at any time during the study period and

remain identifiable at the current time (i.e., active or alive), which is the major difference com-

pared to the retrospective space-time scan statistic. Jones et al. used this method to detect

twelve “live” or emerging statistically significant (p-value� 0.05) clusters of shigellosis in the

city of Chicago [14], the results of which helped local health departments to prioritize the

assignment and investigation of shigellosis cases. The prospective Poisson space-time scan sta-

tistic has also been utilized to identify emerging clusters in other diseases such as thyroid can-

cer among men in New Mexico (1973–1992) [9], syndromic surveillance [15], measles [16],

and dengue fever [17]. More recently, it has been used to detect “active” clusters of COVID-19

confirmed cases in the United States [12, 18].

While the prospective space-time scan statistic is a good option for detecting emerging

space-time clusters of infectious diseases, there remain some limitations. The effectiveness of

the circular scan window decreases as the shape of emerging clusters becomes more irregular.

Detected clusters may contain locations without confirmed cases or with low relative risk due

to the artifact of the scanning process [10, 12, 19], although this limitation can be minimized

by reporting the individual relative risk for the included locations in each cluster. For the Pois-

son model, the results depend on accurate data on the population at risk, which may be hard

to obtain. Furthermore, the prospective space-time scan statistic as an exploratory method,

should be followed with other surveillance measures and more detailed investigation of trans-

mission dynamics and pathogenic mechanics of COVID-19 to better understand detected

emerging clusters [12].

While the prospective space-time scan statistic has demonstrated value for COVID-19 sur-

veillance, the objective of this study was to demonstrate a different but complementary view of

COVID-19 outbreak patterns. The space time scan statistic detects hotspots but does not

inform about locations that may be spatially disparate yet may be exhibiting highly similar pat-

terns in disease case count evolution. To capture this dynamic, we employed an event sequence

similarity metric on the sequences of daily COVID incidence rates by county. This event

sequence similarity metric was then used to cluster counties exhibiting similarly evolving

COVID -19 case histories. The resulting identification of locations exhibiting similar evolu-

tionary patterns in the disease provides another aid for public health responses and under-

standing of disease dynamics. In the remainder of this paper, we describe this event sequence

similarity metric as applied to COVID-19 daily incidence rates and compare it with results of

the prospective Poisson space-time scan statistic. We use four time periods to illustrate pro-

gression of COVID-19 outbreaks through the lens of prospective space-time scan statistic gen-

erated clusters and event sequence similarity clusters. The two approaches provide different

but complementary aids to COVID-19 surveillance. One tells us of emerging spatial hotspots,
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the other tells us of collections of locations that for some reasons have statistically similar

evolving COVID-19 incidence patterns.

Materials and methods

Data acquisition and processing

We accessed COVID-19 raw daily global collection data from the GitHub repository (https://

github.com/CSSEGISandData/COVID-19) created and maintained by the Johns Hopkins

University Center for Systems Science and Engineering (JHU CCSE) [20]. The specific time

series dataset for this research contains FIPS codes, state names, geolocations, and confirmed

cumulative cases, starting from January 22, 2020 through selected ending dates. JH CCSE con-

tinues to semi-automatically or automatically update their site daily (https://raw.

githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/).

County level population data for the USA were obtained from the national US Census with

estimates for 2019. The ESRI ™ shapefiles of US states and counties used for Geographic Infor-

mation System (GIS) mapping were downloaded from the TIGER geography portal (US Cen-

sus Bureau) (https://www.census.gov/cgi-bin/geo/shapefiles/index.php).

We focused the analysis on the 48 contiguous states and Washington D. C.. The dataset was

cleaned by filtering out the records without “FIPS” codes and names of counties, and with

“FIPS” > 8000 (assigned with “Out of AL”, “Out of AK”, . . ., “Out of WY”). We combined the

cleaned COVID-19 dataset with the U.S. census data at the county level through the “FIPS”

codes and double checked the correctness of the spatial information (Latitude and Longitude).

Because the COVID-19 dataset only contains cumulative case counts, we obtained the daily

confirmed cases by subtracting the previous day’s number from the current day’s reported

cumulative cases. The daily incidence rate for each county was obtained as daily confirmed

cases divided by county population and multiplied by 10,000. We chose the data from the first

wave of the COVID-19 pandemic in the US in 2020 for this study. The entire duration of the

first wave is further divided into four analysis periods considering the incubation time for the

disease mostly ranging from 1–14 days with the average of 5 days [21] and the slow case incre-

ment at the beginning time in January and February, 2020. The four analysis periods each start

from January 22 and cover roughly 2–4 week separations corresponding to an early period 1)

March 13, and spiking periods 2) March 31, 3) April 19 and 4) May 20.

Prospective Poisson space-time scan statistic

We used the prospective Poisson space–time scan statistic as implemented in SaTScan (http://

www.satscan.org/) to detect clusters of COVID-19 cases that remained active at the end of

each study period. The space–time scan statistic (STSS) is briefly introduced here, and more

details can be obtained from [9, 10, 12, 22]. With spatial scan statistics we can identify the loca-

tions of clusters of cases. A cluster can be defined as a set of points or regions, at a user defined

granularity, with either high or low rates of incidence. For this study, the focus was high rates

of COVID-19 incidence. Conceptually the STSS uses a cylinder as the scanning window,

where the circular base of the cylinder captures the spatial dimension while the height repre-

sents a temporal interval. To identify space-time clusters at the county level, the center of the

circular base is co-located with the centroid of each county. As the scan progresses, the radius

of the circular base and the height of the cylinder changes from lower bounds to spatial and

temporal upper limits. Similar to [12] we set the maximum scanning window base to include

up to 10 percent of the total population to avoid the potential of extremely large clusters (ie.

covering a quarter of the country) especially as may occur at the beginning stage of the epi-

demic, and the upper temporal bound to 50% of the entire study period. As each cylinder
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moves over the study area, it covers a different set of cases for different time intervals, which

can be considered as potential emerging space-time cluster candidates. We set the cluster’s

duration to a minimum of 2 days and required at least 5 incidents or confirmed cases of

COVID-19 as described in [12].

The age structure of a population will influence the incidence of disease, and deaths from

COVID-19 are several times higher in older age groups as noted by others [12]. However, we

were unable to access age and sex data at this time for cases in this study, so we could not adjust

for age and sex. Assuming that COVID-19 incidence follows a Poisson distribution according

to the county population, e.g. the assumed population at risk [9], the likelihood ratio test statis-

tic and the relative risk for each scan cylinder was calculated based on the description in [7–9,

12]. The cylinder with the maximum likelihood ratio identifies the location with the most

likely elevated risk for COVID-19. We used Standard Monte Carlo simulations (999) in the

SaTScan setting to calculate the statistical significance of detected clusters with a p-value equal

or less than 0.05 being considered statistically significant. SaTScan computes the relative risk

(RR) for each cluster and individual counties. The RR for a county within a cluster can be cal-

culated as in [18]:

RRcty ¼
c=e

ðC � cÞðC � eÞ

Where, c is the total number of cases in a county, C is the total number of observed cases in

the conterminous US, and e is the expected number of cases in a county calculated as e ¼
pcty � C

P (pcty is the population in a county, P is the total population). We used ESRI ArcGIS 10.6

(www.esri.com) GIS software to create cartographic representations for these detected emerg-

ing clusters at the county level.

Event sequence similarity-based cluster analysis

Our event sequence similarity approach focuses on the temporal evolution of events occurring

at fixed locations. In this study, an event corresponds to the COVID-19 daily incidence rate for

a county and a COVID-19 event sequence for a county is the sequence of daily incidence rates

covering a specific study period. We compute the similarity of these county level COVID-19

event sequences using a time ordered Jaccard measure [23–25]. Briefly, this measure uses all co-

occurrence time points between two event sequences es1 and es2, and calculates the similarity

between two events at the co-occurrence timestamp based on their level of measurement. The

similarity between two counties’ COVID-19 event sequences is calculated as below:

simcounty es1; es2ð Þ ¼

PC
j¼1
ð1 � Absðlevðes1jÞ � levðes2jÞÞÞ

jes1 [ es2j

where,

simcounty(es1, es2)–Similarity between county level event sequences es1 and es2,

es1j, es2j–the event values for two corresponding co-occurring events in es1 and es2 at time-

stamp j.
lev(es1j), lev(es2j)–the relative event levels of two corresponding co-occurring events in es1

and es2 at timestamp j, respectively:

lev es1j

� �
¼

es1j

es1j þ es2j
and lev es2j

� �
¼

es2j

es1j þ es2j

C –the total number of co-occurring timestamps,
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Abs(lev(es1j)–lev(es2j))–absolute value of difference between relative event levels of two cor-

responding co-occurring events in es1 and es2 at timestamp j,
|es1 [ es2|–Cardinality of the union of two event sequences es1 and es2.

We then used the computed COVID-19 event sequence similarity measures between coun-

ties as the metric for hierarchical clustering [26]. All similarity computations and clustering

tasks were implemented in R. The hierarchical clustering was performed using the hclust R

function with the linkage method of Ward.D2. The optimal number of clusters was evaluated

using the elbow method [27–29]. This method supports selection of the number of clusters at

which the total within-cluster sum of square (WSS) no longer improves. In a plot of number of

clusters versus WSS, the optimal cluster number is visually associated with the point at which

the WSS value flattens.

Comparison of prospective space time scan and event sequence similarity-

based clusters

To support comparison of the two methods we used the counties identified in the prospective

Space time scan statistics as having relative risk > 1 as the counties for analysis with the

sequence similarity metric. All other counties not included in this set were labeled as OC

meaning outside clusters. We include them in Figs 3, 6 and 9 in the graphs of incidences curves

for each study period to show their temporal incidence pattern as a baseline.

Results

Space-time clusters and sequence similarity-based clusters at county level:

Study period 1 (1/22-3/13/2020)

In this early period, COVID-19 was just appearing in the US with the first case reported in

Snohomish County Washington on January 19. For this period, the prospective space-time

scan statistic identified 11 statistically significant (p-value < 0.05) clusters shown graphically

in Fig 1 and summarized in Table 1. These clusters, aside from one in California and two in

New York, are generally quite large and counties within them with RR> 1 are few and gener-

ally spatially dispersed. Because of the generally large size of these clusters, identifying the spa-

tial specificity of an outbreak is limited.

Based on the elbow evaluation method, 8 event sequence similarity-based clusters were

defined for this period (Fig 2). Fig 3 shows the map representation of these clusters along

with their temporal profiles. Members of Cluster 3 that include counties in Washington

State, California and New York show the earliest onset and the fastest case accumulation.

Members of Cluster 5 show an early onset that initially tracks Cluster 3 but then abruptly

flattens and then decreases in early March. Members of this cluster include 3 counties in

California and one in Minnesota. Cluster 2 members show a delayed occurrence in cases

but an extremely fast case accumulation over a few days. The 8 members of this cluster are

generally in isolated rural settings in Colorado, Oklahoma, Wyoming, South Dakota, Wis-

consin, Louisiana and Indiana. Members of Cluster 6 showed initiation of cases at approxi-

mately the same time as Cluster 2 but levelled off quickly at a lower incidence rate. The

cluster containing counties in New York suggests initial points of entry and situations con-

ducive to rapid acceleration of cases such as high density or tight knit communities. A pair-

wise comparison of cluster numbers for the 1st study period from these two approaches can

be found in S1 Table.
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Space-time clusters and sequence similarity-based clusters at county level:

Study period 2 (1/22-3/31/2020)

Results from the prospective space-time scan statistics analysis for the second study period

(through March 31) identified twenty-four space-time clusters of COVID-19 as statistically

significant (Fig 4 and Table 2). This period shows a growing emergence of spatial clusters

Fig 1. COVID-19 space-time scan hotspots in the United States at the county level from 1/22/-3/13/2020.

https://doi.org/10.1371/journal.pone.0252990.g001

Table 1. Attributes of prospective space-time clusters (hotspots) for COVID-19 from 1/23-3/13/2020 at the county level.

Duration Radius Observed Expected Relative Population #County #County

Cluster Start Date End Date (Days) (Km) Cases Cases Risk (RR) p-value at Risk (total) (RR>1)

1 3/10 3/13 4 806.37 389 38 12.28 <0.001 888,297 238 14

2 3/7 3/13 7 0.00 139 15 10 <0.001 189,707 1 1

3 3/10 3/13 4 551.69 66 18 3.83 <0.001 167,447 404 16

4 3/9 3/13 5 364.08 42 10 4.29 <0.001 87,766 262 16

5 3/12 3/13 2 32.48 102 47 2.21 <0.001 1,267,395 9 6

6 3/12 3/13 2 91.08 10 0 29.12 <0.001 7,438 35 3

7 3/5 3/13 9 49.70 93 42 2.25 <0.001 790,544 3 3

8 3/9 3/13 5 178.04 9 0 26.67 <0.001 2,607 94 3

9 3/10 3/13 4 224.18 12 1 14.16 <0.001 15,926 104 3

10 3/10 3/13 4 253.24 12 1 10.51 <0.001 8,832 64 3

11 3/7 3/13 7 264.34 88 47 1.91 <0.001 824,139 36 12

Note: Space-time clusters were identified using the spatial scan statistic with a Poisson model.

https://doi.org/10.1371/journal.pone.0252990.t001
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across the US, but generally more consolidated clusters as the number of cases grow. The

space-time clusters are smaller than in the first period and several detected clusters contain a

single county (cluster radius = 0). This period shows a shift toward more clusters appearing in

the interior US relative to the coasts.

For this second study period the sequence similarity clustering resulted in 8 clusters based

on the elbow method evaluation (Fig 5). Fig 6 shows the map of these clusters and their tempo-

ral signatures. For this period, only three clusters deviate from the outside cluster (OC) set

Fig 2. Elbow method evaluation and hierarchical clustering results for the 1st period. Notice that the numberings and colors of STES clusters match with

those of corresponding clusters on the map and the temporal trend graph in Fig 3.

https://doi.org/10.1371/journal.pone.0252990.g002
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pattern. Cluster 7 shows the most rapid increase in cases. Members of this cluster include

Miami, San Jose, Los Angeles area counties, Chicago, Detroit, New Orleans and New York

metropolitan counties. Members of Cluster 8 show a slower and less rapid increase in cases.

Some of these members appear in a group across New Jersey and Pennsylvania, around Balti-

more, Denver and Seattle. Cluster 4 follows a similar trajectory with some concentrations

around New Orleans, Columbus Georgia, and Indianapolis. Members of this cluster also

appear in more isolated rural settings in Arizona, Oklahoma and South Dakota. A pairwise

comparison of cluster numbers for the 2nd study period from these two approaches can be

found in S2 Table.

Space-time clusters and sequence similarity-based clusters at county level:

Study period 3 (1/22-4/19/2020)

For the third study period, the prospective space-time cluster statistic detected 47 statistically

significant clusters (p�0.05) as shown in Fig 7. Associated cluster characteristics are shown in

Table 3. In this period more clusters are emerging in the southern US, with additional new

pockets in Montana and a cluster covering Nebraska and South Dakota. Metropolitan New

York remains an active cluster and a more condensed Mid-Atlantic coast cluster has emerged.

We see additional consolidation in the size of clusters with 25 appearing as a single county.

Fig 3. Sequence similarity-based COVID-19 clusters along with average temporal trends at the county level through 3/13/2020. This map includes the counties with

higher relative risk (RR>1) contained in all the clusters detected by scan statistics in Fig 1. The average temporal trends of cumulative cases for STES clusters 1–8 on the

map appear at the bottom right. Notice that the colors of STES clusters match with correspondingly colored dots on the map and with the colors of the STES cluster

curves on the graph. OC includes all counties not included in the clusters.

https://doi.org/10.1371/journal.pone.0252990.g003
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For the third study period, ten sequence similarity-based clusters were selected using the

elbow method (Fig 8). Fig 9 shows the map of these clusters and their temporal profiles. Clus-

ter 8 shows a distinct early and more rapid accumulation of cases. Many members of this clus-

ter were members of Cluster 7 in the previous study period. These members include Chicago,

Detroit metropolitan area, Miami, Philadelphia, and metropolitan New York counties. Some sig-

nificant missing members in Cluster 8 from the previous period Cluster 7 are San Jose, Los Ange-

les and Las Vegas. Cluster 9 shows a group with the next most rapidly developing number of

cases. Within this group, some members appear concentrated around metropolitan New York,

Philadelphia, Baltimore and Washington DC, and Denver. Cluster 10, as the third most rapidly

merging cluster for this period, has members in a halo like pattern around metropolitan New

York, Philadelphia and New Orleans. Other members, however, appear in more isolated rural set-

tings in New Mexico, Utah, and Washington State. This group includes the Hopi, Zuni, Navajo

and Yakima national reservations. Two other clusters to note in this group are Cluster 7 and Clus-

ter 2 which show later initiation times in terms of case accumulation but appear to be accelerating

at the end of the study period. Many of these members show a concentration in southern Indiana

and western Kentucky respectively, with another grouping of Cluster 7 members appearing in

southwestern Georgia on the border with Alabama. A complete pairwise comparison of cluster

numbers for the 3rd study period from these two approaches can be found in S3 Table.

Space-time clusters and sequence similarity-based clusters at county level:

Study period 4 (1/22-5/20/2020)

For the fourth study period ending on May 20, 2020 the prospective space-time scan statistic

identified 87 statistically significant clusters. Table 4 provides the characteristics of these 87

Fig 4. COVID-19 space-time scan statistic detected hotspots in the United States at county level through 3/31/2020.

https://doi.org/10.1371/journal.pone.0252990.g004
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active space-time clusters at the end of May 20, 2020. From Fig 10 we can observe that in this

period clusters continued to emerge in southern states and more clusters emerge in the moun-

tain west. The previous cluster covering Nebraska and South Dakota has expanded into Iowa,

North Dakota and Minneapolis. The metropolitan New York cluster has consolidated and the

prior period mid-Atlantic cluster has consolidated to an emerging cluster around

Philadelphia.

In this fourth period, using the sequence similarity-based clustering, we selected 10 clusters

based on the elbow method evaluation (Fig 11). Fig 12 presents a map of these clusters and

their temporal signatures. In this period, Cluster 8 which includes Miami, Chicago, Detroit,

Los Angeles, Philadelphia and New York metropolitan counties is the fastest growing in term

of cases. Clusters 7 and 9 start out with similar increases in cases but Cluster 7 members show

a levelling off in early May relative to Cluster 9. Cluster 10 shows a delayed start but steady

increase starting in early April. Cluster 5 shows a different trajectory in that it shows a much

slower start to case accumulation but then exhibits a sharp increase starting in mid-April,

increasing more rapidly than Clusters 10 and 7. Cluster 4 initially falls below the outside cluster

“OC” group but then shows a sharp jump and more rapid accumulation. More detailed infor-

mation on pairwise comparison of cluster numbers for the 4th study period from these two

approaches can be found in S4 Table.

Table 2. Attributes of prospective space-time clusters (hotspots) for COVID-19 from 1/23-3/31/2020 at the county level.

Duration Radius Observed Expected Relative Population #County #County

Cluster Start Date End Date (Days) (Km) Cases Cases Risk (RR) p-value at Risk (total) (RR>1)

1 3/22 3/31 13 89.28 82,928 10,049 14.35 <0.001 6,395,723 22 22

2 3/22 3/31 10 43.08 5,887 1,526 3.95 <0.001 1,074,213 3 3

3 3/20 3/31 12 73.70 3,152 487 6.57 <0.001 292,363 8 8

4 3/27 3/31 5 0.00 3,078 1,012 3.08 <0.001 2,201,911 1 1

5 3/24 3/31 8 73.96 680 68 9.97 <0.001 39,490 20 18

6 3/26 3/31 6 60.42 2,587 1,102 2.37 <0.001 1,370,768 2 2

7 3/24 3/31 8 62.27 2,041 846 2.43 <0.001 1,345,457 4 4

8 3/19 3/31 13 95.88 190 11 17.17 <0.001 5,083 4 3

9 3/30 3/31 2 307.75 1,528 729 2.11 <0.001 1,822,585 262 82

10 3/16 3/31 16 82.42 313 54 5.78 <0.001 28,677 5 5

11 3/20 3/31 12 146.72 214 38 5.6 <0.001 20,460 9 4

12 3/29 3/31 3 325.81 4,574 3,543 1.3 <0.001 6,684,959 257 75

13 3/27 3/31 5 210.38 787 448 1.76 <0.001 647,610 43 10

14 3/30 3/31 2 0.00 1,190 789 1.51 <0.001 3,855,599 1 1

15 3/25 3/31 7 50.46 206 72 2.88 <0.001 57,714 5 2

16 3/23 3/31 9 49.14 84 14 5.86 <0.001 5,999 5 4

17 3/30 3/31 2 240.79 344 179 1.92 <0.001 528,991 11 3

18 3/29 3/31 3 0.00 27 2 11.75 <0.001 1,412 1 1

19 3/14 3/31 18 36.13 105 44 2.4 <0.001 20,986 2 2

20 3/22 3/31 10 42.64 35 8 4.27 <0.001 3,227 4 4

21 3/30 3/31 2 0.00 244 152 1.61 <0.001 991,866 1 1

22 3/24 3/31 8 54.38 22 4 5.76 <0.001 1,899 8 5

23 3/27 3/31 5 139.67 101 50 2.02 <0.001 49,538 2 2

24 3/11 3/31 21 188.69 48 17 2.85 <0.001 6,210 45 16

Note: Space-time clusters were identified using the spatial scan statistic with a Poisson model.

https://doi.org/10.1371/journal.pone.0252990.t002
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Discussion

For this study we compared two approaches for COVID-19 surveillance. In combination, the

two approaches provide complementary views that can offer a more comprehensive picture of

surveillance information to further aid public health analysis and monitoring. The space-time

scan statistic identifies emerging clusters as locations where the observed number of cases

most exceeds the expected number of cases in space-time based on the underlying population.

This approach provokes questions of why the disease is emerging at such a location during a

period of time. For disease progression, where the temporal pattern is equally important,

Fig 5. Elbow method evaluation and hierarchical clustering results for the 2nd period. Notice that the numberings and colors of STES clusters

match with those of corresponding clusters on the map and the temporal trend graph in Fig 6.

https://doi.org/10.1371/journal.pone.0252990.g005
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similarity in the sequence of daily incidence rates adds valuable information as it points to

locations where the disease is progressing in a similar fashion. This view provokes questions of

why these sometimes spatially dispersed locations are behaving in a similar way.

An initial working hypothesis for the STES sequence similarity metric in an environmental

monitoring context was that locations that are spatially close are more likely to exhibit similar

event sequences. While this is born out in some instances in this pandemic context, we found

that in all study periods, similar sequence patterns of COVID-19 cases can be quite spatially

separated. This result suggests that spatial proximity is not always a driver of sequence similar-

ity. It has been reported that socio-economic or demographic characteristics could explain the

different transmission rates or patterns between communities and locations [30]. Because

members of these clusters share similar temporal disease progressions, questions arise as to

whether they share some similar underlying characteristics such as similar population density,

similar populations at risk, similar changes in surveillance programs, or possibly similar inter-

vention strategies at work.

Sequence similarity Cluster 3 in the first study period which covers the first appearance of

COVID-19 in the US shows the earliest and fastest accumulating number of cases suggesting

initial points of entry. As members of this cluster include Snohomish and King counties in

Washington State, several California counties in the San Francisco Bay area, and Bronx, Kings,

Queens, Wassau, and New York counties in New York state these do align with the known

Fig 6. Sequence similarity-based COVID-19 clusters along with average temporal trends at county level during 1/22/2020-3/31/2020. This map includes the counties

with higher relative risk (RR>1) contained in all the clusters detected by scan statistics in Fig 3. The average temporal trends of cumulative cases for STES clusters 1–8 on

the map appear at the bottom right. Notice that the colors of STES clusters match with correspondingly colored dots on the map and with the colors of the STES cluster

curves on the graph. OC includes all counties not included in the clusters.

https://doi.org/10.1371/journal.pone.0252990.g006
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entry points on the east and west coasts. Seemingly unusual members in this cluster are John-

son County Iowa; Kershaw County, South Carolina; Williamson, Tennessee; and Douglas,

Nebraska. An interesting question is why this last subgroup of locations shares a similar profile

with the coastal points of entry. Sequence similarity-based Cluster 2 in the first period is

another interesting collection which is very spatially dispersed. Most of the members are rural

communities that include Sheridan Wyoming, Davison South Dakota, Jackson Oklahoma,

Hancock Indiana, Pitkin Colorado, Caddo Louisiana and Pierce Wisconsin. The temporal pro-

file for this group is initially flat until mid-March at which point it shows a very rapid accumu-

lation of cases. Such spatially dispersed cluster members that exhibit similar behaviours are

targets for further investigation of potential contextual similarities. Of particular interest from

epidemiological and health policy perspectives are spatially dispersed cluster members that

exhibit similar flattening or decreasing patterns as these would be interesting to explore to

understand if they have similar demographic characteristics or if they shared similar interven-

tion measures.

We note that the sequence similarity clusters suggest some connections which are not con-

veyed by the scan statistic clusters. For example, in the third study period the scan statistic

results indicate several new clusters. An examination of the sequence similarity clusters in this

period indicate that several members of Cluster 10 were first nation or tribal reservations. In

other words, several of the spatially dispersed reservations across the west showed a similar

onset and progression in COVID-19 cases.

Another difference between the two approaches is that the sequence similarity-based clus-

ters starting in the third period begin to show evidence of a spatial diffusion effect. For exam-

ple, members of Cluster 8 with the earliest and fastest accumulating sequence similarity often

Fig 7. COVID-19 space-time scan statistic detected hotspots in the United States at county level through 4/19/2020.

https://doi.org/10.1371/journal.pone.0252990.g007
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Table 3. Attributes of prospective space-time clusters (hotspots) for COVID-19 from 1/23-4/19/2020 at the county level.

Duration Radius Observed Expected Relative Population #County #County

Cluster Start Date End Date (Days) (Km) Cases Cases Risk (RR) p-value at Risk (total) (RR>1)

1 3/21 4/19 30 112.67 317,283 50,808 10.07 <0.001 10,183,190 29 29

2 3/25 4/19 26 73.70 13,048 2,223 5.96 <0.001 468,407 8 8

3 3/27 4/19 24 43.08 22,215 7,189 3.15 <0.001 1,680,202 3 3

4 4/16 4/19 4 0.00 1,670 20 83.28 <0.001 19,232 1 1

5 4/4 4/19 16 0.00 15,161 6,360 2.41 <0.001 2,838,481 1 1

6 3/31 4/19 20 77.77 2,949 441 6.72 <0.001 93,100 22 22

7 4/6 4/19 14 298.19 40,502 27,081 1.52 <0.001 9,421,799 226 93

8 4/10 4/19 10 263.00 1,767 341 5.2 <0.001 137,317 85 26

9 3/30 4/19 21 0.00 8,162 4,404 1.86 <0.001 1,173,224 1 1

10 3/26 4/19 25 0.00 435 36 12.25 <0.001 7,586 1 1

11 4/17 4/19 3 0.00 360 29 12.63 <0.001 30,783 1 1

12 4/1 4/19 19 59.89 1,270 464 2.74 <0.001 116,600 6 5

13 4/9 4/19 11 162.39 832 271 3.07 <0.001 112,063 5 5

14 3/20 4/19 31 84.21 760 281 2.71 <0.001 52,008 6 6

15 3/31 4/19 20 218.29 10,400 8,205 1.27 <0.001 1,932,165 152 77

16 4/5 4/19 15 169.63 400 104 3.84 <0.001 22,025 36 20

17 4/9 4/19 11 42.71 309 67 4.58 <0.001 24,501 3 3

18 4/14 4/19 6 36.59 428 142 3.02 <0.001 97,393 6 6

19 4/13 4/19 7 41.53 100 6 16.58 <0.001 2,434 2 1

20 4/9 4/19 11 144.34 2,800 1,943 1.44 <0.001 999,773 20 14

21 4/14 4/19 6 0.00 109 10 10.73 <0.001 5,683 1 1

22 3/20 4/19 31 0.00 299 88 3.41 <0.001 16,762 1 1

23 4/2 4/19 18 0.00 643 349 1.85 <0.001 94,077 1 1

24 4/7 4/19 13 70.67 348 179 1.95 <0.001 41,649 17 14

25 4/15 4/19 5 0.00 123 37 3.35 <0.001 29,216 1 1

26 4/17 4/19 3 192.58 142 51 2.8 <0.001 50,741 11 6

27 4/18 4/19 2 37.48 298 152 1.96 <0.001 386,360 2 2

28 4/3 4/19 17 92.71 301 156 1.93 <0.001 41,584 5 3

29 4/11 4/19 9 0.00 173 77 2.25 <0.001 41,981 1 1

30 4/11 4/19 9 0.00 83 24 3.48 <0.001 14,638 1 1

31 4/15 4/19 5 0.00 41 7 6.16 <0.001 3,595 1 1

32 4/15 4/19 5 72.81 57 13 4.29 <0.001 10,680 8 5

33 4/14 4/19 6 0.00 1,019 763 1.34 <0.001 926,455 1 1

34 4/13 4/19 7 0.00 583 410 1.42 <0.001 336,507 1 1

35 3/28 4/19 23 50.34 32 5 6.04 <0.001 888 2 2

36 4/2 4/19 18 68.61 253 149 1.7 <0.001 28,897 10 9

37 4/12 4/19 8 0.00 59 20 2.96 <0.001 8,797 1 1

38 4/18 4/19 2 0.00 272 174 1.56 <0.001 1,139,191 1 1

39 4/17 4/19 3 0.00 37 10 3.74 <0.001 27,699 1 1

40 3/29 4/19 22 0.00 105 52 2.02 <0.001 9,587 1 1

41 4/18 4/19 2 0.00 20 3 6.4 <0.001 7,819 1 1

42 3/23 4/19 28 44.85 112 58 1.94 <0.001 9,320 5 5

43 4/11 4/19 9 0.00 93 46 2.02 <0.001 17,771 1 1

44 4/18 4/19 2 0.00 14 2 8.17 0.002 3,531 1 1

45 4/14 4/19 6 0.00 22 5 4.71 0.003 2,749 1 1

46 4/18 4/19 2 0.00 53 21 2.49 0.003 31,371 1 1

(Continued)
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Table 3. (Continued)

Duration Radius Observed Expected Relative Population #County #County

Cluster Start Date End Date (Days) (Km) Cases Cases Risk (RR) p-value at Risk (total) (RR>1)

47 3/24 4/19 27 0.00 102 55 1.85 0.006 10,847 1 1

Note: Space-time clusters were identified using the spatial scan statistic with a Poisson model.

https://doi.org/10.1371/journal.pone.0252990.t003

Fig 8. Elbow method evaluation and hierarchical clustering results for the 3rd period. Notice that the numberings and colors of STES clusters match with

those of corresponding clusters on the map and the temporal trend graph in Fig 9.

https://doi.org/10.1371/journal.pone.0252990.g008
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Fig 9. Sequence similarity-based COVID-19 emerging clusters along with average temporal trends at county level during 1/22/-4/19/2020. This map includes the

counties with higher relative risk (RR>) contained in all the clusters detected by scan statistics in Fig 5. The average temporal trends of cumulative cases for STES clusters

1–10 on the map appear at the bottom right. Notice that the colors of STES clusters match with correspondingly colored dots on the map and with the colors of the STES

cluster curves on the graph. OC includes all counties not included in the clusters.

https://doi.org/10.1371/journal.pone.0252990.g009

Table 4. Attributes of prospective space-time clusters (hotspots) for COVID-19 from 1/23-5/20/2020 at the county level.

Duration Radius Observed Expected Relative Population #County #County

Cluster Start Date End Date (Days) (Km) Cases Cases Risk (RR) p-value at Risk (total) (RR>1)

1 3/23 5/20 59 126.60 516,153 128,515 5.51 <0.001 15,225,284 35 35

2 4/7 5/20 44 55.64 77,744 30,138 2.66 <0.001 5,000,478 5 5

3 4/12 5/20 39 332.91 14,779 3,116 4.78 <0.001 411,108 155 109

4 4/17 5/20 34 103.56 41,285 18,966 2.21 <0.001 3,575,889 42 25

5 4/20 5/20 31 215.21 7,183 749 9.63 <0.001 111,251 47 35

6 3/23 5/20 59 73.70 16,614 5,499 3.04 <0.001 625,641 8 8

7 3/26 5/20 56 43.08 34,409 18,624 1.87 <0.001 2,253,493 3 3

8 4/29 5/20 22 0.00 1,336 16 81.34 <0.001 3,508 1 1

9 4/13 5/20 38 0.00 2,487 206 12.07 <0.001 30,632 1 1

10 4/9 5/20 42 191.99 5,571 1,339 4.17 <0.001 184,726 6 6

11 4/15 5/20 36 0.00 1,952 175 11.15 <0.001 25,544 1 1

12 3/24 5/20 58 77.77 4,684 1,282 3.66 <0.001 134,101 22 22

13 4/13 5/20 38 0.00 955 36 26.75 <0.001 4,378 1 1

14 4/15 5/20 36 114.37 3,799 1,339 2.84 <0.001 187,231 21 21

15 4/23 5/20 28 0.00 598 21 28.96 <0.001 3,038 1 1

16 5/12 5/20 9 0.00 344 3 114.45 <0.001 1,002 1 1

17 4/14 5/20 37 36.59 2,623 962 2.73 <0.001 150,923 6 5

18 4/24 5/20 27 42.39 1,579 458 3.45 <0.001 77,989 7 7

(Continued)
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Table 4. (Continued)

Duration Radius Observed Expected Relative Population #County #County

Cluster Start Date End Date (Days) (Km) Cases Cases Risk (RR) p-value at Risk (total) (RR>1)

19 4/30 5/20 21 0.00 1,436 451 3.18 <0.001 134,923 1 1

20 5/3 5/20 18 0.00 191 4 44.47 <0.001 772 1 1

21 3/23 5/20 59 47.10 519 87 5.99 <0.001 9,665 2 2

22 4/28 5/20 23 45.28 436 77 5.66 <0.001 13,095 3 3

23 5/10 5/20 11 29.09 221 15 14.38 <0.001 3,235 3 3

24 5/10 5/20 11 0.00 257 24 10.91 <0.001 7,981 1 1

25 4/30 5/20 21 0.00 354 56 6.27 <0.001 11,332 1 1

26 5/6 5/20 15 0.00 994 383 2.6 <0.001 202,613 1 1

27 4/1 5/20 50 136.56 5,564 3,846 1.45 <0.001 449,669 30 22

28 5/7 5/20 14 0.00 566 155 3.65 <0.001 71,572 1 1

29 5/2 5/20 19 31.84 510 133 3.83 <0.001 20,764 4 4

30 4/19 5/20 32 192.58 305 51 6.02 <0.001 40,867 11 2

31 3/30 5/20 52 0.00 14,842 12,107 1.23 <0.001 1,575,369 1 1

32 4/21 5/20 30 0.00 517 144 3.6 <0.001 25,141 1 1

33 5/11 5/20 10 0.00 248 37 6.71 <0.001 24,329 1 1

34 5/12 5/20 9 45.71 262 47 5.53 <0.001 32,224 3 1

35 4/27 5/20 24 0.00 153 16 9.6 <0.001 2,345 1 1

36 4/29 5/20 22 37.68 576 218 2.65 <0.001 48,225 2 2

37 4/2 5/20 49 42.71 704 312 2.25 <0.001 36,636 3 3

38 5/8 5/20 13 0.00 164 24 6.95 <0.001 5,473 1 1

39 5/19 5/20 2 0.00 2,437 1,721 1.42 <0.001 6,453,712 1 1

40 5/15 5/20 6 0.00 60 3 21 <0.001 841 1 1

41 5/6 5/20 15 29.36 112 17 6.41 <0.001 4,070 2 2

42 5/10 5/20 11 45.67 150 32 4.62 <0.001 8,166 2 2

43 4/6 5/20 45 30.61 309 116 2.67 <0.001 13,014 3 3

44 4/18 5/20 33 0.00 519 257 2.02 <0.001 42,288 1 1

45 5/7 5/20 14 0.00 105 20 5.2 <0.001 5,939 1 1

46 4/25 5/20 26 99.90 124 29 4.23 <0.001 4,072 15 6

47 4/20 5/20 31 30.03 288 124 2.33 <0.001 22,341 3 2

48 3/23 5/20 59 77.39 581 342 1.7 <0.001 39,119 4 2

49 5/13 5/20 8 106.86 270 121 2.24 <0.001 83,127 2 2

50 3/29 5/20 53 0.00 291 139 2.1 <0.001 15,029 1 1

51 4/22 5/20 29 26.90 155 55 2.83 <0.001 8,779 2 2

52 4/7 5/20 44 46.15 317 165 1.92 <0.001 18,980 6 6

53 5/2 5/20 19 0.00 103 33 3.16 <0.001 7,699 1 1

54 4/1 5/20 50 53.19 83 22 3.7 <0.001 2,198 3 3

55 4/14 5/20 37 27.39 68 16 4.25 <0.001 1,791 2 2

56 4/23 5/20 28 0.00 156 65 2.4 <0.001 10,718 1 1

57 4/13 5/20 38 21.26 248 128 1.93 <0.001 19,711 2 2

58 4/27 5/20 24 0.00 30 3 10.24 <0.001 323 1 1

59 5/18 5/20 3 0.00 49 9 5.29 <0.001 15,448 1 1

60 4/17 5/20 34 0.00 107 39 2.73 <0.001 8,405 1 1

61 4/18 5/20 33 72.28 534 354 1.51 <0.001 58,978 7 5

62 4/21 5/20 30 140.99 233 125 1.87 <0.001 26,408 6 4

63 4/29 5/20 22 0.00 234 126 1.85 <0.001 30,406 1 1

64 4/22 5/20 29 0.00 115 47 2.43 <0.001 6,538 1 1

65 5/19 5/20 2 0.00 21 2 12.77 <0.001 4,032 1 1

66 5/5 5/20 16 92.43 1,039 796 1.3 <0.001 286,527 2 2

67 4/19 5/20 32 0.00 115 49 2.37 <0.001 10,204 1 1

68 5/8 5/20 13 0.00 192 101 1.9 <0.001 45,852 1 1
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Table 4. (Continued)

Duration Radius Observed Expected Relative Population #County #County

Cluster Start Date End Date (Days) (Km) Cases Cases Risk (RR) p-value at Risk (total) (RR>1)

69 5/12 5/20 9 0.00 30 4 6.87 <0.001 771 1 1

70 5/17 5/20 4 0.00 123 55 2.23 <0.001 78,471 1 1

71 4/29 5/20 22 0.00 156 79 1.97 <0.001 17,303 1 1

72 3/28 5/20 54 50.34 32 6 5.44 <0.001 656 2 2

73 5/7 5/20 14 80.26 106 46 2.28 <0.001 12,240 5 4

74 4/14 5/20 37 47.62 115 53 2.15 <0.001 7,305 3 3

75 4/9 5/20 42 35.79 123 59 2.09 <0.001 6,343 2 2

76 4/20 5/20 31 0.00 134 68 1.98 <0.001 11,760 1 1

77 4/28 5/20 23 195.74 281 184 1.53 <0.001 48,676 9 4

78 4/16 5/20 35 27.34 243 154 1.57 <0.001 22,877 3 2

79 4/15 5/20 36 0.00 116 59 1.96 <0.001 7,734 1 1

80 4/9 5/20 42 56.31 478 350 1.36 <0.001 49,008 2 1

81 5/18 5/20 3 93.41 130 70 1.86 <0.001 180,113 8 2

82 4/17 5/20 34 0.00 37 11 3.37 <0.001 20,483 1 1

83 4/10 5/20 41 30.49 135 76 1.78 <0.001 9,851 2 2

84 5/14 5/20 7 0.00 125 69 1.82 <0.001 43,779 1 1

85 5/12 5/20 9 27.78 87 44 1.97 0.004 16,827 2 1

86 5/3 5/20 18 0.00 20 4 4.6 0.013 670 1 1

87 5/19 5/20 2 80.43 28 8 3.38 0.019 55,557 12 2

Note: Space-time clusters were identified using the spatial scan statistic with a Poisson model.

https://doi.org/10.1371/journal.pone.0252990.t004

Fig 10. Prospective space-time scan statistic detected clusters of COVID-19 incidents during the study period of 1/22/2020-5/20/2020.

https://doi.org/10.1371/journal.pone.0252990.g010
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appear to be surrounded by or in close spatial association with the next closest lagging group,

Cluster 9. A similar pattern appears between Cluster 8 and Cluster 9 members in the fourth

study period.

Recent research has pointed to different continents of origin for the introduction of

COVID-19 into the US [31, 32]. Genomic epidemiology research supports the belief that

Fig 11. Elbow method evaluation and hierarchical clustering results for the 4th period. Notice that the numberings and colors of STES clusters match with those

of corresponding clusters on the map and the temporal trend graph in Fig 12.

https://doi.org/10.1371/journal.pone.0252990.g011
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isolates from China primarily seeded the original COVID-19 outbreak on the US West Coast

and that European isolates seeded the pandemic in New York (and the US East Coast) [33].

Given some connectivity suggested by the sequence similarity based approach there may exist

opportunities for productive combination with phylogenetic tracing and transmission path-

way studies [34].

We recognize that both approaches can be impacted by limitations in data collection. Sev-

eral publications have noted reporting lags although these are most problematic with respect

to death reports rather than daily reported case counts [35–38]. There is clearly the potential

for inaccuracies in data collection covering many different jurisdictions. If for example, reports

of new cases are delayed by a day or two from a jurisdiction this could potentially change the

similarity in the sequences of county daily case counts. However, given the length of the study

periods here we expect lags of one to two days to have minor impact.
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Fig 12. Sequence similarity-based COVID-19 clusters along with average temporal trends at county level during 1/22/-5/20/2020. This map includes the counties

with higher relative risk (RR>1) contained in all the clusters detected by scan statistics in Fig 10. The average temporal trends of cumulative cases for STES clusters 1–10

on the map appear at the bottom right. Notice that the colors of STES clusters match with correspondingly colored dots on the map and with the colors of the STES

cluster curves on the graph. OC includes all counties not included in the clusters.
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