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Abstract
Genetic association studies of complex traits often rely on standardised quantitative phenotypes, such as percen-

tage of predicted forced expiratory volume and body mass index to measure an underlying trait of interest (eg

lung function, obesity). These phenotypes are appealing because they provide an easy mechanism for comparing

subjects, although such standardisations may not be the best way to control for confounders and other covari-

ates. We recommend adjusting raw or standardised phenotypes within the study population via regression. We

illustrate through simulation that optimal power in both population- and family-based association tests is attained

by using the residuals from within-study adjustment as the complex trait phenotype. An application of family-

based association analysis of forced expiratory volume in one second, and obesity in the Childhood Asthma

Management Program data, illustrates that power is maintained or increased when adjusted phenotype residuals

are used instead of typical standardised quantitative phenotypes.

Keywords: body mass index, confounding factors, covariate adjustment, forced expiratory volume, heritable quantitative

traits

Introduction

Failure to adjust for confounders and other covariates

can greatly diminish the efficiency of genetic associ-

ation studies. Traditional regression methods that

control for confounders often apply directly to

genetic association studies, and these techniques

have been extended and adapted in settings where

this is not the case.1–3 Despite this, researchers con-

ducting genetic association studies of quantitative

traits do not always take full advantage of their

ability to adjust for important covariates.

Covariate adjustment is so crucial for traits like

body mass index (BMI) and percentage of pre-

dicted forced expiratory volume in one second

(PPFEV) that they are standardised by definition.

BMI (instead of weight) is used as a measure of

obesity because height contributes noise to the

relationship between obesity and weight. Similarly,

PPFEV, the amount of air a person can blow out

in one second divided by the expected amount,

given the person’s sex, height and, sometimes,

other covariates, is used as a measure of lung func-

tion instead of unadjusted forced expiratory

volume (FEV) because sex, height and other cov-

ariates add noise to the relationship between lung

function and FEV. To determine expected FEV,

various equations have been proposed, each a

regression equation fit to a specific study popu-

lation.4–6 Both BMI and PPFEV were developed

to assess phenotypes in individuals when there are

no population data available — for example,

determining the severity of asthma or obesity

during physical examination.

Standardised phenotypes were not, however,

intended to serve as a substitute for within-study

PRIMARY RESEARCH

308 # HENRY STEWART PUBLICATIONS 1479–7364. HUMAN GENOMICS. VOL 3. NO 4. 308–319 JULY 2009



adjustment in association studies. Since genetic

association studies have sample sizes large enough

to adjust using the study population itself, it is

no longer necessary to rely on standardisations

based on external populations. It is especially

important to adjust within the study population

when the study population is clearly dissimilar to

the general population. Consider a study popu-

lation living at high altitude: using PPFEV with

predicted FEV estimated based on a population

dwelling at sea level could make even asthmatics

seem healthy.

To determine whether researchers conducting

genetic association studies of FEV actually adjust for

confounders using the study population, we per-

formed a literature search using PubMed. Of 26

genetic association studies with FEV as a main

outcome published in the past three years, only 14

used within-study adjusted FEV.7–19 The 12 studies

that did not mention within-study adjustment

included one that stated, ‘No covariate adjustment

was used since the percent-predicted lung function

is already covariate adjusted’.20–31 The studies also

varied as to what potential confounders were avail-

able (for instance, many studies did not record

height). Our literature search showed that there is

no consensus on whether standardised phenotypes

should be further adjusted.

We hypothesised that within-study adjustment of

standardised quantitative phenotypes increases

power in genetic association studies. To test this,

we compared power obtained using PPFEV with

and without within-study adjustment under both

population- and family-based designs via simu-

lation. We also examined the effects of applying

within-study adjustment to raw FEV as opposed to

PPFEV and of having an ascertainment condition.

Finally, we applied the different methods to the

Childhood Asthma Management Program

(CAMP).

Materials and methods

Simulated genotypes

To simulate a family-based design, either 100, 400

or 800 independent trios (two parents and an

offspring) were generated. We assumed Hardy–

Weinberg equilibrium and drew parental alleles

from a binomial distribution with the probability of

carrying the risk allele equal to allele frequency

(0.05, 0.10 or 0.20). Offspring genotypes were

then based on Mendelian transmission. We assumed

there were no genotyping errors. For the simulated

population-based design, only offspring genotypes

were used.

Simulated raw phenotypes

Height, weight and age were generated using a

multivariate normal distribution with means and

covariances equal to those observed in a real dataset

(CAMP). We restricted our samples to Caucasian

males, to create a more homogeneous population

to which a simple set of prediction equations

would apply.

The primary unadjusted phenotype of interest,

FEV, was generated in two ways: first with the

relationship between FEV and its confounders

based on that observed in real data, and, secondly,

with the aim of determining what happens in the

worst-case scenario for within-study adjustment —

that is, when the FEV prediction equations really

do describe the mean of the distribution of FEV. In

the first case, FEV was simulated from a normal

distribution with mean:

aXi þ 1:522þ 0:0271 height þ 0:000197 height2

þ 0:0219 ageþ 0:00345 weight

(where a is the additive genetic effect and Xi is the

number of copies of the allele of interest), and var-

iance set equal to the variance of the residuals cal-

culated when this model was fit to CAMP data.

This model describes the relationship between

height, age, weight and FEV in the CAMP study

but with an additive genetic effect (heritability of

FEV ¼ 0.01, 0.025 or 0.05).32 The second way we

generated FEV was similar, except that the model

used to specify the mean and the variance of the
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residuals was:

aXi þ Iðage , 12Þð�2:814þ 0:0348 heightÞ
þ Iðage � 12Þð�6:118þ 0:0519 height

þ 0:0636 ageÞ

That is, we set the mean equal to the FEV pre-

diction equation derived by Knudson et al. for

Caucasian males.4 By simulating the data two ways,

we can see how much within-study adjustment

affects power under a realistic setting and also

whether it diminishes power when it is unnecessary

(ie when the FEV prediction equation explains the

exact relationship between FEV and its confoun-

ders). To examine the effect of phenotype trunca-

tion, the simulations were repeated with an

ascertainment condition, excluding all subjects with

PPFEV � 80 per cent. (Final sample sizes were still

100, 400 and 800 trios.) This mimics the CAMP

dataset, which includes only children with mild to

moderate asthma.

Methods of adjustment and analysis

Four confounder-adjustment methods were applied

to obtain four corresponding phenotypes used in

genetic association testing: centred FEV, centred

PPFEV, residuals from regressing FEV on relevant

covariates and residuals from regressing PPFEV on

relevant covariates. PPFEV was calculated using the

prediction equations derived by Knudson et al.4

Population-based association testing was done by

regressing phenotype on genotype, assuming an

additive model and performing a Wald test to

check whether the regression coefficient for geno-

type is equal to zero. Family-based association

testing was done using the family-based association

test (FBAT).33 In the population-based simulations,

FEV and PPFEV were regressed on the number of

copies of the risk allele. Within-study adjustment

was accomplished by including relevant covariates

in the regression model.

Results

Simulations

Both population- and family-based association

studies were simulated under varying allele frequen-

cies, heritabilities and sample sizes. In each case,

the power was estimated for four phenotypes:

centred FEV, PPFEV, residuals from regressing FEV

on relevant covariates and residuals from regressing

PPFEV on relevant covariates. Simulated data were

based on a real dataset and on the Knudson FEV

prediction equation, with both unascertained and

ascertained samples (Figure 1 and Supplementary

Tables S1–4). In all cases, using FEV without

adjustment was least powerful and within-study

adjusted FEV most powerful. Results were similar

for family-based and population-based simulations.

When the data were generated to resemble the

CAMP study population as closely as possible, the

most powerful approach used the residuals from

within-study adjustment of FEV, followed by

within-study adjusted PPFEV, PPFEV and finally

FEV. Within-study adjustment led to gains in

power of up to 20.5 per cent in population-based

analyses and up to 17.6 per cent in family-based

analyses. To determine how much of the variance

in FEV and PPFEV was determined by covariates,

we calculated the R2 from regressing FEV and

PPFEV on height, weight and age under each of

the simulation settings. Because the variance of

the distribution of FEV was fixed in the simu-

lations, covariates consistently explained 82–86

per cent of variance in FEV. Covariates still

explained 22–26 per cent of the variation in

PPFEV, which explains why within-study adjust-

ment increased power more so than simply calcu-

lating PPFEV.

When the data were simulated based on the FEV

prediction equations, PPFEV, within-study adjust-

ment of FEV and within-study adjusted PPFEV, all

yielded approximately equal power, since the model

assumed in the FEV prediction equation was truly

the expected value of FEV. Covariates only

explained 3–8 per cent of the variation in PPFEV.

Even in this case, where the confounding relation-

ship between FEV and covariates was wholly
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explained by standard prediction equations, using

within-study adjustment did not diminish power.

The results were similar when the samples were

truncated to include only subjects with PPFEV

�80 per cent. Power decreased overall owing to

the decreased amount of variation in FEV, but the

trends in power were the same as in the untrun-

cated simulations. In fact, the within-study adjust-

ment led to even greater gains in power in the

truncated analyses: within-study adjustment led to

gains in power of up to 23.3 per cent in

population-based analyses and up to 20.4 per cent

in family-based analyses.

Data analysis: Childhood Asthma
Management Program

We demonstrated the four methods of confounder-

adjustment using CAMP, a multicentre, randomised

clinical trial including 1,041 children between five

and 14 years of age with mild to moderate

asthma.34 The present analysis included 711 geno-

typed Caucasian trios. Each of six single nucleotide

polymorphisms (SNPs) in the gene encoding inter-

leukin 10 (IL-10), a gene previously associated with

asthma,35–43 was tested for association with each of

four lung-function phenotypes (FEV, PPFEV,

within-study adjusted FEV and within-study

Figure 1. Simulated power for sample size of 400 and allele frequency of 0.2. (Pattern is similar for other sample sizes and allele

frequencies.) The relationship between FEV and confounders was modelled using the CAMP data and using the equations derived by

Knudson et al.4 Estimated power levels are for n trios simulated 10,000 times, with a type one error rate of 5 per cent. We simulated

both family and population designs, each with and without truncation. Four methods of confounder adjustment were employed: FEV,

PPFEV, residuals from regressing FEV on relevant covariates and residuals from regressing PPFEV on relevant covariates.
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adjusted PPFEV) (Table 1). Within-study adjust-

ment was carried out, regressing FEV on age, sex,

weight and height (all recorded at baseline). In a

second analysis, all SNPs genotyped in the fat mass

and obesity-associated (FTO) gene, which is associ-

ated with BMI,44 were tested for association with

six obesity phenotypes: weight, BMI and BMI

z-scores (BMIZ),45 each with and without within-

study adjustment. Weight was adjusted for age, sex

and mean-centred height. BMI and BMIZ were

adjusted for age and sex. Neither age nor sex was a

significant predictor of BMIZ; as a result, using

within-study adjusted BMIZ was equivalent to

using unadjusted BMIZ in this dataset. For both

analyses, the family-based association test (FBAT)

statistic was used, assuming an additive genetic

model. Regression models were fit using SAS

version 9.1. All genetic association tests were per-

formed by HelixTree version 5.1.3.

After Bonferroni adjustment for multiple com-

parisons, none of the six SNPs in IL-10 were sig-

nificantly associated with any of the FEV-derived

phenotypes (Figure 2). Height, weight, sex and age

explained 83.82 per cent of the variation in FEV

and 17.44 per cent of the variation in PPFEV. For

the SNP previously associated with FEV,

rs3024496,35 PPFEV residuals yielded the lowest

p-value (p ¼ 0.0135) followed by FEV residuals

(p ¼ 0.0317). The worst p-value for this SNP was

obtained using PPFEV. As in simulations, the

within-study adjusted phenotypes did best but,

unlike in the simulations, adjusted PPFEV

outperformed adjusted FEV and PPFEV did worse

than FEV.

No SNPs in FTO were significant after

Bonferroni correction. The SNP previously found to

be associated with obesity, rs9939609, was not geno-

typed in CAMP. Examining quantile–quantile plots

of the –log10 p-values revealed that the association

signal was readily apparent in BMIZ (and the equival-

ent within-study adjusted BMIZ) and somewhat

apparent in within-study adjusted BMI (Figure 3).

Discussion

Our results suggest that genetic association studies

using standardised phenotypes can potentially avoid

confounding and gain power by using within-study

adjusted phenotypes, as opposed to the typical stan-

dardised form of the phenotype. Moreover, doing

so will not decrease power. Through simulations,

we showed that using within-study adjustment of

FEV or PPFEV increased power in genetic associ-

ation testing by more than using PPFEV. This was

true in both population- and family-based designs

and with and without an ascertainment condition

Table 1. IL10 SNPs genotyped.

SNP Position Location Minor

allele

freq

rs1800896 21117 A/G Promoter 0.452

rs1800871 2854 C/T Promoter 0.294

rs1800872 2672 C/A Promoter 0.289

rs3024492 1668 T/A Intron 0.225

rs3024509 2483 C/T Intron 0.054

rs3024496 3916 C/T Exon 0.451

IL10, interleukin 10.

Figure 2. Plot of – log10 power-based association test (PBAT)

p-values from testing six SNPs in IL10 for association with four

lung function phenotypes in the CAMP study.
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on the phenotype. Even in the (unlikely) case where

the FEV prediction equation used to calculate

PPFEV truly determined the relationship between

FEV and its confounders, using within-study adjust-

ment did not decrease power. Although the pre-

viously associated IL-10 SNP, rs3024496, was only

marginally significant in the data analysis, the signal

was strongest when within-study adjustment was

used. In the FTO analysis, the distribution of

p-values from BMIZ remained unchanged after

within-study adjustment, indicating that BMIZ

effectively controlled for the available covariates in

the CAMP study population. For weight and BMI,

the association signal was enhanced by within-study

adjustment. The data analysis results must be inter-

preted with caution, since we cannot be certain that

any of the SNPs tested confer risk for decreased

lung function or obesity.

Since within-study adjustment involves fitting a

model to explain how the raw phenotype is related

to confounders in the study population, it does not

provide a measure of what might be considered

normal. For this, it is still necessary to use standard-

isations based on a healthy population. For

instance, in the CAMP study, a child with ‘average’

adjusted FEV would still be considered to have low

Figure 3. Quantile–quantile plots of the – log10 (p-values) for genetic association between weight (adjusted six ways) and 166 SNPs

in the FTO gene from the CAMP study.

BMI, body mass index; BMIZ, BMI Z scores; CAMP, Childhood Asthma Management Program; SNPs, single nucleotide polymorphisms.
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lung function because all the children in CAMP

have asthma. Therefore, within-study adjustment is

advantageous only if there is no need to compare

subjects’ phenotypes with what might be con-

sidered normal in the general population. The

advantage of within-study adjustment in large

studies is that it can provide a more accurate relative

measure of a complex phenotype, allowing study

subjects to be compared among themselves. In gen-

etics studies, this is precisely what is needed.

When using standardised phenotypes, the

method of standardisation can also affect study

results. Rosenfeld, et al. showed that using different

reference equations to calculate predicted FEV

leads to differences in clinical assessment of individ-

uals and in the results of cross-sectional and longi-

tudinal analyses of cystic fibrosis.46 Both the

standardisation and method of within-study adjust-

ment should be carefully thought out. Although

we only considered the Knudson equations here,

our simulation design allows the results to be gen-

eralised to other equations for predicted FEV.

In our simulations, within-study adjustment of

standardised phenotypes was always equally or less

powerful than within-study adjustment of raw pheno-

types; however, our data analysis did not reflect this.

The smallest p-value for the SNP previously associated

with FEV was obtained using within-study adjusted

PPFEV. Similarly, when we analysed the FTO SNPs,

the most standardised phenotype, BMIZ, performed

best (and within-study adjustment did not make a

difference). Simulated data differ from real data

because associations are simplistically modelled. Real

data are much more complex. In real data, within-

study adjustment does not fully capture the relation-

ship between raw measurements and the complex

trait of interest (eg between FEVand lung function or

between weight and obesity). By standardising and

then using the study population to adjust further, it is

possible to make use of two sources of information:

the reference population used to derive the standardis-

ation and the study population. Standardisation may

also be the only way to account for confounders not

collected in a particular study. For these reasons, it

may be advantageous to do genetic association testing

on within-study adjusted, standardised phenotypes.
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Supplementary Tables

The following four tables show simulation results.

Estimated power levels are for n trios simulated

10,000 times, with a type one error rate of 5 per

cent. Four methods of confounder adjustment were

employed: FEV, PPFEV, residuals from regressing

FEV on relevant covariates and residuals from

regressing PPFEV on relevant covariates. The per-

centage of variation explained by the covariates

used for within-study adjustment (R2) is shown for

each of the covariate-adjusted phenotypes.
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Table S1. Results from simulations in which the relationship between FEV and confounders was modelled using the CAMP data with no

truncation

N Heritability Allele

frequency

Power in population-based

design (%)

Power in family-based design

(%)

Avg. R2

FEV PPFEV FEV

adj.

PPFEV

adj.

FEV PPFEV FEV

adj.

PPFEV

adj.

FEV

adj.

PPFEV

adj.

100 0.01 0.05 7.1 14.3 17.0 15.7 5.9 8.3 9.2 9.0 81.4 21.1

0.1 7.1 14.5 17.1 15.9 5.7 8.7 9.4 8.8 81.4 21.3

0.2 7.4 13.7 17.3 15.7 6.0 9.0 9.7 9.4 81.4 21.6

0.025 0.05 10.5 26.6 34.8 31.0 7.3 14.1 16.1 14.8 81.2 21.2

0.1 10.7 26.9 34.9 30.7 7.5 15.1 17.5 15.8 81.2 21.4

0.2 10.5 27.1 35.1 31.0 7.7 15.6 18.6 16.3 81.2 22.0

0.05 0.05 16.7 45.4 59.7 53.3 9.7 23.3 27.5 24.5 80.8 21.2

0.1 16.7 46.3 60.7 54.0 9.9 25.9 31.0 27.1 80.8 21.8

0.2 16.5 45.9 60.1 53.5 11.1 26.0 32.5 28.4 80.8 22.4

400 0.01 0.05 13.8 36.7 50.8 42.9 9.1 21.0 27.5 23.3 81.0 18.2

0.1 14.0 37.3 50.9 43.0 10.1 21.7 28.9 25.1 81.0 18.6

0.2 13.8 37.3 51.4 43.6 9.4 21.7 28.8 25.0 81.0 18.9

0.025 0.05 28.3 70.3 87.5 78.9 16.4 45.5 58.0 50.5 80.8 18.4

0.1 28.0 72.3 88.3 80.0 16.1 45.5 59.7 51.9 80.8 18.7

0.2 28.1 72.2 88.5 80.0 16.3 45.1 59.6 51.5 80.8 19.3

0.05 0.05 50.6 92.6 99.2 96.1 27.3 70.1 83.6 76.3 80.4 18.4

0.1 51.5 92.9 99.3 96.2 27.7 71.9 86.8 79.0 80.4 19.0

0.2 51.3 93.1 99.5 96.3 28.8 72.9 88.0 80.0 80.4 19.6

800 0.01 0.05 23.5 60.1 80.0 69.0 13.9 37.6 49.9 42.6 80.9 17.6

0.1 23.4 61.1 80.6 69.4 14.0 38.0 51.3 43.0 81.0 17.7

0.2 23.6 61.2 80.7 69.5 13.7 36.7 51.0 42.1 81.0 18.1

0.025 0.05 50.5 92.2 99.4 95.3 28.8 71.5 86.0 78.1 80.7 17.7

0.1 50.3 92.3 99.4 95.3 28.3 72.0 87.8 78.8 80.7 17.9

0.2 49.8 92.6 99.5 95.6 28.3 71.2 88.8 79.1 80.7 18.6

0.05 0.05 80.3 97.8 100.0 98.3 49.9 91.8 98.9 95.0 80.3 17.6

0.1 80.2 97.9 100.0 98.3 51.6 92.7 99.1 95.3 80.3 18.1

0.2 80.2 97.9 100.0 98.2 50.7 92.3 99.4 95.5 80.3 19.0

FEV, forced expiratory volume; PPFEV, percentage of predicted FEV.
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Table S2. Results from simulations in which the relationship between FEV and confounders was determined by published FEV prediction

equations with no truncation

N Heritability Allele

frequency

Power in population-based

design (%)

Power in family-based design

(%)

Avg. R2

FEV PPFEV FEV

adj.

PPFEV

adj.

FEV PPFEV FEV

adj.

PPFEV

adj.

FEV

adj.

PPFEV

adj.

100 0.01 0.05 6.9 15.6 17.0 16.5 5.5 9.0 9.3 9.1 84.4 6.6

0.1 6.4 15.9 16.9 16.8 5.4 9.5 9.3 9.5 84.5 6.6

0.2 6.6 15.7 16.6 16.5 6.0 9.7 9.6 9.6 84.4 6.8

0.025 0.05 9.7 31.4 32.8 32.3 6.7 16.0 15.7 15.4 84.2 6.7

0.1 9.7 32.2 34.1 33.4 7.1 16.9 17.0 16.7 84.3 6.7

0.2 8.9 31.4 33.7 32.3 7.5 18.2 18.2 17.7 84.2 6.8

0.05 0.05 14.6 56.2 59.3 57.2 8.7 27.0 26.8 26.0 84.0 6.8

0.1 14.6 56.3 59.1 57.1 8.9 29.8 30.2 29.0 83.9 6.8

0.2 14.3 57.5 60.3 58.3 10.0 31.3 31.6 30.8 83.9 6.8

400 0.01 0.05 12.2 46.9 49.5 47.3 8.2 25.4 26.2 25.3 84.1 2.1

0.1 12.5 45.9 49.5 46.1 9.1 26.7 28.3 26.9 84.1 2.2

0.2 12.5 47.6 50.6 47.7 8.5 27.1 27.9 26.9 84.1 2.2

0.025 0.05 24.1 84.5 86.7 84.7 14.2 54.5 56.6 54.0 83.9 2.2

0.1 23.6 83.7 86.3 84.1 13.8 55.9 58.4 55.8 83.9 2.2

0.2 24.1 84.8 87.4 85.0 13.9 55.7 58.1 55.5 83.9 2.3

0.05 0.05 43.3 98.0 99.1 98.1 23.2 80.9 82.6 80.4 83.6 2.2

0.1 43.1 98.5 99.4 98.6 23.4 83.6 85.7 83.2 83.5 2.3

0.2 43.0 98.7 99.3 98.8 24.3 84.4 86.8 84.0 83.5 2.4

800 0.01 0.05 20.3 73.9 77.6 74.3 12.4 46.6 48.6 46.0 84.0 1.3

0.1 19.3 75.8 79.1 75.9 12.2 47.2 49.8 47.0 84.1 1.3

0.2 20.0 75.6 79.0 75.8 11.9 47.0 49.4 46.6 84.0 1.3

0.025 0.05 43.3 98.1 99.2 98.2 24.5 82.9 84.9 82.5 83.9 1.3

0.1 42.7 98.2 99.2 98.2 23.8 84.5 86.8 84.4 83.8 1.3

0.2 42.2 98.0 99.3 98.1 23.6 84.6 87.2 84.5 83.8 1.4

0.05 0.05 71.0 99.6 100.0 99.6 41.9 97.7 98.7 97.6 83.5 1.3

0.1 71.5 99.6 100.0 99.6 43.4 98.2 99.0 98.0 83.5 1.4

0.2 71.7 99.5 100.0 99.5 42.7 98.4 99.3 98.3 83.5 1.4

FEV, forced expiratory volume; PPFEV, percentage of predicted FEV.
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Table S3. Results from simulations in which the relationship between FEV and confounders was modelled using the CAMP data, and

phenotype data were truncated to exclude individuals with PPFEV �80 percent

N Heritability Allele

frequency

Power in population-based

design (%)

Power in family-based design

(%)

Avg. R2 (%)

FEV PPFEV FEV

adj.

PPFEV

adj.

FEV PPFEV FEV

adj.

PPFEV

adj.

FEV

adj.

PPFEV

adj.

100 0.01 0.05 6.7 13.2 16.4 15.0 5.1 7.4 8.5 7.6 83.8 25.6

0.1 6.5 12.5 15.4 14.1 5.6 7.4 8.8 8.1 83.8 25.5

0.2 6.7 11.8 15.3 14.0 5.3 7.6 9.2 8.4 83.7 26.2

0.025 0.05 9.4 24.2 32.8 29.1 6.3 11.6 14.6 13.2 83.5 25.5

0.1 9.1 23.7 31.5 27.9 6.4 13.0 15.2 14.1 83.5 25.9

0.2 8.8 22.0 29.9 26.3 6.9 12.7 15.5 14.0 83.4 26.3

0.05 0.05 14.5 41.8 56.3 50.6 8.6 20.3 25.3 22.8 83.2 25.5

0.1 13.7 40.4 54.6 48.3 8.2 21.5 27.2 24.0 83.1 25.9

0.2 13.1 39.9 54.3 47.8 8.8 21.8 28.0 24.6 82.9 26.3

400 0.01 0.05 11.0 30.4 44.5 36.9 7.5 17.4 23.5 19.7 83.4 23.1

0.1 11.2 31.0 44.1 37.1 7.7 18.1 24.0 20.8 83.4 23.3

0.2 11.1 29.7 43.1 36.1 8.0 18.1 24.2 20.0 83.3 23.6

0.025 0.05 21.8 63.4 83.2 73.9 13.2 38.1 51.4 44.5 83.2 23.1

0.1 21.8 62.2 82.7 73.0 12.6 38.1 51.5 44.1 83.1 23.5

0.2 20.6 61.9 81.6 72.0 12.9 36.2 50.7 42.9 83.0 23.8

0.05 0.05 41.7 89.5 98.6 95.0 22.5 63.7 80.2 72.1 82.8 23.0

0.1 39.4 88.9 98.6 94.7 21.0 63.7 80.5 72.3 82.7 23.3

0.2 38.6 88.3 98.5 94.3 21.7 63.0 82.3 72.7 82.6 24.1

800 0.01 0.05 17.7 51.3 73.6 61.3 11.3 30.8 42.5 36.0 83.4 22.4

0.1 16.6 50.7 72.2 60.3 11.3 30.1 43.7 35.7 83.3 22.6

0.2 16.6 50.5 71.4 60.0 10.9 28.2 41.6 34.2 83.3 22.9

0.025 0.05 38.3 87.4 98.4 93.3 20.7 63.5 80.8 71.2 83.1 22.5

0.1 36.9 87.3 98.3 93.1 20.5 61.5 81.4 71.0 83.1 22.7

0.2 36.2 86.6 98.2 92.8 20.0 61.2 81.6 70.8 82.9 23.2

0.05 0.05 68.3 97.6 100.0 98.5 40.3 88.0 97.8 93.2 82.7 22.4

0.1 67.0 97.7 100.0 98.6 39.0 88.6 98.6 94.0 82.6 22.8

0.2 65.2 97.4 100.0 98.2 38.0 87.8 98.3 93.4 82.5 23.3

FEV, forced expiratory volume; PPFEV, percentage of predicted FEV.
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Table S4. Results from simulations in which the relationship between FEV and confounders was determined by published FEV prediction

equations and phenotype data was truncated to exclude individuals with PPFEV �80 percent

N Heritability Allele

frequency

Power in population-based

design (%)

Power in family-based design

(%)

Avg. R2 (%)

FEV PPFEV FEV

adj.

PPFEV

adj.

FEV PPFEV FEV

adj.

PPFEV

adj.

FEV

adj.

PPFEV

adj.

100 0.01 0.05 6.5 14.6 15.2 15.3 4.6 8.5 8.6 8.2 85.5 7.5

0.1 5.8 14.3 14.4 15.1 5.5 8.8 8.9 8.5 85.5 7.6

0.2 6.1 13.8 14.7 14.6 5.6 9.4 9.4 9.2 85.4 7.9

0.025 0.05 8.8 30.4 31.2 31.5 5.9 14.3 14.3 13.9 85.3 7.7

0.1 8.4 29.5 30.5 30.3 6.6 15.8 15.8 15.5 85.3 7.9

0.2 7.7 28.5 29.5 29.4 6.3 15.7 15.6 15.1 85.3 8.0

0.05 0.05 12.2 52.6 53.8 53.8 7.3 24.7 23.9 24.0 84.9 7.8

0.1 11.7 52.8 54.4 53.6 7.6 26.9 26.9 26.2 84.9 8.1

0.2 10.7 50.8 52.9 52.5 7.8 27.5 27.5 26.9 84.9 8.3

400 0.01 0.05 10.1 41.6 43.1 42.3 6.9 22.3 22.7 22.2 85.2 4.3

0.1 9.2 41.5 42.9 41.9 6.8 22.9 23.0 23.0 85.1 4.3

0.2 8.7 40.1 40.7 40.3 6.7 23.1 23.2 22.9 85.1 4.4

0.025 0.05 17.3 79.8 81.8 80.8 10.4 48.3 49.1 48.0 85.0 4.3

0.1 16.5 79.8 81.6 80.5 10.2 49.1 50.0 48.7 85.0 4.5

0.2 16.6 78.5 80.0 78.8 10.2 48.0 49.4 47.9 84.9 4.6

0.05 0.05 32.0 97.6 98.4 97.8 17.0 77.1 78.5 77.2 84.6 4.5

0.1 30.3 97.4 98.2 97.7 17.1 78.5 80.0 78.4 84.6 4.7

0.2 29.2 97.7 98.3 97.9 16.9 78.5 80.4 78.6 84.5 4.9

800 0.01 0.05 13.9 69.6 72.1 69.9 9.5 40.2 41.2 40.1 85.1 3.6

0.1 13.1 68.3 69.9 68.4 8.7 40.5 41.8 40.5 85.1 3.7

0.2 13.4 67.8 70.5 68.2 8.7 39.7 41.3 40.1 85.1 3.8

0.025 0.05 30.2 97.1 97.9 97.3 16.6 77.3 79.1 77.6 84.9 3.7

0.1 27.7 97.3 98.1 97.3 15.5 78.0 79.7 78.1 84.9 3.8

0.2 26.5 96.8 97.8 96.8 15.5 78.4 80.5 78.7 84.8 4.0

0.05 0.05 55.6 99.7 100.0 99.7 30.9 96.4 97.5 96.5 84.6 3.9

0.1 52.1 99.6 100.0 99.6 29.6 97.1 98.0 97.3 84.5 4.0

0.2 51.4 99.6 100.0 99.6 29.3 96.8 97.9 97.0 84.5 4.3

FEV, forced expiratory volume; PPFEV, percentage of predicted FEV.
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