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Abstract: The intestinal epithelium is a principal site for environmental agents’ detection. Several
inflammation- and stress-related signalling pathways have been identified as key players in these
processes. However, it is still unclear how the chronic intake of inadequate nutrients triggers
inflammatory signalling pathways in different intestinal regions. We aimed to evaluate the impact of
unhealthy dietary patterns, starting at a younger age, and the association with metabolic dysfunction,
intestinal inflammatory response, and obesity in adulthood. A rat model was used to evaluate
the effects of the consumption of sugary beverages (HSD) and a Western diet (WD), composed of
ultra-processed foods. Both diets showed a positive correlation with adiposity index, but a positive
correlation was found between the HSD diet and the levels of blood glucose and triglycerides,
whereas the WD diet correlated positively with triglyceride levels. Moreover, a distinct inflammatory
response was associated with either the WD or HSD diets. The WD induced an increase in TLR2,
TLR4, and nuclear factor-kappa B (NF-κB) intestinal gene expression, with higher levels in the colon
and overexpression of the inducible nitric oxide synthase. In turn, the HSD diet induced activation
of the TLR2-mediated NF-κB signalling pathway in the small intestine. Altogether, these findings
support the concept that early intake of unhealthy foods and nutrients are a main exogenous signal
for disturbances of intestinal immune mechanisms and in a region-specific manner, ultimately leading
to obesity-related disorders in later life.

Keywords: western diet; high-sugar diet; toll-like receptors; iNOS; intestinal inflammation; long-
lasting metabolic effects

1. Introduction

Consumption of ultra-processed foods and sugary beverages are some of the main
contributors to the development of obesity and its related comorbidities [1–3]. Although
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obesity is defined as abnormal body fat accumulation, the biological processes involved
are complex and go beyond excessive energy intake. It is recognized that the activation
of the immune system and chronic low-grade inflammation are mechanisms involved in
obesity-related metabolic disease [4,5]. The disruption of the microbiota–host interactions
for diet early in life may account for the deviant programming of immunity and metabolic
disorders later in life [6–9]. Extensive research has suggested that the link between diet
and obesity-induced inflammation seems to be closely related with an impaired intestinal
barrier function [10–15], which can play a crucial role in the disruption of energy homeosta-
sis. However, how macronutrients’ intake affects metabolic and immune systems is still
uncertain. Moreover, the mechanisms underlying the link between obesity-related diets
and metabolic inflammation remain poorly understood and may vary depending on tissue
types and location.

The intestinal epithelium represents the largest interface for the occurrence of an
intricate microbiota–host crosstalk, which is strongly influenced by luminal environment
and internal signals [16–18]. Among the external cues, both dietary macronutrients and
microbiota compounds interact with the intestinal barrier to modulate the signalling path-
ways controlling physiologic functions, such as digestion, absorption, immunity, and
metabolism [17]. The activation of defence mechanisms requires specialized receptors,
collectively referred to as pattern recognition receptors, such as Toll-like receptors (TLRs)
and NOD-like receptors (NLRs) [16,19,20]. Activation of both receptors induces nuclear
transcription factor-kappa B (NF-κB), a signalling pathway that regulates immune functions
and gene expression related with inflammation and metabolism [21–24]. Moreover, failure
of these regulatory pathways is a trait shared by several intestinal inflammatory diseases,
which is also implicated in the development of obesity- and diabetes-related metabolic
dysfunction [5].

Mice fed high-saturated fat showed changes in insulin sensitivity and adipose tissue
inflammation, associated with the upregulation of TLR4 and TLR2 signalling [25]. In
intestinal tissue, high-fat diets seem to specifically increase TLR4 expression [24], but there
is less information about the impact of obesogenic diets on the intestinal TLR2 expression.
Throughout the intestinal epithelium, the TLRs are expressed in both immune and non-
immune cells, including in enteric neurons, reinforcing their crucial role in intestinal
homeostasis [16,20,26–28]. In addition, intestinal TLR2 and TLR4 expression shows region-
specific patterns [21,26,29]. Furthermore, it was shown that high-fat feeding [30] and an
intestinal inflammatory state induced the upregulation of intestinal inducible nitric oxide
synthase (iNOS) and, hence, NO production, suggesting it to be a crucial immunomodulator
of the intestinal motility [31].

In the context of the immune cell sensors involved in metabolic inflammation, there is
increasing interest in the role of the NLR family, specifically the NLRP3 inflammasome [32].
High-fat feeding of NLRP3-deficient mice exhibited a favourable effect on insulin sensitivity
and in adipose tissue inflammation related with obesity [32,33]. Moreover, NLRP3 is
induced not only by microbial components, TLR ligands, and the transcription factor NF-
κB, but also by fatty acids [22,32,34,35], suggesting its potential regulatory role in metabolic
inflammation. However, the contribution of the NLRP3 inflammasome for the intestinal
inflammatory response in diet-induced obese mice models has yet to be elucidated.

Western diets (WDs), typically with low dietary fibre, can shape microbiota composi-
tion [14,36,37]. In turn, mucin glycans are used as nutrient sources for bacteria, resulting in
an erosion of the mucus barrier, an increase in intestinal permeability, and a decrease in
beneficial microbiota-derived metabolites, such as short-chain fatty acids (SCFAs) [18,36,38].
Furthermore, the mucus layer overlaying the epithelium is produced by goblet cells un-
der a direct immune regulation, responding to variable stimuli in a region-dependent
manner [39]. Although not fully explored, current evidence has established a causative
association between high saturated-fat intake and perturbation of gut microbiota, leading
to intestinal permeability, proinflammatory responses, and dysmotility [12,23,27,40–43].
For example, in mice models, high-fat feeding induced an upregulation of jejunal inflam-
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matory gene transcripts associated with impaired glucose homeostasis, without changing
adiposity [40]. Meanwhile, high-fat plus high-sugar feeding induced a higher body weight
gain, accompanied by hyperproliferation of intestinal stem cells and changes of enterocytes
in a regional-specific manner [44]. Furthermore, distinct effects of a high-fat diet on the
intestinal barrier function were also shown in other studies, ranging from marginal in the
ileum and colon to severe in other segments of the small intestine [42,45].

It has been shown that intake of added sugars early in life affected intestinal microbiota
in rats, and this effect was obesity-independent [46]. Meanwhile, mice on a high-sugar diet
exhibited glucose homeostasis impairment and obesity [47], disruption of gut epithelium
integrity, and systemic inflammatory response [48]. However, research on the effects of
early high-sugar diets on intestinal inflammatory response and its metabolic outcomes
is limited.

Whether immune regulation is distinctly affected by the consumption of WD and high-
sugar diet (HSD) is still unknown. Therefore, the main goal of this study was to investigate
how early unhealthy dietary patterns influence intestinal inflammatory responses and their
association with metabolic outcomes in later life, by comparing two specific diet patterns
in the development of obesity and its impact on intestinal inflammation.

2. Results
2.1. Effects of Energy and Macronutrient Intake on Anthropometric Parameters

Data analysis confirmed possible obesogenic effects induced by HSD and WD (details
in Section 4) in rats under these dietary constraints from an early age until adulthood. Total
energy intake per day consumed by WD-fed rats was higher than the one of rats fed with a
chow diet (CD) or HSD (Figure 1a). Regarding diet composition, WD-fed rats had higher
energy from fat, particularly high saturated fat intake, and consumed a lower content of
dietary fibres compared to the other feeding groups (Figure 1b,c,f). The amount of simple
sugar intake in WD-fed rats was higher only when compared to the CD group (Figure 1e).
Although HSD-fed rats had free access to sucrose solution instead of water, like CD-fed
rats, this group presented a lower total energy intake, caused by a reduction in chow diet
intake, which was concomitant with a reduced cellular nutrient supply, including fibre
intake (Figure 1d–f). Moreover, protein intake was greater in CD-fed rats than in those fed
with a HSD or WD (Supplemental Table S1).

Lifelong dietary intervention induced significant variation on body weight, visceral
adipose tissue weight, and adiposity index, while there was no significant difference in body
weight gain (Supplemental Figure S1). The mean body weight of WD-fed rats was about 5%
and 13% higher than that of CD- and HSD-fed rats, respectively. Nonetheless, WD feeding
induced a sharp increase in adipose tissue weight and rats displayed a greater adiposity
index compared with HSD- and CD-fed rats (Supplemental Figure S1c,d). Interestingly,
HSD-fed rats had the lowest body weight values, but their adipose tissue was about 44%
heavier than that of CD-fed rats and 33% lighter than that of WD-fed rats.

To further investigate the effects of macronutrients on body composition, we per-
formed a Pearson correlation analysis and explored the association between the intake of
each dietary component and obesity index (Figure 2), conditioned on body weight gain.
We found that all analysed dietary components (Supplemental Table S2) were correlated
with the adiposity index. Among these, we showed that saturated fat (g) and sugar (g)
intakes were positively correlated with the adiposity index, whereas protein and dietary
fibre (g) intakes had a negative correlation (Figure 2d,e).
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Figure 1. Graphic representation of the daily intake of energy and nutrients from chow-fed (CD),
high-sugar diet (HSD), and Western diet (WD) groups. (a) Total energy intake from solid food and
drink, although CD rats had access to water. (b) Energy from total fat intake. (c) Saturated fat intake
(g/day). (d) Energy from total carbohydrate intake (e). Simple sugar intake (g/day). (f) Dietary
fibre intake (g/day). Mean values ± standard deviation (SD) are plotted. Symbols * and § indicate
significant differences (one-way ANOVA) compared to CD-fed group: ** p < 0.01, *** p < 0.001;
HSD-fed group: §§§ p < 0.001 (n = 9 rats per group).
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Figure 2. Correlation between nutrients intake and adiposity index. (a) Path diagram of principal
component (PC) used in Pearson correlation analysis. (b) Simple sugar and (c) saturated fat intakes
were positively correlated with adiposity. (d) Dietary fibre and (e) protein intakes were negatively
correlated with adiposity.
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2.2. Dietary Composition Effects on Serum Metabolic Parameters

After showing that both dietary patterns were obesogenic, data analysis sought to
evaluate the association between nutrient intake and serum metabolic parameters, namely
fasting blood glucose, triglycerides, and total cholesterol levels (expressed as mmol/L).
There was a significant difference in the circulating levels of fasting blood glucose between
the three groups (Supplemental Figure S2a). Glucose concentration was significantly higher
in HSD-fed rats (10.76 ± 2.11) and WD-fed rats (11.48 ± 3.05), compared to the CD feeding
group (6.75 ± 1.44; p < 0.01). When glucose levels were compared between the HSD and
WD feeding groups, we found no significant differences in serum levels. Moreover, Pearson
correlation results (Supplemental Table S3) showed that only sugar intake had a positive
correlation with fasting blood glucose (Figure 3a–c).
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Figure 3. Correlation between nutrients intake and serum metabolic parameters. (a) Simple sugar
intake had a positive correlation with fasting blood glucose, while (b) dietary fibre and (c) protein
intakes had a negative correlation. (d) Simple sugar intake has positively correlated with triglycerides
levels. A negative correlation was found between (e) dietary fibre and (f) protein intakes with
triglycerides serum levels.

Regarding the blood lipid profile, there was a significant effect of diet on triglyceride
and total cholesterol serum levels (Supplemental Figure S2b,c). No significant differences
were found in blood lipid profile from rats fed with a WD or HSD, but these values were
significantly different when compared with CD-fed rats. In line with the increased adiposity
index, triglyceride and cholesterol levels were higher in WD-fed rats than in CD-fed rats
(p < 0.001). HSD-fed rats had higher levels of triglycerides and total cholesterol than CD-fed
rats (p = 0.03 and p < 0.01, respectively).
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Pearson analysis showed that five dietary components were correlated with blood lipid
parameters (Supplemental Table S3). Total cholesterol levels were correlated (negatively)
only with complex carbohydrate intake, similar to the association found for triglyceride
levels. In addition, we found that protein and fibre intake were negatively correlated with
triglyceride levels, whereas the mean fat energy, saturated fat, and sugar intakes had a
positive correlation (Figure 3d–f, Supplemental Table S3). Furthermore, all serum metabolic
parameters were also positively correlated with adiposity (Supplemental Figure S3).

2.3. Effects of Obesogenic Diets on the Small Intestine Morphology

Rats fed with a HSD and WD had higher sucrose intake, which is quickly digested into
glucose and fructose in the small intestine lumen. To assess whether these dietary patterns
can induce changes on intestinal morphology, observation of the duodenal mucosa was
undertaken in HE-stained tissue sections (Figure 4). CD-fed rats showed slender duodenal
villi with regularly aligned epithelium, mainly composed of enterocytes interspersed with
goblet cells and some scattered intraepithelial lymphocytes. Of note, dietary intervention
induced changes in duodenal villi characteristics (Figure 4). HSD-fed rats exhibited a slight
enlargement of the villi and enterocytes with misaligned nuclei, while vacuoles in the
absorptive enterocytes were observed in the small intestine of WD-fed rats. From the tip to
villi base, we observed fewer intraepithelial lymphocytes compared to CD feeding.
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Figure 4. Dietary effects on the small intestine. Representative images of HE-stained duodenum
of rats fed with chow diet (CD), high-sugar diet (HSD), and Western diet (WD). The inset shows
details of the villi in small intestines, from near the villi base (white box) to the tip (black box). Villi in
duodenum from CD-fed rats showed regularly aligned simple columnar epithelium and occasional
intraepithelial lymphocytes. HE-staining of tissue sections from HSD-fed rats exhibited enterocytes
with misaligned nuclei and slight enlargement of the villus tip. The duodenal villi of HFD-fed rats
revealed vacuoles in simple columnar epithelial cells.

2.4. Distinct Effects of Obesogenic Diets on the Number of Goblet Cells

Next, we examined the HSD and WD feeding effects on the mucus-secreting cells in
the same intestine segment. The acidic goblet cells that stained positively with Alcian blue
in the villi epithelium were counted (Figure 5).
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Figure 5. Dietary effects on mucus-secreting cells in the small intestinal epithelium. (a) Representative
images of Alcian blue staining of transversal sections of duodenum from chow diet (CD), high-sugar
diet (HSD), and Western diet (WD) groups. (b). Inset of the box showing blue stained goblet cells,
which is indicated by an arrow. (c) Number of goblet cells per villus of duodenum (n = 5–8 villi
per rat). Symbol indicates significant differences (one-way ANOVA) compared to HSD-fed group:
§ p < 0.05.

No significant difference was observed in the goblet cell number between rats fed with
a HSD or CD, nor between the WD and CD feeding groups (Figure 5c). Remarkably, the
mucus-positive cell number per villi in rats fed with HSD was significantly higher than
that in WD-fed rats.

2.5. Distinct Effects of Obesogenic Diets on Inflammatory Signalling Pathways in the Small
Intestine

Considering that the upregulation of NF-κB through TLR-dependent signalling trig-
gers the production of proinflammatory cytokines, leading to the impairment of immune
functions and chronic low-grade inflammation [16,19,22], we analysed the long-term effects
of WD and HSD on the expression of TLR2/TLR4/NF-κB pathways. In addition, the
expression of other key mediators for the maintenance of intestinal homeostasis, such as
iNOS and NLRP3 [32,34,35,49,50], were analysed.

In the jejunum, ANOVA results showed that diets induced significant variation on
NF-κB, TLR2, TLR4, and iNOS gene expression, but there was no difference in NLRP3
expression (Figure 6a–e). The small intestine of HSD-fed rats exhibited significantly higher
expression of NF-κB and TLR2 compared to CD-fed rats (Figure 6a,c). Although there
was a slight increase in the expression of TLR4 with HSD feeding, the difference was
not statistically significant compared to the levels of CD-fed rats (Figure 6b), suggesting
that a HSD induced an inflammatory response in the small intestine mainly through the
upregulation of the TLR2/NF-κB pathway. Surprisingly, in the jejunum of HSD-fed rats,
a reduction in iNOS expression, compared to CD-fed rats, was detected (Figure 6c,e).
Regarding the WD’s effects on inflammatory gene expression, the upregulation of NF-κB,
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TLR2, and TLR4 expression was also detected in the jejunum compared to CD feeding. In
addition, iNOS expression levels were reduced in this small intestine segment (Figure 6e).

Int. J. Mol. Sci. 2022, 23, 10984 9 of 17 
 

 

 

Figure 6. Graphic representation of the normalized expression levels of chow-fed diet (CD), high-

sugar diet (HSD), and Western diet (WD), concerning NF-kB, TLR4, TLR2, NLRP3, and iNOS genes 

in jejunum (a–e) and colon (f–j) samples. Expression levels were normalized against the respective 

18S rRNA gene expression and then against the respective controls (CD), set as 1. Mean values ± 

standard deviation (SD) are plotted. *** p < 0.001, ** p < 0.01, * p < 0.05. 

2.6. Distinct Effects of Obesogenic Diets on Inflammatory Signalling Pathways in the Large 

Intestine 

There is evidence linking dietary fats and fibre intake with colonic microbiota com-

position and inflammation [23]. In this way, we further analysed the diet effects on colonic 

immune response. ANOVA results showed that dietary intervention also had a significant 

effect on NF-κB, TLR2, TLR4, and iNOS expression in the large intestine, but not on NLRP3 

expression (Figure 6f–j). Notably, there were no significant changes in the colonic expres-

sion of NF-κB/TLR2 of HSD-fed rats compared to CD (Figure 6f), neither in TLR4 expres-

sion nor in iNOS expression (Figure 6f–j). Meanwhile, WD intake had a significant impact 

on the activation of colonic-inflammation-associated pathways compared to CD intake. In 

addition, the upregulation of NF-κB expression was higher in the colon, compared with 

the levels detected in the jejunum (p < 0.01). Of note, WD intake induced a significant 

increase in colonic iNOS expression compared to CD intake and with levels in the jejunum 

(p < 0.05), where it was downregulated.  

3. Discussion 

Overnutrition is recognized as a main driver of the chronic metabolic inflammation 

associated with the development of obesity and related metabolic disorders [3,5,8,51,52]. 

There is the concept of dietary fat perturbation of homeostatic microbiota–host interac-

tion, leading to intestinal immune dysregulation and barrier disruption [10,27], enabling 

bacterial translocation and, consequently, metabolic inflammation [13,43,53]. Both short-

term and prolonged exposure to diets with high saturated fatty acids were found to in-

duce inflammatory responses in the intestine and insulin resistance through a TLR4/NF-

κB-dependent mechanism [24,54]. Other studies proposed a fatty acid-specific effect on 

the intestinal inflammation, through the activation of both the TLR2 and TLR4 signalling 

pathways, leading to low-grade inflammation and glucose homeostasis impairment 

[13,15,55]. 

Our results reveal that, in rats submitted to the WD, the TLR2/TLR4/NF-κB signalling 

cascade activation induced an inflammatory response in the small intestine, with a more 

exacerbated expression in the colon. Moreover, the colonic inflammatory response to WD 

was accompanied by an increased expression of iNOS, although its expression levels were 

decreased in the small intestine. In addition, we showed that high intake of saturated fat 

and added sugar intake by young rats were correlated with worse metabolic profiles in 

adulthood. It was previously reported that, in mice, diet more severely affected the intes-

tinal barrier in the proximal small intestine than in the colon [27,42,45]. However, other 

Figure 6. Graphic representation of the normalized expression levels of chow-fed diet (CD),
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2.6. Distinct Effects of Obesogenic Diets on Inflammatory Signalling Pathways in the
Large Intestine

There is evidence linking dietary fats and fibre intake with colonic microbiota compo-
sition and inflammation [23]. In this way, we further analysed the diet effects on colonic
immune response. ANOVA results showed that dietary intervention also had a significant
effect on NF-κB, TLR2, TLR4, and iNOS expression in the large intestine, but not on NLRP3
expression (Figure 6f–j). Notably, there were no significant changes in the colonic expression
of NF-κB/TLR2 of HSD-fed rats compared to CD (Figure 6f), neither in TLR4 expression
nor in iNOS expression (Figure 6f–j). Meanwhile, WD intake had a significant impact on
the activation of colonic-inflammation-associated pathways compared to CD intake. In
addition, the upregulation of NF-κB expression was higher in the colon, compared with the
levels detected in the jejunum (p < 0.01). Of note, WD intake induced a significant increase
in colonic iNOS expression compared to CD intake and with levels in the jejunum (p < 0.05),
where it was downregulated.

3. Discussion

Overnutrition is recognized as a main driver of the chronic metabolic inflammation
associated with the development of obesity and related metabolic disorders [3,5,8,51,52].
There is the concept of dietary fat perturbation of homeostatic microbiota–host interaction,
leading to intestinal immune dysregulation and barrier disruption [10,27], enabling bacte-
rial translocation and, consequently, metabolic inflammation [13,43,53]. Both short-term
and prolonged exposure to diets with high saturated fatty acids were found to induce
inflammatory responses in the intestine and insulin resistance through a TLR4/NF-κB-
dependent mechanism [24,54]. Other studies proposed a fatty acid-specific effect on the
intestinal inflammation, through the activation of both the TLR2 and TLR4 signalling path-
ways, leading to low-grade inflammation and glucose homeostasis impairment [13,15,55].

Our results reveal that, in rats submitted to the WD, the TLR2/TLR4/NF-κB signalling
cascade activation induced an inflammatory response in the small intestine, with a more
exacerbated expression in the colon. Moreover, the colonic inflammatory response to WD
was accompanied by an increased expression of iNOS, although its expression levels were
decreased in the small intestine. In addition, we showed that high intake of saturated
fat and added sugar intake by young rats were correlated with worse metabolic profiles
in adulthood. It was previously reported that, in mice, diet more severely affected the
intestinal barrier in the proximal small intestine than in the colon [27,42,45]. However, other
previous findings showed diet-induced colonic inflammation and intestinal permeability
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occurring through the induction of the TLR4 and iNOS signalling pathways [54]. In
addition, dietary fat induces disruption of colonic microbiota and triggers bacterial growth
in the small intestine in mice [56]. Together, these findings suggest that early consumption
of a WD induces disruption of regulatory signalling pathways in a region-specific manner,
providing support to the causative link between ultra-processed food intake, colonic
inflammation, and metabolic dysfunction.

Interestingly, we found that HSD feeding induced the activation of the TLR2/NF-κB
pathway only in the small intestine. In line with previous studies, we observed mor-
phological alterations in the small intestine induced by high sugar intake, including a
higher number of goblet cells compared with WD feeding. The crucial role played by the
TLR2-mediated signalling pathways in the regulation of the intestinal epithelial barrier
has been recognized [16,29]. TLR2 expression is shaped by the microbiota, and it reflects
bacterial load, displaying low expression levels in the small intestine and higher ones in
the proximal colon [26]. In the small intestine, microbiota shaping associated with the
upregulation of TLR2 expression leads to an increased cell turnover [21], changes in tight
junction protein expression, and stimulation of mucus secretion by goblet cells [16,19]. In
addition, early HSD feeding triggered an increase in adiposity in adulthood, which was
correlated with unfavourable metabolic parameters. Indeed, previous studies reported the
negative impact of high sugar intake on intestinal structure and function [52,57], as well as
on other metabolic organs [48,58]. Therefore, it is plausible to suggest that a sustained high
luminal concentration of glucose due to high sugar, per se, induces the upregulation of
TLR2 expression in the small intestine and, consequently, may lead to chronic intestinal per-
meability, hyperglycaemia [52,57] and, metabolic endotoxemia [8], which may contribute
to the onset and progression of obesity.

We showed that only WD feeding induced the NF-κB/TLR4/iNOS signalling activa-
tion in the colon. Since both obesogenic diets were low-fibre, it is plausible to suggest that
the deregulation of iNOS signalling pathway induced by saturated fat might be an internal
signal to the disruption of microbiota–host interactions, leading to colonic inflammatory
response and dysmotility. Increasing evidence supports the link between diet-induced
obesity and intestinal motility disorders, indicating dietary fat as a main contributor to
dysfunction of myenteric neurons, which leads to intestinal motility disorders [20,23,31].
Diet-induced colonic inflammation and dysmotility were reported to involve the activa-
tion of TLR4 and iNOS signalling [20,23,31]. Dietary fibre intake strongly influences the
microbiota–host interactions, interfering with overall metabolic function and, locally, mod-
ulating intestinal homeostasis [14,18,23,36,37]. This non-digestible carbohydrate is used by
the bacteria mainly in the large intestine, producing SCFA and indole derivatives, which
modulate several intestinal functions, such as barrier integrity, energy homeostasis, gut
hormone production, and motility [14,23,37].

Convincing evidence links iNOS levels with microbiota-immune-nerve interactions,
indicating the deregulation of iNOS signalling to play a role in colonic dysmotility [31,59]. A
concept that emerged from animal models of colitis [31,59,60] linked colonic inflammation
with the expansion of Proteobacteria [59] and increased oxidative stress [31,59], triggering
the upregulation of iNOS expression in enteric glial and immune cells [31,60,61]. In ad-
dition, dietary fat was shown to induce colonic inflammation through the activation of
NF-κB/TLR4 signalling, leading to an increase in iNOS expression [23] and a subsequent
increase in NO levels released by enteric glia cells in an excitation state [60]. Moreover, our
previous study showed that consumption of ultra-processed foods induced the expansion
of Proteobacteria [62], supporting the hypothesis that the diet-related iNOS expression in
colon can be caused by disruption of microbiota-immune-nerve crosstalk, contributing to
colonic dysfunction [31,60].

We found a downregulation of jejunal iNOS expression in rats fed with ultra-processed
foods and sugar drinks. Dietary fat was previously reported to induce an increase in iNOS
expression in the small intestine from rats [30] and mice [40]. This divergence may be
explained, at least in part, by differences in animal strains and the nutrient composition
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used, not only in dietary intervention timing and duration, but also in the small intestine
segment analysed. Nevertheless, in iNOS-deficient mice, a sustained increase in the bac-
terial load in the ileum was shown, suggesting that iNOS expression might be important
for inhibition of a bacterial reflux from the large intestine [49]. Since we found a decrease
in iNOS expression in the small intestine due to WD and HSD feeding, it is possible that
this effect could be the consequence of a chronic defect in the immune response, caused,
in part, by dietary effects on the jejunal bacterial load. In addition, we observed fewer
intraepithelial lymphocytes in the duodenal tissue sections of WD-fed rats, corroborating
previous studies [63]. Alongside with iNOS and NO roles in intestinal barrier function [49],
their role in the regulation of enteric glucagon-like peptide-1 (GLP-1) sensitivity through a
CD14/TLR4 dependent mechanism is also proposed [64]. Indeed, the expression of GLP-1
receptors was shown to be reduced in the jejunum of mice on a high fat diet but was
unchanged in the colon [64]. It can be hypothesized that a sustained intestinal proinflam-
matory responses triggered by early dietary patterns affects immune system development,
leading to intestinal function impair and deregulation of gut hormone secretion as well as
causing a low-grade systemic inflammation and subsequent infiltration of immune cells in
several metabolic organs [8,13,23,40–42,44].

During acute inflammatory response, the small and large intestines showed an up-
regulation of NLRP3 expression upon injury or microbial stimuli, involving the activation
of TLR4 and TLR2 signalling [34,35]. Besides the activation by bacterial infection, this
signalling pathway can be activated by saturated fatty acids [32,35], being suggested to
play a role in immune dysfunction and chronic inflammation, triggering diet-induced
obesity and insulin resistance [32,33]. Interestingly, we found that neither WD nor HSD
feeding had influence on NLRP3 expression in the small and large intestines. These results
provide information suggesting that saturated fat intake induced neither a direct effect on
the activation of intestinal NLRP3 nor an indirect effect through the bacteria, although we
cannot exclude the possibility of NLRP3 inflammasome activation by other stimuli. The
existence of an acute inflammatory response induced by high saturated fat is not expected,
though a low-grade inflammation is expected. Indeed, contrarily to other metabolic tissues,
the intestine possesses a tissue-resident phagocyte population that is hyporesponsive to
microbial stimulation [34], suggesting that inflammasome activation might have tolerance
towards non-pathogenic microbiota.

Taken together, the data indicate that the chronic consumption of ultra-processed foods
induces exuberant colonic inflammatory response, contributing to metabolic consequences
in adulthood, whereas the effects of sugar beverages on inflammation mechanisms were
mainly observed in the small intestine. These observations support the concept that the
intestinal structure and its responsive mechanisms can be disrupted by direct and indirect
effects of different nutrients in a regional-specific manner.

4. Material and Methods
4.1. Animals and Experimental Diets

All procedures in this study were reviewed and approved by the Animal Care and Use
Committee (ORBEA) of the Faculty of Medicine of the University of Porto (Portugal). The
procedures were performed by accredited scientists (licensed users of the Federation of Lab-
oratory Animal Science Associations—FELASA) and conducted according to the European
Union Directive (2010/63/EU) on the protection of animals for scientific purposes. Data
in the current paper pertain to rats involved in a dietary manipulation experiment, some
aspects of which have already been published. These previous publications have included
patterns of body weight, adiposity, serum lipid profile, and serum glucose levels [65].

We previously exposed male Wistar rats, aged 4 weeks, to three dietary treatments
(n = 9 per diet group) for 14 weeks. The number of animals per group considered previous
studies in our lab and the fact that HSD group presented a statistically significant difference
at “p” values, ranging from 0.05–0.02 and at varying 80–90% probability (levels of power)
for n = 9 and the WD group, where the number need was lower. Throughout the study,
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animals had ad libitum access to liquid and solid food, which was replaced daily. The
control diet group (CD) was fed with standard chow diet (4RF21/C Mucedola, Settimo
Milanese, Italy) and had access to water. The high-sugar diet group (HSD) was fed with
standard chow diet and had access to 30% sucrose solution (Sigma-Aldrich Company
Ltd., Madrid, Spain; 1.2 Kcal/mL). The Western diet group (WD) was fed with standard
chow diet mixed with a selection of palatable human foods and had access to 15% sucrose
solution (0.6 Kcal/mL). Full details on macronutrient composition of the diets are found in
the supplementary material (Table S1). During the whole experimental period, rats were
housed two per cage to avoid social isolation, under controlled 22–24 ◦C temperature and
12:12 h light/dark cycle conditions. More information about procedures and experimental
design can be found in our previous paper [65]. Food intake was obtained by subtracting
the final weight of the food from its initial weight, including any food pellets that had
spilled into the cage.

4.2. Tissue Collection

Animals were sacrificed under deep anaesthesia, induced with sevoflurane (SevoFlo,
Abbott Laboratories Ltd., Maidenhead, UK). The small and large intestines were dissected
and washed in PBS to remove luminal contents. Then, ~2 cm-long sections of the duodenum
were collected and fixed in 4% (w/v) neutral-buffered formalin solution (Sigma-Aldrich)
for 24 h at room temperature. Tissue samples of jejunum and colon were quickly frozen
and stored at −80 ◦C, until being processed for extraction of total RNA for quantitative
real-time PCR analysis. Visceral adipose tissue (VAT) was weighted to assess the degree of
obesity, by using the adiposity index, expressed as the ratio of VAT weight to body weight
(g/100 g).

4.3. Histological Analysis and Goblet Cell Staining

Specimens of cross-section segments of duodenum were embedded in low-melt paraffin wax
and cut into 4 µm thick histological sections on a microtome (ShandonTM FinesseTM 325, Thermo
Scientific, Runcorn, UK). For histopathological examination, tissue sections were stained with
hematoxylin and eosin (HE) (Diapath, Martinengo, Italy) and evaluated according to: widening
and shortening of intestinal villi, infiltration of intraepithelial lymphocytes, and nucleus position
within the absorptive cells (enterocytes) of the intestinal epithelium. The HE sections were
selected for quantitative evaluation when the duodenal villi were well-oriented, displaying a
surface epithelium composed mainly of enterocytes intermixed with goblet cells. Away from
the regenerative zone of villus, the enterocytes were identified as columnar cells with an oval
nucleus, normally occupying a uniformly basal position in the enterocyte. The differentiation
between enterocytes and goblet cells was recognized by the typical pear shape of goblet cells. The
Alcian blue staining (at pH 2.5) counterstained with hematoxylin was used to quantify goblet
cells that contained acid non-sulphated mucins. Goblet cells were counted in both sides of the
villi from base towards the tip of the villi, excluding the stem cell zone. Only villi that were cut
longitudinally and with defined limits were used for quantification of goblet cells. The number
of goblet cells in villi per tissue section was counted, and the average number of goblet cells per
villus was estimated on 5–8 villi per animal (n = 9/group). This histological assessment was
performed in a blind manner to the group by one of the authors. Slides were observed under
phase contrast microscopy, using 100× and 600×magnifications (Eclipse TE2000-U microscope,
Nikon, Melville, NY, USA), coupled to a DXM1200F digital camera and controlled by Nikon
ACT-1 software (version 2.70).

4.4. Gene Expression Analysis

At the time of harvest, total RNA was extracted from jejunum and mid colon samples
using the TripleXtractor reagent (Grisp, Porto, Portugal), in accordance with the instructions
of the manufacturer. In total, 1 µg of the total RNA of each sample was reversely transcribed
into cDNA using the GRS cDNA Synthesis Mastermix (Grisp, Porto, Portugal), in a total
volume of 20 µL. cDNA templates were then amplified with specific primers for target



Int. J. Mol. Sci. 2022, 23, 10984 12 of 15

genes, iNOS, NF-Kb, NLRP3, TLR2 and TLR4, using Xpert Fast SYBR Mastermix (Grisp,
Porto, Portugal) in a C1000 TouchTM thermocycler, equipped with a CFX96 Touch Real-Time
Detection System (Bio-Rad Laboratories, Hercules, CA, USA) and analysed with the CFX
MaestroTM software, version 2.3 (Bio-Rad Laboratories), in accordance with the protocol of
the manufacturer.

Product amplification was performed with 1 µL of sample cDNA, corresponding to
50 ng of DNA, analysed in duplicate in a final volume of 20 µL/well, containing 10 µM
of each primer (iNOS forward primer: 5′-CCAGAGCCTCATCGGTCGTC-3′; iNOS re-
verse primer: 5′-GGGTCCTTCCGCAGACAAC-3′; NF-κB forward primer: 5′-CCAGAGCC
TCATCGGTCGTC-3′; NF-κB reverse primer: 5′-GGGTCCTTCCGCAGACAAC-3′; NLRP3
forward primer: 5′-CCAGAGCCTCATCGGTCGTC-3′; NLRP3 reverse primer: 5′-GGGTC
CTTCCGCAGACAAC-3′; TLR2 forward primer: 5′-CCAGAGCCTCATCGGTCGTC-3′;
TLR2 reverse primer: 5′-GGGTCCTTCCGCAGACAAC-3′; TLR4 forward primer: 5′-
CCAGAGCCTCATCGGTCGTC-3′; TLR4 reverse primer: 5′-GGGTCCTTCCGCAGACAAC-
3′). The PCR program run was as follows: (a) denaturation at 95 ◦C, 3 min; (b) amplifi-
cation in 55 cycles (denaturation at 94 ◦C, 20 s; annealing at 55 ◦C, 30 s, and extension
at 72 ◦C, for 30 s), followed by plate reads; (c) melt curve plotting between 65 ◦C and
95 ◦C, with 0.5 ◦C increments every 5 s, followed by plate reads. The change in gene
expression was calculated using the 2−∆(∆Ct) comparative method with the housekeeping
gene 18S ribosomal RNA (18S rRNA) as the internal gene (18S rRNA forward primer:
5′-TTCGGAACTGAGGCCATGATT-3′; 18S rRNA reverse primer: 5′-TTTCGCTCTGGT
CCGTCTTG-3′), though the presented data were calculated by using the 18S rRNA gene
normalized to the control group.

4.5. Correlation Analysis with Physiological Traits

Body VAT weight, adiposity index, and serum parameters in the end of dietary inter-
vention were correlated (Pearson’s correlation) with average daily intake of macronutrients.

4.6. Statistical Analysis

Data were tested for normal distribution and homogeneity of variances (Shapiro–Wilk
test) and adjusted Welch test, when appropriate. The effects of treatment (HSD and WD) on all
other variables were assessed by one-way analysis of variance (ANOVA). Pairwise comparisons
between diet groups were determined either by the post hoc Tukey’s test or the non-parametric
Kruskal–Wallis test, followed by Dunn’s multiple comparisons test. For correlation analysis, the
Pearson correlation coefficients were used, with a confidence interval of 95%. The statistical
analysis was performed using JASP open-source software (JASP, version 0.16.2.0, University of
Amsterdam, Amsterdam, The Netherlands). A p < 0.05 was considered as statistically significant.

5. Conclusions

This study demonstrated that WD upregulates the TLR2/TLR4/NF-κB pathway axis
and modulates intestinal iNOS expression, enhancing inflammatory response in the colon.
The consumption of simple sugar activated a jejunal inflammatory response through the
TLR2/NF-κB signalling pathway.
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