
sensors

Article

Virtualization of Industrial Real-Time Networks for
Containerized Controllers

Sang-Hun Lee 1, Jong-Seo Kim 2, Jong-Soo Seok 3 and Hyun-Wook Jin 4,*
1 Hyundai Mobis Co., Ltd., Yongin-si, Gyeonggi-do 16891, Korea; sanghun@mobis.co.kr
2 LIG Nex1 Co., Ltd., Seongnam-si, Gyeonggi-do 13488, Korea; jongseo.kim@lignex1.com
3 Electronics and Telecommunications Research Institute, Daejeon 34129, Korea; jsseok@etri.re.kr
4 Department of Computer Science & Engineering, Konkuk University, Seoul 05029, Korea
* Correspondence: jinh@konkuk.ac.kr

Received: 8 September 2019; Accepted: 9 October 2019; Published: 11 October 2019
����������
�������

Abstract: The virtualization technology has a great potential to improve the manageability and
scalability of industrial control systems, as it can host and consolidate computing resources very
efficiently. There accordingly have been efforts to utilize the virtualization technology for industrial
control systems, but the research for virtualization of traditional industrial real-time networks, such as
Controller Area Network (CAN), has been done in a very limited scope. Those traditional fieldbuses
have distinguished characteristics from well-studied Ethernet-based networks; thus, it is necessary to
study how to support their inherent functions transparently and how to guarantee Quality-of-Service
(QoS) in virtualized environments. In this paper, we suggest a lightweight CAN virtualization
technology for virtual controllers to tackle both functionality and QoS issues. We particularly target
the virtual controllers that are containerized with an operating-system(OS)-based virtualization
technology. In the functionality aspect, our virtualization technology provides virtual CAN interfaces
and virtual CAN buses at the device driver level. In the QoS perspective, we provide a hierarchical
real-time scheduler and a simulator, which enable the adjustment of phase offsets of virtual controllers
and tasks. The experiment results show that our CAN virtualization has lower overheads than an
existing approach up to 20%. Moreover, we show that the worst-case end-to-end delay could be
reduced up to 78.7% by adjusting the phase offsets of virtual controllers and tasks.

Keywords: virtualization; controller area network; fieldbus; real-time; container

1. Introduction

The contemporary industrial control systems comprise many sensors, actuators, and controllers
connected through real-time networks. As the number of sensors and actuators in modern industrial
plants increases drastically, the manageability of the controllers that directly interact with sensors
and actuators in real-time becomes a serious concern. Accordingly, the demands for the flexibility
with regard to hosting and consolidation of the controllers in large and complex industrial plants are
constantly growing. For instance, to address the manageability and scalability in industrial control
systems, there is an active movement to exploit cloud computing technologies in the infrastructure of
smart manufacturing with the advent of the Industry 4.0 era [1–3].

In cloud computing, the virtualization is the key technology that provides the resource
isolation and security between virtual machines [4]. Thus, it is expected that the industrial control
software can also be efficiently deployed and executed in given computing resources by means of
virtualization, while satisfying the requirements on security by preventing unauthorized resource
access between virtual controllers. However, existing virtualization technologies in cloud computing
do not support essential components of industrial control systems. It is particularly important to

Sensors 2019, 19, 4405; doi:10.3390/s19204405 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-9496-3486
http://www.mdpi.com/1424-8220/19/20/4405?type=check_update&version=1
http://dx.doi.org/10.3390/s19204405
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 4405 2 of 22

provide functional transparency and a real-time guarantee of industrial networks in virtualized
environments. There were significant studies on network virtualization, but most of the existing
research focused on the performance optimization of Transmission Control Protocol/Internet Protocol
(TCP/IP) over Ethernet [5–10] or high-performance interconnects [11]. Although the Ethernet-based
industrial networks, such as EtherCAT [12] and PROFINET [13], are emerging, traditional fieldbuses,
such as Controller Area Network (CAN) [14], are still prevalent among the majority of control systems.
CAN is a bus-based network standardized in ISO 11898. In order to support CAN in virtualized
environments, we have to deal with following challenging issues:

• Support for sharing of the network interface: In order to allow several virtual controllers to share a
physical CAN network interface in an isolated manner, the run-time support should be capable
of multiplexing and demultiplexing the input/output (I/O) requests from multiple virtual
controllers. However, the protocol stacks of CAN (i.e., CANopen [15]) implicitly assume that the
CAN network interface can be dedicated to only one software controller.

• Emulation of the media access control: The characteristics of CAN are significantly different from
general purpose networks. For example, the CAN message identifier is used in bus arbitration;
that is, it is considered as a priority for bus arbitration. Thus, such characteristics have to be
emulated in virtualized environments to preserve the behavior of controllers.

• Low virtualization overheads: As the traditional hypervisor-based virtualization (e.g., Xen [4],
VMware [16], and VirtualBox [17]) adds significant run-time overheads, the operating-system
(OS)-based virtualization (e.g., Container [18,19]) is emerging. Accordingly, we need a CAN
virtualization technology that can be incorporated into the OS-based virtualization aiming to
minimize the virtualization overheads.

• Analysis of end-to-end delay: In virtualized environments, multiple virtual controllers share the
CPU resources; thus, the end-to-end delay of control loop highly depends on how the virtual
controllers are scheduled. Therefore, we need a mechanism to analyze the worst-case end-to-end
delay and minimize it to satisfy the requirements on real-time.

In this paper, we suggest a lightweight CAN virtualization technology for virtual controllers
that are containerized with an OS-based virtualization. Our study mainly focuses on how to
provide correct communication semantics and functionalities of industrial fieldbuses in OS-based
virtualization, while providing low overheads and Quality-of-Service (QoS). The proposed scheme
does not require any modifications of control applications and protocol stacks. There were also studies
to virtualize CAN, but these were hardware-level approaches [20] or targeted the hypervisor-based
virtualization [21]. We also suggest adjusting the phase offsets of virtual controllers and their tasks to
minimize the end-to-end delay. By adjusting the execution point of tasks that perform communication
over fieldbuses, we can improve the worst-case end-to-end delay. We implemented a simulation tool
that finds a sub-optimal phase combination of virtual controllers and tasks. Although the phasing
schemes were also discussed in other studies, these did not consider virtualized environments [22–25].
The performance measurement results show that our CAN virtualization technology hardly adds
additional overheads and reports lower overheads than a hypervisor-based virtualization up to 20%.
We also show that our phasing scheme can reduce the worst-case end-to-end delay by 47.0∼78.7%.

The rest of the paper is organized as follows: we discuss the related work in Section 2. We detail
the suggested design of CAN virtualization and its implementation in Section 3. In this section,
we present the device-driver-level CAN virtualization for containerized controllers and the simulation
tool for optimal phasing of controllers and their tasks. The performance measurement results are
presented in Section 4. Finally, we conclude this paper in Section 5.



Sensors 2019, 19, 4405 3 of 22

2. Related Work

The virtualization technology provides multiple virtual platforms, each of which can run their
own applications and system software on a single physical computing node. In legacy virtualization
approaches, the software layer that provides the virtual machines is called hypervisor or Virtual
Machine Monitor (VMM). A hypervisor can run on bare hardware (i.e., Type-1) or on top of an OS
(i.e., Type-2). We call the OS running on the virtual machine as guest OS. In the Type-2 environment,
the OS that hosts the hypervisor is called host OS. We can classify the virtualization technology into two:
full-virtualization and para-virtualization. The full-virtualization allows the legacy software as either
OS or applications to run in a virtual machine without any modifications. To do this, the hypervisors
usually perform the binary translation and emulate every detail of physical hardware instruction
sets. VMware [16] and VirtualBox [17] are examples of full-virtualization hypervisors. On the other
hand, the para-virtualization requires modifications of guest OS in order to minimize the virtualization
overhead. The hypervisors of para-virtualization provide guest OS with programming interfaces called
hypercalls. Consequently, the para-virtualization presents better performance than full-virtualization.
Xen [4] and XtratuM [26] are examples of para-virtualization hypervisors.

However, the para-virtualization also adds significant run-time overheads compared with the raw
(i.e., non-virtualized) systems. The emerging OS-based virtualization [18] in which the OS instance is
shared between the guest and the host domains does not induce significant overheads because the
OS takes care of virtualization without extra software layers, such as hypervisor and multiple OS
instances. In the OS-based virtualization, we call the guest domain as a container, and the OS has to
guarantee the resource isolation between containers. The Linux kernel, for instance, provides control
group (cgroup) and name space to guarantee the resource isolation with respect to resource usage and
security, respectively [27].

The virtualization technology is mainly utilized in the cloud computing systems, but it also
has very high potential of improving manageability and safety in industrial control systems.
For example, the partitioning defined by ARINC-653 [28] and AUTOSAR [29] to provide temporal
and spatial isolation between avionics and automobile applications can be ideally implemented
by the virtualization technology [30]. In addition, there were efforts to host industrial control
services in cloud infrastructures by virtualizing Programmable Logic Controllers (PLCs) and control
networks [1–3]. These efforts correspond to the trend of running PLCs on open platforms such as
PCs [31,32]. These studies have showed that the virtualization is a promising solution for providing
infrastructure consolidation, manageability, resiliency, and security in industrial control systems.
The existing studies, however, only targeted the Ethernet-based control networks, of which the
virtualization technologies are already available; thus, there were no thorough discussions on how to
host the traditional fieldbuses, such as CAN, in virtualized environments.

There has been significant research on network virtualization, which can be classified into network
interface virtualization and Software-Defined Networking (SDN). Most of the existing network
interface virtualization technologies focused on the performance optimization of TCP/IP over Ethernet
interfaces [5–10] or high-performance interconnects such as InfiniBand [11]. A widely accepted
approach is to provide multiple virtual network interfaces with the assistance of the network interface
card. Since this approach requires the support from the network devices, it is not suitable to apply
this to the fieldbus interface, which is not equipped with sufficient hardware resources to implement
multiple virtual network interfaces. Though there was an architectural research on efficient network
interface virtualization for CAN [20], it also highly depended on the assistance from a network interface
card. To address the manageability and flexibility in the network architecture, the SDN technology that
dissociates the control plane from data plane has been suggested [33]. There was a study to exploit
SDN for control systems [34], but this also targeted only Ethernet because the existing SDN technology
is limited primarily to IP-based networks.

Researchers also studied container scheduling for industrial IoT applications in cloud and fog
computing environments [35,36]. However, they targeted soft real-time applications. There were



Sensors 2019, 19, 4405 4 of 22

studies to provide hard real-time scheduling in fog computing infrastructures [37,38], but these focused
on task-level scheduling without consideration of container-level scheduling. In this paper, we study
hierarchical CPU scheduling that performs task- and container-level scheduling for hard real-time
control applications.

There is a lot of research on message scheduling [39–43] to meet the real-time constraints.
Guaranteeing service-level real-time in a CAN-based networked control system is also studied [44].
There are several research works on synchronization between distributed controllers [45–48]. In this
paper, we especially aim to adjust the phase offsets of virtual controllers and their tasks by means of
the global clock and improve the worst-case end-to-end delay. Sung et al. [25] showed the possibility
of synchronizing distributed control tasks by utilizing the global clocks of real-time control networks,
but they considered only communication tasks while overlooking the preemption by higher-priority
tasks. Kim and Kim [24], Kang et al. [23], and Lee at al. [22] exploited the global clock more positively
to adjust task phases for isochronous control on EtherCAT. Craciunas et al. [49] tried to decide the
optimal offset of tasks in terms of utility. However, previous studies did not consider the virtualized
environments, where we have to deal with the phase of guest domains as well as the phase of tasks.

3. Virtualization of Controller Area Network

In this section, we suggest a lightweight virtualization of the CAN fieldbus for containerized
virtual controllers. In addition, we implement a hierarchical real-time scheduler and a simulator to
guarantee the real-time requirements of virtual controllers.

3.1. Design Issues

We can consider four design alternatives for virtualization of industrial network interfaces
as shown in Figure 1. In the emulation scheme (Figure 1a), the hypervisor emulates the target
network interface and provides a channel to access the physical network interface that can be different
from the target interface. However, as mentioned in Section 2, the hypervisor-based virtualization
increases run-time overheads. Thus, we target the OS-based virtualization and consider virtual
controllers as containerized instances. In the relay scheme (Figure 1b), a daemon process manages
actual data transmission. The virtual controllers have to communicate with this daemon process
through Inter-Process Communication (IPC) channels to send and receive messages. This solution
is the only way to make the virtual controllers share the CAN interface without modifications of
underlying system software or hardware. However, this approach not only requires modifications of
control applications, but also induces a significant overhead due to IPC. The network interface capable
of self-virtualization (Figure 1c) provides the virtual interfaces by itself. However, since each virtual
interface is dedicated to a virtual controller, this alternative adds memory and computation overheads
onto the network interface. The industrial network interfaces are usually equipped with a low-speed
processing unit and low memory space; thus, many interfaces are not capable of accepting this design
choice. The driver-level virtualization (Figure 1d) is somewhat similar with self-virtualization but
virtual interfaces are provided by the device driver. Compared with relay and self-virtualization
approaches, the driver-level virtualization is superior in both performance and resource requirements.
We will describe the details of the driver-level virtualization in Section 3.2.

To satisfy the real-time requirements of the virtual controllers, we have to pay careful attention
to CPU scheduling. In virtualized environments, CPU scheduling is performed in a hierarchical
manner [50]; first, the scheduler assigns the CPU resources to a container; then, the tasks that belong to
the container are scheduled within the limit of the CPU resources assigned to the container. Legacy OS
in cloud systems, however, focus on limiting the resource usage of containers rather than guaranteeing
resources [51]. For instance, Linux keeps track of the resource usage of containers and throttles a
container’s resource usage if that container exceeds the limit. That is, Linux does not guarantee
resources but limits those. Thus, it is difficult to guarantee the deadlines of real-time applications.
Our hierarchical scheduler provides the resource reservation based on a periodic execution model



Sensors 2019, 19, 4405 5 of 22

and guarantees the deadlines of hard real-time tasks. We will describe the implementation of the
hierarchical real-time scheduler in Section 3.3. The end-to-end delay denoted as De2e in Figure 2 is
defined as the time from the beginning of the task that performs sensing and control to the completion
of the task that performs actuation. For the sake of simplicity, we assume that the sensing and control
operations are performed by a single task [24]. The sensing and control task sends control messages
periodically to the actuation task. Since the tasks of the virtual controllers communicate through
control networks, it is especially critical to decide when the tasks are scheduled and take part in
communication. The simple examples in Figure 3 show how CPU scheduling impacts end-to-end
delay. In these examples, Nodei runs two virtual controllers denoted as VCn. VC0 comprises two tasks,
τ0 and τ1. τ0 senses the plant, decides the control, and sends a control message to the actuation task
running on Nodej. τ1 can be a Human–Machine Interface (HMI) task, for example. We assume that
the sensing and control task, τ0, sends a message to the network at the finish time and the actuation
task receives a message at the start time. In Case 1 (Figure 3a), the CPU resource of Nodei is assigned
to VC0 in time slot 0 and two tasks are executed in succession. However, the actuation task on Nodej
runs long after the message arrives. Thus, the end-to-end delay becomes large. If τ0 decides a precise
control based on the current situation of the plant, the control executed at Nodej after a significant
delay may not correspond to the situation at that time. In Case 2 (Figure 3b), if the period of VC0 of
Nodei is two time slots, we can delay the execution of tasks in VC0 of Nodei to time slot 1 in which
the release point of τ0 is delayed even more. This results in a less end-to-end delay than Case 1, while
still guaranteeing the deadlines of containers and tasks. In this paper, we define the phase offset as
an intentional delay of execution of containers and tasks. We can also adjust the phase offset of the
actuation container as shown in Case 3 (Figure 3c), where the release point of the actuation task is
advanced from time slot 2 to 1. To find a sub-optimal combination of phase offsets, we implement a
simulator, which will be detailed in Section 3.4.

Figure 1. Alternatives for network interface virtualization.



Sensors 2019, 19, 4405 6 of 22

Figure 2. End-to-end delay of control loop.

Figure 3. End-to-end delay and phase offsets.

3.2. Driver-Level CAN Virtualization

As discussed in Section 3.1, the driver-level virtualization is more beneficial than the other
design alternatives when considering transparency, performance, and resource requirements all
together. Therefore, in this paper, we suggest the driver-level virtualization of CAN and study its
implementation issues in detail. Figure 4 shows the suggested design. In the device driver, there are
two main components to provide the CAN virtualization: virtual CAN interface that emulates the
behavior of the CAN network interface and virtual CAN bus that emulates the media access control.
A virtual controller owns exclusively an instance of the virtual CAN interface and is connected to a
virtual CAN bus.

To provide functional transparency for virtual controllers, we have to emulate the inherent
features and characteristics of CAN in the virtualized environments. The header of the CAN message
includes the 11-bit message identifier, which specifies the class of information the CAN message
represents (e.g., speed or torque of motors). The information that a specific identifier represents can
vary from system to system and is determined at the system design phase. The controllers broadcast
CAN messages tagging a message identifier according to its assignment rule and receive messages by



Sensors 2019, 19, 4405 7 of 22

specifying interesting message identifiers. It is to be noted that a CAN message specifies neither source
nor destination and is simply broadcast to all nodes in the same bus. The CAN device drivers and
CANopen allow only one task to receive messages of a specific identifier. If different tasks running on
the same node wish to receive the CAN messages of the same identifier, it is not guaranteed that all
tasks receive the messages properly. Only one task that issues the receiving operations before others
can receive the messages. To overcome this limitation and host several virtual controllers, we provide
the virtual CAN interfaces, which are created dynamically at the run time on demand and assigned
exclusively to a virtual controller. A virtual CAN interface has a pair of send and receive queues and
data structures for locking of the queues.

Figure 4. Driver-level Controller Area Network (CAN) virtualization.

The CAN message identifier is also used in bus arbitration. When several controllers try to
access the CAN bus simultaneously, the controller that tries to send the message with the lowest
value of message identifier gains bus access. This means that the message identifier is considered as
a priority for bus arbitration, where the lower identifier value, the higher priority. Since the virtual
controllers are considered as separate CAN nodes in the virtualized environments, we need to arbitrate
the bus access among the virtual controllers. We emulate the behavior of media access control in
the virtualized environments by introducing the virtual CAN bus in the device driver as shown in
Figure 4. When the physical CAN interface is able to send a message, the virtual CAN bus searches
the send queues of all virtual CAN interfaces connected to the virtual bus, chooses the message that
has the lowest identifier value, and sends it to the physical CAN bus. Moreover, the virtual CAN
bus emulates the broadcast media. If a virtual controller sends a CAN message, it is sent out to the
physical CAN bus but also delivered to the other virtual controllers connected to the same virtual bus.
In non-virtualized environments, the propagation delay of messages on physical CAN bus is very
small; thus, the geographical order of controllers on the bus may not be a critical issue. However, the
virtual CAN bus copies messages to multiple virtual CAN interfaces to emulate the broadcasting media.
The overhead of this copy operation can expand the time differences between message arrival points
at local virtual CAN interfaces and remote CAN interfaces. Though we cannot provide a comparable
latency to the physical bus, to mitigate the side effect of the copy overhead, the virtual CAN bus copies



Sensors 2019, 19, 4405 8 of 22

the message to the local virtual CAN interfaces and then sends the message to physical CAN bus. In a
similar way, when a message is received from the physical CAN bus, the virtual CAN bus inserts the
message to the receive queues of all virtual interfaces connected to the virtual bus. Since filtering of
interesting messages is performed by the upper layers, we do not consider it at the virtual CAN bus.

The physical CAN interface in Figure 4 has multiple ports. The CAN interfaces in sensors or
actuators usually have a single port, but we generalize our design and implementation for multiple
ports because the computing nodes in cloud system can be equipped with a multi-port CAN interface.
This allows a single computing node to host multiple sets of virtual controllers that use different
CAN buses.

3.3. Hierarchical Real-Time Scheduling

As described in Section 3.1, we implement a hierarchical real-time scheduler for containerized
controllers on Linux. The scheduler uses a fixed-priority scheduling algorithm (e.g., rate monotonic
(RM) scheduling [52]) for both virtual controllers and tasks. We consider a set of periodic virtual
controllers (i.e., C = {VC0, VC1, · · · , VCn−1}) for each processor. Each virtual controller VCi is
containerized with a different set of periodic tasks and uses a separate name space. VCa has a
higher priority than VCb if a < b. We denote a virtual controller by VCi = (Πi, Θi, ∆i,Ti), where
Πi is the period, Θi is the time duration reserved for each period, ∆i | 0 ≤ ∆i < Πi is the phase
offset (i.e., temporal offset from a certain reference time), and Ti is a set of periodic tasks, i.e., Ti =

{τi
0, τi

1, · · · , τi
k−1}. Task τi

a has a higher priority than task τi
b if a < b. A task is denoted as τi

j = (pi
j, ei

j, δi
j),

where pi
j is the period, ei

j is a range of execution time, and δi
j | 0 ≤ δi

j < pi
j is the task-level phase offset.

We assume that the relative deadline of each task is equal to its period. For the sake of simplicity, we
also assume that a processor and a physical bus are dedicated to a set of VCs (i.e., C) launched by a
tenant. If a processor is shared between multiple tenants that submit their Cs at arbitrary time points,
it is difficult to analyze and guarantee the end-to-end delay on the fly. In addition, if a physical bus
(and a virtual bus) is shared by different tenants, there can be conflicts between different definitions of
message identifiers of disparate Cs, which results in malfunctions. Once a C finishes, it releases the
processor and bus resources occupied so that another following C can be used. The applications at the
plant level (e.g., Supervisory Control and Data Acquisition (SCADA) [53]) may consist of multiple Cs.

The hierarchical real-time scheduler is implemented as a daemon process. The scheduler suspends
and resumes tasks by using signals. Once the system initialization is completed, the scheduler starts
the timer. We use a global timer synchronized across distributed nodes. Although the fieldbuses,
such as TTCAN [54] and EtherCAT [12], provide a global clock in distributed systems, we additionally
implement a global clock in software for cases where a hardware global clock is not supported.
Our software global clock is synchronized by using IEEE 1588 [55]. The scheduler releases a virtual
controller VCi at ∆i. Then, the scheduler assigns the CPU resources to VCi for the duration Θi at every
period Πi. The task τi

j is released periodically after ∆i + δi
j. The scheduler runs tasks based on their

period pi
j and execution time ei

j within the CPU utilization of VCi (i.e., Θi/Πi).

Figure 5 shows how the phases ∆i and δi
j decide the release point of a task. In this example,

two virtual controllers (i.e., VC0 and VC1), each of which has two tasks, run on a single CPU. The first
periods of VC0 and VC1 starts at ∆0 and ∆1, respectively. We assume that the highest-priority task of
each virtual controller in this example has the zero phase offset (i.e., δ0

0 = 0 and δ1
0 = 0); thus, τ0

0 and
τ1

0 are released as soon as the first period of each VC begins, whereas τ0
1 and τ1

1 start being released
after ∆0 + δ0

1 and ∆1 + δ1
1 , respectively. Since VC0 has a higher priority than VC1, the tasks of VC1 are

preempted by the tasks of VC0. For example, we can see that the execution of τ1
0 is delayed because it

is preempted by τ0
1 . We will discuss the adjustment of phases in more detail in the next subsection.



Sensors 2019, 19, 4405 9 of 22

Figure 5. Hierarchical real-time scheduling.

3.4. Phasing of Virtual Controllers and Tasks

The worst-case end-to-end delay is an important metric of QoS for industrial control
applications [56]. As we have discussed above, the worst-case end-to-end delay in virtualized
environments is strongly influenced by the phase offsets of virtual controllers and tasks (i.e., ∆i and
δi

j). Researchers tried to find an optimal combinations of phase offsets by suggesting either an online
algorithm [23] or a simulation-based offline approach [22]. However, they did not consider the
virtualized environments. In this paper, we implement a simulator that performs a discrete-event
simulation and provides a sub-optimal phase combination for virtual controllers and tasks. It is to be
noted that the phase combination suggested by the simulator does not hinder the deadline guarantee
of containers and tasks.

The simulator consists of configuration manager, node objects, simulator kernel, phase search
manager, and log manager as shown in Figure 6. The configuration manager provides the user
interfaces to configure simulation parameters, such as attributes of virtual controllers, tasks, and target
fieldbus. The parameters are specified as an XML format and parsed by the configuration manager
at the initialization phase. The node objects are created according to the simulation parameters.
Each node object emulates a C. The simulation kernel emulates the run-time behavior of overall system
by performing hierarchical CPU scheduling and message transmission. Since the execution time of
tasks varies for every period in real systems, the exec-time generator emulates this by generating
time values in the range of ei

j with a uniform distribution. In addition, the event handler and fieldbus
interface components emulate system overheads, such as interrupt handling and Direct Memory
Access (DMA). The simulation results are gathered by the IPC module and saved into text files by the
log manager.



Sensors 2019, 19, 4405 10 of 22

Figure 6. Simulator.

3.5. Implementation

We implemented the CAN virtualization at the Linux device driver of the PEAK-System CAN
interface. In Linux, each port of the PEAK-System CAN interface is registered as a character device
file. The device file is an abstraction implemented by OS to provide basic user-level operations on
I/O devices. The applications and CANopen request the send and receive operations through the
file I/O system calls, and the virtual file system of Linux internally calls the I/O functions provided
by the device driver. In our implementation, a virtual CAN interface is created dynamically and
destroyed at the run time when an application or CANopen calls the open() and close() system
calls, respectively. A virtual CAN interface is exclusively assigned to a virtual controller. The send
and receive operations are commenced by the ioctl() system call. In the case of send operation, the
device driver first inserts the message to the send queue of the virtual interface, then seeks the message
that has the highest priority (i.e., lowest message identifier number) across the send queues of the
virtual interfaces, and not only sends the highest-priority message to the physical CAN interface, but
also copies it into the receive queues of the other virtual interfaces. Regarding the receive operation,
the interrupt handler in the device driver copies the received message into every receive queue of
the virtual interfaces that are connected to the same virtual CAN bus. The ioctl() system call with
receive command returns the message of desired identifier from the receive queue of the corresponding
virtual CAN interface. We identify the corresponding virtual CAN interface by using the file descriptor
passed by the system calls.

To force the container scheduler to behave like the RM scheduler, we set the period and runtime
attributes of cgroup into Πi and Θi, respectively. The Linux cgroup provides these attributes for
a container that consists of the tasks scheduled by a Linux real-time scheduler (i.e., SCHED_FIFO or
SCHED_RR). Then, it is guaranteed that the CPU usage of the container does not exceed the specified
runtime for every period. We set the priority of tasks into the priority of the container to which the



Sensors 2019, 19, 4405 11 of 22

tasks belong. In addition, since the Linux real-time schedulers do not support periodic task scheduling,
we implemented an overlay scheduler on Linux so that task scheduling can be performed with the
RM algorithm. The overlay scheduler maintains a list of the container control blocks, each of which
includes a list of task control blocks (i.e., Ti). A task control block includes the attributes of the task,
such as period pi

j and worst-case execution time Max(ei
j). The overlay scheduler selects a task to run

from the current container based on the RM algorithm and suspends/resumes tasks by using signals,
such as SIGSTOP and SIGCONT.

The current implementation of the simulation tool performs an exhaustive search to find a
sub-optimal phase combination; that is, it investigates all possible combinations of phase offsets by
shifting the phase offsets of containers and tasks by a given time unit. The simulation tool analyzes the
worst-case end-to-end delay of a phase combination by simulating the control loops for a given number
of iterations. Thus, the total simulation time and the accuracy of analysis highly depend on the time
unit generating phase combinations and the number of iterations to simulate. Although the current
implementation is enough to show the benefits of phasing for virtual controllers, further study is
needed to reduce the number of phase combinations investigated and reduce the total simulation time
without sacrificing the analysis accuracy. The simulator creates multiple processes as many as CPU
cores to run simulations for different phase offsets in parallel. Once the phase offsets of containers and
tasks are decided by the simulator, we set the parameters (i.e., ∆i and δi

j) of the hierarchical scheduler
to the phase offset combination suggested.

3.6. Summary

In this subsection, we summarize how the suggested design and implementation address four
challenges listed in Section 1. First, to support sharing of the CAN interface between virtual controllers,
we proposed the virtual CAN interface and the virtual CAN bus as described in Section 3.2. A virtual
controller is assigned a separate virtual CAN interface and allowed to use only the assigned virtual
interface; that is, the other virtual interfaces of different virtual controllers are invisible as described in
Section 3.5. The virtual CAN interfaces of virtual controllers in the same C are connected through a
virtual CAN bus that takes care of multiplexing and demultiplexing of accessing to/from the physical
CAN interface. Thus, we can isolate the communication of each virtual controller with respect to
functionality, while allowing for sharing of the physical CAN interface.

Secondly, to emulate the media access control of CAN, the virtual CAN bus implements the bus
arbitration and message broadcasting as described in Section 3.2. In CAN, the message identifier is
used as the priority of messages in bus arbitration. As described in Section 3.5, the virtual CAN bus
chooses the message that has the lowest identifier number from the send queues of the virtual CAN
interfaces and sends it first. In addition, the virtual CAN bus implements message broadcasting by
copying the message sent from a virtual controller or received from the physical CAN interface into
the receive queues of the virtual interfaces connected to the same virtual CAN bus.

Thirdly, our driver-level CAN virtualization and hierarchical CPU scheduler support the OS-based
virtualization, aiming for low virtualization overheads. As we have discussed earlier, the OS-based
virtualization has lower overheads than the hypervisor-based virtualization. The CAN virtualization
suggested in Section 3.2 is implemented at the CAN device driver; thus, it is transparent to the
upper layers (i.e., OS kernel, CANopen, and applications) and harmonizes well with the OS-based
virtualization. Moreover, the hierarchical CPU scheduler suggested in Section 3.3 is implemented for
OS-based virtualization, targeting particularly containers and their tasks.

Finally, to analyze the end-to-end delay and enhance the worst-case end-to-end delay, we
suggested a simulation tool and hierarchical real-time scheduling in Sections 3.4 and 3.3, respectively.
The simulation tool analyzes the end-to-end delay with different phase offsets of containers and tasks
and suggests a phase offset combination that can provide a sub-optimal worst-case end-to-end delay.
The hierarchical real-time scheduler implements a global timer to synchronize between distributed
virtual controllers and can adjust phase offsets with the scheduling of periodic containers and tasks.



Sensors 2019, 19, 4405 12 of 22

4. Experimental Results

In this section, we analyze the overheads of our driver-level CAN virtualization. In addition,
we show how phasing of virtual controllers and tasks can improve the worst-case end-to-end delay in
the virtualized environments.

4.1. Comparisons with Hypervisor-Based Virtualization

Our CAN virtualization targets the OS-based virtualization aiming for less overheads. To analyze
the virtualization overheads, we measured the Round-Trip-Time (RTT) between two different physical
nodes connected through a CAN bus. Each node was equipped with an Intel i5 processor and a
PEAK-System CAN interface and installed the Linux operating system. We measured RTT between
two nodes that sent and received the same size messages in a ping-pong manner repeatedly for a given
number of iterations. In the experiments, we considered the message size only up to 8-byte because a
CAN frame can convey 8-byte payload in maximum. We drew a comparison between three cases: (i)
original setup without virtualization, (ii) OS-based virtualized environment, and (iii) hypervisor-based
virtualized environment. The original setup shows the base performance to be compared with. The
OS-based virtualization shows the performance of our design suggested in Section 3. To measure
the CAN virtualization overheads in hypervisor-based virtualization, we used the implementation
suggested by Kim et al. [21]. It is to be noted that we applied the hypervisor-based virtualization to only
one node, while measuring RTT on the other node that is not virtualized because the hypervisor-based
virtualization does not provide an accurate timer to guest domains. Similarly, we also applied the
OS-based virtualization to only one node for fairness. In addition, in the experiments, the virtual
controllers did not follow the periodic execution models described in Section 3.3 to measure pure
communication overheads, removing the impact of phase offsets and variable execution time of tasks.
We will analyze the impact of different phase offsets in the next subsection.

Figure 7 shows the average RTT for different message sizes. As we can see, the OS-based
virtualization hardly adds additional overheads compared with the original setup without virtualization,
whereas the hypervisor-based virtualization shows higher overheads up to 20%. The low overheads
of the OS-based virtualization is due to not only the absence of a hypervisor, but also our lightweight
driver-level CAN virtualization.

In addition, we represented the distribution of RTTs measured in Cumulative Distribution
Function (CDF) plots as shown in Figures 8–10. These graphs show the RTTs of 1, 4, and 8-byte
messages. As we have discussed, the OS-based virtualization shows a comparable performance to
a non-virtualized environment, while the hypervisor-based virtualization shows higher overheads.
Moreover, we can observe that the jitters (i.e., difference between maximum and minimum RTTs) in
OS-based virtualization are much less than those in hypervisor-based virtualization for all message
sizes. The jitters for 4-byte messages, for example, were 6 µs with OS-based virtualization and 72 µs
with hypervisor-based virtualization.



Sensors 2019, 19, 4405 13 of 22

Figure 7. Average Round-Trip-Time (RTT) of different message sizes.

Figure 8. Cumulative Distribution Function (CDF) of RTT in a non-virtualized case.

Figure 9. CDF of RTT in an operating-system(OS)-based virtualization case.



Sensors 2019, 19, 4405 14 of 22

Figure 10. CDF of RTT in a hypervisor-based virtualization case.

4.2. Analysis of Worst-Case End-to-End Delay

In Section 3, we suggested a hierarchical real-time scheduler and a simulator, which can improve
the worst-case end-to-end delay by adjusting the phase offsets of virtual controllers and tasks.
To measure the end-to-end delay, we ran virtual controllers with our driver-level CAN virtualization
on a master node equipped with an Intel i5 processor and a two-port PEAK-System CAN interface.
Two worker nodes equipped with an Intel i3 processor were connected to the different CAN ports of
the master node. In the experiments, we ran two virtual controllers, VC0 and VC1 on the master node,
each of which communicates to a worker node through a different CAN bus. Each worker node runs
only a single virtual controller (VC0 or VC1). We consider the scenario in which we run the virtual
controllers on general-purpose computing nodes provided by a cloud and have a capable of adjusting
phase offsets on both master and worker nodes. As defined in Section 3.1, the end-to-end delay (De2e)
is the time from the beginning of the sensing and control task at the master to the completion of the
actuation task at the worker. Our measurements were done in three steps. First, we randomly generated
three test sets as shown in Table 1. In each test set, we assumed that τ1 of VC0 and τ0 of VC1 performed
either sensing and control or actuation (denoted as (sc) and (a) in Table 1, respectively). Then, we ran
simulations for each test set to find a sub-optimal combination of phase offsets. The simulation
parameters are shown in Table 2. Finally, we applied the sub-optimal combinations suggested by the
simulator to our experimental system and measured the actual end-to-end delays of 1000 messages.

Figures 11 and 12 show the end-to-end delays of VC0 and VC1 of test set 0, respectively.
These graphs show the worst-case (denoted as MAX) and the best-case (denoted as MIN) delays
and compare the values actually measured on a real system with those simulated to show that the errors
by simulation are marginal (less than 2.5% for the worst-case end-to-end delay). As we can observe,
phasing reduces the worst-case end-to-end delay by 59.2% for VC0 and 47.0% for VC1, respectively.
Figures 13 and 14 show the end-to-end delay of every iteration. Although the error is often seen for
some specific iteration because the simulation environment (e.g., execution time of tasks) and the actual
system environment may be different at those points, it can be seen that the overall maximum and the
minimum values of the simulation results and the actual measurement results are similar.



Sensors 2019, 19, 4405 15 of 22

Table 1. Test sets (time unit: µs).

Test Sets of Virtual Period Duration Tasks Period Execution Time
Sets VCs Controllers (Π) (Θ) (p) (e)

0

Cmaster
0

VC0 2760 1000
τ0 5530 330
τ1(sc) 8800 580
τ2 9650 390

VC1 2970 1050
τ0(sc) 5950 310
τ1 7140 490
τ2 9980 550

Cworker0
0 VC0 100,000 95,000

τ0 5530 330
τ1(a) 8800 580
τ2 9650 390

Cworker1
0 VC1 100,000 95,000

τ0(a) 5950 310
τ1 7140 490
τ2 9980 550

1

Cmaster
1

VC0 4000 1500
τ0 2000 60
τ1(sc) 2000 100
τ2 4000 110

VC1 4000 1500
τ0(sc) 2000 50
τ1 2000 140
τ2 4000 120

Cworker0
1 VC0 100,000 95,000

τ0 2000 50
τ1(a) 2000 100
τ2 4000 100

Cworker1
1 VC1 100,000 950,000

τ0(a) 2000 50
τ1 2000 100
τ2 4000 100

2

Cmaster
2

VC0 2610 1100
τ0 5230 660
τ1(sc) 8840 470
τ2 9610 510

VC1 2840 1000
τ0(sc) 5680 440
τ1 10,580 650
τ2 11,090 420

Cworker0
2 VC0 100,000 95,000

τ0 5230 660
τ1(a) 8840 470
τ2 9610 510

Cworker1
2 VC1 100,000 95,000

τ0(a) 5680 440
τ1 10,580 650
τ2 11,090 420

Table 2. Simulation parameters.

Parameters Value

Phasing resolution 50 µs
Simulation iterations 1000
Simulation resolution 10 µs
Interrupt handling overhead 20 µs
Tx and Rx queue size 10
Fieldbus bandwidth 1 Mbps
Fieldbus forwarding delay 1 µs
Message size 8 bytes
Direct Memory Access (DMA) overhead 10 µs



Sensors 2019, 19, 4405 16 of 22

Figure 11. Max and min De2e of VC0 in test set 0.

Figure 12. Max and min De2e of VC1 in test set 0.

Figure 13. De2e distribution of VC0 in test set 0.

Figure 14. De2e distribution of VC1 in test set 0.

Figures 15–22 show the measurement results for the test sets 1 and 2. We again see that the
simulator can predict the worst-case end-to-end delays accurately and provide a sub-optimal phase



Sensors 2019, 19, 4405 17 of 22

combination successfully. In these experiments, the phasing scheme reduced the worst-case end-to-end
delay on a real system up to 78.7% with test set 1 and 58.0% with test set 2, respectively.

Figure 15. Max and min De2e of VC0 in test set 1.

Figure 16. Max and min De2e of VC1 in test set 1.

Figure 17. De2e distribution of VC0 in test set 1.

Figure 18. De2e distribution of VC1 in test set 1.



Sensors 2019, 19, 4405 18 of 22

Figure 19. Max and min De2e of VC0 in test set 2.

Figure 20. Max and min De2e of VC1 in test set 2.

Figure 21. De2e distribution of VC0 in test set 2.

Figure 22. De2e distribution of VC1 in test set 2.



Sensors 2019, 19, 4405 19 of 22

5. Conclusions

The virtualization technologies can provide efficient hosting and consolidation of computing
resources. Thus, several researchers tried to utilize the virtualization technologies in industrial control
systems and showed benefits with respect to manageability and scalability. However, the support for
traditional fieldbuses, such as CAN, in virtualized environments has not been studied thoroughly.
In this paper, to tackle both functionality and QoS issues of CAN in virtualized environments,
we suggested the lightweight CAN virtualization technology for containerized controllers. In the
functionality aspect, our driver-level virtualization technology provided the abstractions for virtual
CAN interfaces and virtual CAN buses, while preserving the transparency to system software and
applications. In the QoS perspective, we provided a hierarchical real-time scheduler and phasing
of virtual controllers and tasks. To provide a sub-optimal phase combination, we implemented a
simulator. The experiment results showed that our CAN virtualization that targeted the OS-based
virtualization had significantly lower overheads and less jitters compared with a hypervisor-based
virtualized environment. In addition, we showed that the worst-case end-to-end delay could be
reduced up to 78.7% by adjusting the phase offsets of virtual controllers and their tasks. As future
work, we plan to apply our virtualization technology to a large-scale system that consists of more
virtual controllers. To do this, we have to optimize the simulator, which currently takes several hours
to generate a sub-optimal phase combination for the test cases discussed in this paper.

Author Contributions: Conceptualization, S.-H.L., J.-S.K., and H.-W.J.; methodology, S.-H.L., J.-S.K., J.-S.S., and
H.-W.J.; software, S.-H.L., J.-S.K., and J.-S.S.; validation, S.-H.L. and H.-W.J.; formal analysis, S.-H.L. and H.-W.J.;
investigation, S.-H.L., J.-S.K., and J.-S.S.; resources, S.-H.L., J.-S.K., and J.-S.S.; data curation, S.-H.L., J.-S.K., and
J.-S.S.; writing—original draft preparation, S.-H.L. and H.-W.J.; writing—review and editing, H.-W.J.; visualization,
S.-H.L.; supervision, H.-W.J.; project administration, H.-W.J.; funding acquisition, H.-W.J.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2017R1A2B4012759).

Conflicts of Interest: The authors declare no conflict of interest

Abbreviations

The following abbreviations are used in this manuscript:

CAN Controller Area Network
CFD Cumulative Distribution Function
cgroup Control Group
DMA Direct Memory Access
HMI Human–Machine Interface
I/O Input/Output
OS Operating System
PLC Programmable Logic Controller
QoS Quality-of-Service
RM Rate Monotonic
RTT Round-Trip-Time
SCADA Supervisory Control and Data Acquisition
SDN Software-Defined Networking
TCP/IP Transmission Control Protocol/Internet Protocol
VC Virtual Controller
VMM Virtual Machine Monitor

References

1. Goldschmidt, T.; Murugaiah, M. K.; Sonntag, C.; Schlich, B.; Biallas, S.; Weber, P. Cloud-based control:
A multi-tenant, horizontally scalable soft-PLC. In Proceedings of the 8th IEEE International Conference on
Cloud Computing (CLOUD 2015), New York, NY, USA, 27 June–2 July 2015; pp. 909–916.



Sensors 2019, 19, 4405 20 of 22

2. Givehchi, O.; Imtiaz, J.; Trsek, H.; Jasperneite, J. Control-as-a-service from the cloud: A case study for using
virtualized PLCs. In Proceedings of the 10th IEEE Workshop on Factory Communication Systems (WFCS
2014), Toulouse, France, 5–7 May 2014.

3. Tasci, T.; Melcher, J.; Verl, A. A container-based architecture for real-time control applications. In Proceedings
of the 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Stuttgart,
Germany, 17–20 June 2018.

4. Barham, P.; Dragovic, B.; Fraser, K.; Hand, S.; Harris, T.; Ho, A.; Neugebauer, R.; Pratt, I.; Warfield, A. Xen
and the art of virtualization. ACM SIGOPS Oper. Syst. Rev. 2003, 37, 164–177. [CrossRef]

5. Sugerman, J.; Venkitachalam, G.; Lim, B.-H. Virtualizing I/O devices on Vmware workstation’s hosted
virtual machine monitor. In Proceedings of the USENIX Annual Technical Conference, Boston, MA, USA,
25–30 June 2001.

6. Raj, H.; Schwan, K. High performance and scalable I/O virtualization via self-virtualized devices.
In Proceedings of the International Symposium on High Performance Distributed Computing (HPDC 07),
Monterey, CA, USA, 25–29 June 2007.

7. Santos, J. R.; Turner, Y.; Janakiraman, G.; Pratt, I. Bridging the gap between software and hardware techniques
for I/O virtualization. In Proceedings of the USENIX Annual Technical Conference, Boston, MA, USA, 22–27
June 2008; pp. 22–27.

8. Russell, R. Virtio: Towards a de-facto standard for virtual I/O devices. ACM SIGOPS Oper. Syst. Rev. 2008,
42, 342–355. [CrossRef]

9. Ram, K.K.; Santos, J.R.; Turner, Y.; Cox, A.L.; Rixner, S. Achieving 10Gbps using safe and transparent network
interface virtualization. In Proceedings of the International Conference on Virtual Execution Environments
(VEE 09), Washington, DC, USA, 11–13 March 2009.

10. Li, J.; Xue, S.; Zhang, W.; Qi, Z. When I/O interrupt becomes system bottleneck: Efficiency and scalability
enhancement for SR-IOV network virtualization. IEEE Trans. Cloud Comput. 2017. [CrossRef]

11. Jose, J.; Li, M.; Lu, X.; Kandalla, K. C.; Arnold, M. D.; Panda, D. K. SR-IOV support for virtualization on
Infiniband clusters: Early experience. In Proceedings of the 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing (CCGrid 2013), Delft, The Netherlands, 13–16 May 2013; pp. 385–392.

12. Jansen, D.; Buttner, H. Real-time Ethernet: The EtherCAT solution. Comput. Control Eng. 2004, 15, 16–21.
[CrossRef]

13. Feld, J. PROFINET-scalable factory communication for all applications. In Proceedings of the 2004 IEEE
International Workshop on Factory Communication Systems (WFCS 2004), Vienna, Austria, 22–24 September 2004.

14. Farsi, M.; Ratcliff, K.; Barbosa, M. An overview of controller area network. Comput. Control Eng. 1999, 10,
113–120. [CrossRef]

15. Pfeiffer, O.; Ayre, A.; Keydel, C. The CANopen standard. In Embedded Networking with CAN and CANopen;
Copperhill Technologies Corporation: Greenfield, MA, USA, 2008; pp. 39–112.

16. VMware. Available online: http://www.vmware.com (accessed on 2 September 2019).
17. VirtualBox. Available online: http://www.virtualbox.org (accessed on 2 September 2019).
18. Morabito, R.; Kjällman, J.; Komu, M. Hypervisors vs. lightweight virtualization: A performance comparison.

In Proceedings of the 2015 IEEE International Conference on Cloud Engineering (ICCE 2015), Tempe, AZ,
USA, 9–13 March 2015.

19. Morabito, R. Virtualization on internet of things edge devices with container technologies: A performance
evaluation. IEEE Access 2017, 5, 8835–8850. [CrossRef]

20. Herber, C.; Richter, A.; Rauchfuss, H.; Herkersdorf, A. Spatial and temporal isolation of virtual CAN
controllers. ACM SIGBED Rev. 2014, 11, 19–26. [CrossRef]

21. Kim, J.-S.; Lee, S.-H.; Jin, H.-W. Fieldbus virtualization for integrated modular avionics. In Proceedings of
the 16th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2011),
Toulouse, France, 5–9 September 2011.

22. Lee, S.-H.; Jin, H.-W.; Kim, K.; Lee, S. Phasing of periodic tasks distributed over real-time fieldbus. Int. J.
Comput. Commun. Control 2017, 12, 645–660. [CrossRef]

23. Kang, H.; Kim, K.; Jin, H.-W. Real-time software pipelining for multidomain motion controllers. IEEE Trans.
Ind. Inform. 2016, 12, 705–715. [CrossRef]

24. Kim, I.; Kim, T. Guaranteeing isochronous control of networked motion control systems using phase offset
adjustment. Sensors 2015, 15, 13945–13965. [CrossRef]

http://dx.doi.org/10.1145/1165389.945462
http://dx.doi.org/10.1145/1400097.1400108
http://dx.doi.org/10.1109/TCC.2017.2712686
http://dx.doi.org/10.1049/cce:20040104
http://dx.doi.org/10.1049/cce:19990304
http://www.vmware.com
http://www.virtualbox.org
http://dx.doi.org/10.1109/ACCESS.2017.2704444
http://dx.doi.org/10.1145/2668138.2668141
http://dx.doi.org/10.15837/ijccc.2017.5.2894
http://dx.doi.org/10.1109/TII.2016.2528225
http://dx.doi.org/10.3390/s150613945


Sensors 2019, 19, 4405 21 of 22

25. Sung, M.; Kim, I.; Kim, T. Toward a holistic delay analysis of EtherCAT synchronized control processes. Int. J.
Comput. Commun. Control 2013, 8, 608–621. [CrossRef]

26. Carrascosa, E.; Coronel, J.; Masmano, M.; Balbastre, P.; Crespo, A. XtratuM hypervisor redesign for LEON4
multicore processor. ACM SIGBED Rev. 2014, 11, 27–31. [CrossRef]

27. Seyfried, S. Resource management in Linux with control groups. In Proceedings of the 17th International
Linux System Technology Conference (Linux-Kongress 2010), Nuremberg, Germany, 17–18 April 2013.

28. Aeronautical Radio Inc. Avionics Application Software Standard Interface Part 1—Required Services; SAE-ITC:
Bowie, MD, USA, 2015.

29. AUTOSAR. Available online: http://www.autosar.org (accessed on 2 September 2019).
30. Han, S.; Jin, H.-W. Resource partitioning for integrated modular avionics: Comparative study of

implementation alternatives. Softw. Pract. Exp. 2014, 44, 1441–1466. [CrossRef]
31. Katz, R.; Min, B.-K.; Pasek, Z. Open architecture control technology trends. ERC/RMS Rep. 2000, 35, 1–26.
32. Hong, K.-S.; Choi, K.-H.; Kim, J.-G.; Lee, S. A PC-based open robot control system: PC-ORC. Robot. Comput.

Integr. Manuf. 2001, 17, 355–365. [CrossRef]
33. Nunes, B.A.A.; Mendonca, M.; Nguyen, X.N.; Obraczka, K.; Turletti, T. A survey of software-defined networking:

Past, present, and future of programmable networks. IEEE Commun. Surv. Tutor. 2014, 16, 1617–1634. [CrossRef]
34. Cruz, T.; Simões, P.; Monteiro, E. Virtualizing programmable logic controllers: Toward a convergent approach.

IEEE Embed. Syst. Lett. 2016, 8, 69–72. [CrossRef]
35. Kaur, K.; Garg, S.; Kaddoum, G.; Ahmed, S.H.; Atiquzzaman, M. KEIDS: Kubernetes based energy and

interference driven scheduler for industrial IoT in edge-cloud ecosystem. IEEE Internet Things J. 2019.
[CrossRef]

36. Hong, C.H.; Lee, K.; Kang, M.; Yoo, C. qCon: QoS-aware network resource management for fog computing.
Sensors 2018, 18, 3444. [CrossRef]

37. Barzegaran, M.; Cervin, A.; Pop, P. Towards quality-of-control-aware scheduling of industrial applications
on fog computing platforms, In Proceedings of the Workshop on Fog Computing and the IoT (Iot-Fog ’19),
Montreal, QC, Canada, 15 April 2019.

38. Yin, L.; Luo, J.; Luo, H. Tasks scheduling and resource allocation in fog computing based on containers for
smart manufacturing. IEEE Trans. Ind. Inform. 2018, 14, 4712–4721. [CrossRef]

39. Martins, E.; Neves, P.; Fonseca, J. Architecture of a fieldbus message scheduler coprocessor based on the
planning paradigm. Microprocess. Microsyst. 2002, 26, 97–106. [CrossRef]

40. Zheng, W.; Chong, J.; Pinello, C.; Kanajan, S.; Sangiovanni-Vincentelli, A. Extensible and scalable time
triggered scheduling. In Proceedings of the International Conference on Application of Concurrency to
System Design (ACSD), St. Malo, France, 6–9 June 2005.

41. Velasco, M.; Marti, P.; Yepez, J.; Villa, R.; Fuertes, J.M. Schedulability analysis for CAN-based networked
control systems with dynamic bandwidth management. In Proceedings of the IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), Palma de Mallorca, Spain, 22–25 September 2009.

42. Lukasiewycz, M.; Gla, M.; Milbredt, P.; Teich, J. FlexRay schedule optimization of the static segment.
In Proceedings of the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Grenoble, France, 11–16 October 2009.

43. Schneider, R.; Bordoloi, U.; Goswami, D.; Chakraborty, S. Optimized schedule synthesis under real-time
constraints for the dynamic segment of FlexRay. In Proceedings of the IEEE/IFIP International Conference
on Embedded and Ubiquitous Computing (EUC 10), Hong Kong, China, 11–13 December 2010.

44. Zhang, H.; Shi, Y.; Wang, J.; Chen, H. A new delay-compensation scheme for networked control systems in
controller area networks. IEEE Trans. Ind. Electron. 2018, 65, 7239-7247. [CrossRef]

45. Elmenreich, W. Time-triggered fieldbus networks—State of the art and future applications. In Proceedings
of the IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC 08), Orlando, FL,
USA, 5–7 May 2008.

46. Cena, G.; Bertolotti, I.C.; Scanzio, S.; Valenzano, A.; Zunino, C. On the accuracy of the distributed clock
mechanism in EtherCAT. In Proceedings of the IEEE International Workshop on Factory Communication
Systems (WFCS), Nancy, France, 18–21 May 2010.

47. Felser, M. Fieldbus based isochronous automation application. In Proceedings of the IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), Palma de Mallorca, Spain, 22–25
September 2008.

http://dx.doi.org/10.15837/ijccc.2013.4.384
http://dx.doi.org/10.1145/2668138.2668142
http://www.autosar.org
http://dx.doi.org/10.1002/spe.2210
http://dx.doi.org/10.1016/S0736-5845(01)00010-2
http://dx.doi.org/10.1109/SURV.2014.012214.00180
http://dx.doi.org/10.1109/LES.2016.2608418
http://dx.doi.org/10.1109/JIOT.2019.2939534
http://dx.doi.org/10.3390/s18103444
http://dx.doi.org/10.1109/TII.2018.2851241
http://dx.doi.org/10.1016/S0141-9331(01)00149-1
http://dx.doi.org/10.1109/TIE.2018.2795574


Sensors 2019, 19, 4405 22 of 22

48. Marti, P.; Camacho, A.; Velasco, M.; Mares, P.; Fuertes, J.M. Synchronizing sampling and actuation in the
absence of global time in networked control systems. In Proceedings of the IEEE International Conference
on Emerging Technologies and Factory Automation, Bilbao, Spain, 13–16 September 2010.

49. Craciunas, S.S.; Oliver, R.S.; Ecker, V. Optimal static scheduling of real-time tasks on distributed
time-triggered networked systems. In Proceedings of the IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Barcelona, Spain, 16–19 September 2014 .

50. Shin, I.; Lee, I. Compositional real-time scheduling framework with periodic model. ACM Trans. Embed.
Comput. Syst. 2008, 7, 30. [CrossRef]

51. Yim, Y.-G.; Jo, H.-C.; Jin, H.-W.; Lee, S.-I. “Schedulability analysis of Linux task groups for hard real-time
systems. In Proceedings of the 17th Real Time Linux Workshop (RTLWS 2015), Graz, Austria, 21–22
October 2015.

52. Liu, C.; Layland, J. Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM
1973, 20, 46–61. [CrossRef]

53. Boyer, S.A. SCADA: Supervisory Control and Data Acquisition; International Society of Automation: Research
Triangle, NC, USA, 2009.

54. Fuhrer, T.; Muller, B.; Dieterle, W.; Hartwich, F.; Huge, R.; Walther, M. Time triggered communication on
CAN (time triggered CAN-TTCAN). In Proceedings of the International CAN Conference, Helsinki, Finland,
11–14 June 2000.

55. Eidson, J.C. A detailed analysis of IEEE 1588. In Measurement, Control, and Communication Using IEEE 1588;
Springer: Palo Alto, CA, USA, 2006; pp. 61–132.

56. Kim, K.; Sung, M.; Jin, H.-W. Design and implementation of a delay-guaranteed motor drive for precision
motion control. IEEE Trans. Ind. Inform. 2012, 8, 351–365. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1347375.1347383
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1109/TII.2011.2166774
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Virtualization of Controller Area Network
	Design Issues
	Driver-Level CAN Virtualization
	Hierarchical Real-Time Scheduling
	Phasing of Virtual Controllers and Tasks
	Implementation
	Summary

	Experimental Results
	Comparisons with Hypervisor-Based Virtualization
	Analysis of Worst-Case End-to-End Delay

	Conclusions
	References

