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A B S T R A C T   

Background and purpose: Clinical targeted volume (CTV) delineation accounting for the patient-specific micro-
scopic tumor spread can be a difficult step in defining the treatment volume. We developed an intelligent and 
automated CTV delineation system for locally advanced non-small cell lung carcinoma (NSCLC) to cover the 
microscopic tumor spread while avoiding organs-at-risk (OAR). 
Materials and methods: A 3D UNet with a customized loss function was used, which takes both the patients’ 
respiration-correlated (“4D”) CT scan and the physician contoured internal gross target volume (iGTV) as inputs, 
and outputs the CTV delineation. Among the 84 identified patients, 60 were randomly selected to train the 
network, and the remaining as testing. The model performance was evaluated and compared with cropped ex-
pansions using the shape similarities to the physicians’ contours (the ground-truth) and the avoidance of critical 
OARs. 
Results: On the testing datasets, all model-predicted CTV contours followed closely to the ground truth, and were 
acceptable by physicians. The average dice score was 0.86. Our model-generated contours demonstrated better 
agreement with the ground-truth than the cropped 5 mm/8 mm expansion method (median of median surface 
distance of 1.0 mm vs 1.9 mm/2.0 mm), with a small overlap volume with OARs (0.4 cm3 for the esophagus and 
1.2 cm3 for the heart). 
Conclusions: The CTVs generated by our CTV delineation system agree with the physician’s contours. This 
approach demonstrates the capability of intelligent volumetric expansions with the potential to be used in 
clinical practice.   

1. Introduction 

Lung cancer is the second most common cancer and the most com-
mon cause of cancer death worldwide. Among all diagnosed lung can-
cers, the majority (~87%) are non-small cell lung cancers (NSCLC). 
Definitive radiation therapy concurrently with chemotherapy is the 
standard treatment for locally advanced unresectable NSCLC. Delinea-
tion of treatment volumes for NSCLC patients is a critical and complex 
process for radiation oncology departments worldwide, and is predicted 
to increase in the near future [1]. 

There are three main types of treatment target volumes used in ra-
diation therapy planning: the gross target volume (GTV), the clinical 
target volume (CTV) and the planning target volume (PTV) [2–4]. The 
CTV of lung cancer encompasses direct microscopic spread in the lung 

parenchyma as well as potential microscopic extension around grossly 
involved hilar or mediastinal lymph nodes. To compensate for the pa-
tient specific motion, ICRU [4] recommends to form an internal target 
volume (ITV) as the union of CTVs in different locations (due to motion). 
However, there are different variations of this approach. For NSCLC 
patients treated in our institute, the internal gross target volume (iGTV) 
is contoured from the GTVs in the different breathing phases to include 
the patient-specific respiratory motion, and then expanded to the CTV to 
form an iCTV. 

Among these three types of volumes, the CTV is the most difficult one 
to define [5] because microscopic tumor spread is invisible. Therefore, 
the CTV delineation heavily depends on the clinician’s judgement, 
literature on patterns of failure and clinical experience. In common 
practice, this can be done by laborious manual contouring by clinicians 
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in a slice-by-slice manner. This process accounts for a high workload for 
the radiation oncology departments worldwide [1]. Furthermore, there 
is significant intra- and interobserver variability [4]. 

To approximate the extent of the microscopic spread, many institutes 
generate the CTV by an automatic geometric expansion of the GTV. 
These auto-expansion tools, which are included in commercial con-
touring software and most treatment planning system (TPS), are 
generally geometric-based expansions (either isotropic or anisotropic in 
three dimensions). The expanded contours can be cropped at OARs. 
While this approach reduces the manual contouring time, it does not 
accurately reflect the details of tumor biology, anatomic patterns of 
spread, and thus may not accurately reflect the geometry of microscopic 
disease. Thus, for the centers that want specialist-designed patient- 
specific CTV contours (e.g. those institutions following ESTRO ACROP 
guidelines [1]), there is a need to develop a more intelligent CTV 
delineation tool. 

With the rapid developments of deep learning in recent years, there 
have been pioneering studies on applying deep learning techniques to 
automatically and intelligently delineate CTVs [6–9]. These neural- 
network based approaches can be categorized into two classes: one- 
and two-step approaches. The one-step approach learns CTV and nearby 
anatomic sites from images in one step [6,8,9]. The two-step approach 
learns anatomical barriers explicitly first from the anatomic images and 
then the CTV definition is formed by expanding the GTV while avoiding 
the anatomical barriers [7]. 

Although there are existing studies on automation of CTV delineation 
for radiation therapy, little has been done for NSCLC CTV delineation. 
Furthermore, most existing approaches need post-processing and/or 
hyperparameter tuning. Therefore, the aim of this study is to devise an 
automated intelligent CTV delineation network for locally advanced 
NSCLC that needs minimal human intervention, or none if possible. 

2. Methods and materials 

2.1. Patient image preparation 

In this study, we selected 84 patients with locally advanced NSCLC, 
who were treated with standard chemotherapy and radiation therapy in 
our center from 2012 through 2017. All patients who satisfied the 
following two selection criteria were included in our study: 1) stage 3 
NSCLC patients with no tumor removal surgery before the radiation 
treatment, and 2) the patient dataset had both iGTV and CTV contoured 
on the corresponding CT images. This study was approved by the 
Institutional Review Board (IRB). 4D CT images were acquired using the 
same scanning protocol for all patients. If the tumor movement was less 
than 15 mm, iGTVs were created from the 4D CT as the union of the 
GTVs in all different breathing phases and drawn on the average CT 
images derived from the full 4DCT scans. For the patients with large 
respiratory motion or if the 4D CT was not representative of the motion, 
the final iGTV contours were created on the exhale phase of the 4DCT 
images and the patients were treated with gated beam delivery. Then on 
the same set of CT images where final iGTVs were contoured, CTVs were 
delineated by clinicians with specialty expertise in thoracic radiation 
oncology. Per longstanding institutional practice, the CTV was gener-
ated by an automatic at least 5 mm expansion of the iGTV followed by 
manual editing. This included removal of overlap with anatomical 
structures such as heart, great mediastinal vessels, and vertebral bodies 
that were not judged to contain invisible microscopic tumor spread. The 
CTV was also edited to minimize overlap with the esophagus in order to 
facilitate contralateral esophagus sparing [10,11]. While comprehensive 
elective nodal irradiation was not performed, CTVs were expanded on a 
case-by-case basis to include small, PET negative lymph nodes or other 
areas judged to be at high risk for lymphatic spread. 

Although all planning CT scans were acquired with the same imaging 
protocol with a slice thickness of 2.5 mm, the exact slice pixel size varied 
between 0.72 mm and 1.27 mm based on the required field of view 

(FOV) to encompass the entire patient. To reduce the learning 
complexity, we used MIM’s (MIM Software Inc, Beachwood, OH, USA) 
resampling function to interpolate all the images to the same voxel size 
of 0.98 × 0.98 × 2.5 mm3. 

Among all 84 patients, 56 patients had the tumor volume located in 
the right lung and 28 in the left lung. We randomly selected 40 right lung 
patients and 20 left lung patients as training datasets. The remaining 16 
right lung and eight left lung patients were used as testing datasets. Also, 
the validation datasets of 10 patients were randomly selected from the 
training datasets. 

To compare our model-generated CTV with auto-expansion, auto- 
expansion-based CTV contours were generated for each testing dataset 
using MIM: the generated contours were uniformly expanded from the 
iGTV and then the OARs were manually contoured for exclusion 
(cropped). The vertebral bodies without visible microscopic spread were 
also cropped out. Two expansion amounts of 5 mm and 8 mm were used 
to represent two extreme cases of the expansions as specified in RTOG 
1308 protocol and other guidelines. In the rest of paper, we call these 
two sets 5 mm/8 mm cropped expansions. 

2.2. Image augmentation 

The network architecture is shown in Fig. 1. It took the CT images 
and iGTV masks as inputs and produced the predicted CTV masks. All 
the 3D convolutions and transposed convolutions had the kernel size of 
3× 3× 3. Besides the network architecture, data augmentation was 
another important step to train deep networks with limited training data 
sets. A properly designed augmentation teaches the network to focus on 
robust features for a good generalization. For the model training in our 
study, CT images, iGTV masks and CTV masks were augmented 20 times 
using a 2D elastic deformation algorithm based on [9,12]. We chose 2D 
deformation with the consideration that the CTVs were contoured based 
on the image information on each 2D slice. In each augmentation, a 3 ×
3 grid of random displacements was drawn from a Gaussian distribution 
(μ = (0, 0) pixels and σ = (10,10) pixels). Then the displacements were 
interpolated to the pixel level. All the 2D slices of a training data, 
including the simulation CT image, the iGTV masks and the CTV mask) 
were deformed using the same displacements and a spline interpolation. 
Since the interpolation results in blurred mask boundaries, a threshold, 
0.5, was applied to binarize them. 

2.3. Loss function 

A popular loss function choice for UNet-based network is binary 

cross entropy BCE

(
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= ŷilnyi +

(

1 − ŷi
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, where yi and ŷi 

are the predicted and ground-truth probability of being inside the CTV 
for the i-th voxel, respectively. Unfortunately, BCE does not work well in 
situations of high imbalance between foreground (CTV) and background 
(non-CTV). This is due to accumulated small losses from background 
voxels, which can overpower the foreground contributions and result in 
a biased estimation. A typical way to address this issue is to introduce 
weighted binary cross entropy (WBCE), which introduces a hyper-
parameter w to reduce the loss contribution of background voxels: 
WBCEw(ŷi, yi, ) = ŷilnyi + w(1 − ŷi)ln(1 − yi). This approach works in 
situations where the balance ratio between the foreground and back-
ground was relatively fixed, but it does not work well when the ratio 
varies dynamically among patients. To solve this problem, we propose to 
use an AM-GM inequality based loss function, 
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i

)#(1)

where N is the total number of voxels in the simulated CT. The intuition 
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behind this design is that the AM-GM based loss focuses more on the 
foreground by zeroing out the contribution from background voxels, 
which avoids the challenges of balancing foreground and background. 

2.4. Training and metrics 

Our code was implemented in python using Keras with Tensorflow as 
back-end. All the CT images and corresponding contour masks were 
cropped to the size of 416 × 288 × 128 in order to fit into the 12 GB GPU 
memory. Our model was trained end-to-end by back propagation and 
Adam optimizer with a learning rate of 10− 4. It took about 3 days to 
finish training on a single NVidia Titan XP GPU card. The model was 
trained with a mini-batch size of 32. During the training, 200 epochs 
were run. The validation metrics were the AM-GM inequality based 
metrics, and the model weights were selected from the earliest epoch 
when the validation reached saturation. 

The predicted CTVs from the trained model were compared to the 
physician ground-truth volumes by calculating differences in volumes 
(ΔV), precision, recall, and dice. Precision is defined as the ratio of the 
predicted volume that overlaps with the ground-truth volume, relative 
to the predicted volume: precision =

Vpred∩Vgt
Vpred

, whereas recall is defined as 

the overlap relative to the ground-truth volume: recall =
Vpred∩Vgt

Vgt
. 

The surface distance between the model prediction and physicians’ 
ground truth was calculated as another measure of shape similarity. 
Here, four values are compared: the Hausdorff distance, the mean dis-
tance, the median distance, and the 95-percentile distance. 

The esophagus and the heart are the two most relevant OARs. One 
important measure is the overlap volume (OV) between the CTV and the 
OARs: OV = Vorgan ∩ VCTV. 

For simplicity, we assumed both the shape similarity metrics and OV 
have normal distributions, so that the results are represented by the 
mean and standard deviations in Table 1. More robust estimations 
should refer to the box plots of those measures in Figs. 3 and 4. The 
surface distances are represented by median values to reduce the in-
fluence from few outliers with large surface distances. 

2.5. Ablation studies 

The concept of the ablation study was introduced to the computer 
vision community by Sun [13] in 2010 as a way to understand some 
components’ impact on the overall system. Since then the ablation study 
has become a norm in the field of machine learning and computer vision. 
In our case, the standard 3D UNet is the baseline system, which has the 
BCE loss function and no elastic deformation. Our model uses the 3D 
UNet with the AM-GM inequality based loss function and the elastic 

deformation in the image augmentation. To understand the contribution 
of those two components to the overall system, ablation studies were 
performed for the following three scenarios: 1) standard 3D U-Net; 2) 3D 
U-Net with the AM-GM inequality loss function without elastic defor-
mation; 3) 3D U-Net with BCE loss function and elastic deformation. 

3. Results 

3.1. Similarity metrics 

The CTV contours predicted by our model were visually closer to the 
ground-truth contours than the cropped expansion method. Fig. 2 shows 
two examples of CTV predictions from our model overlaid on the patient 
CT scan. 

Our model achieved a mean precision of 0.89, mean recall of 0.84, 

Fig. 1. The schematic diagram of our deep 3D Unet-based network. The input has two channels, the CT images and corresponding iGTV masks, which were cropped 
to the size of 416 × 288 × 128. Each 3D block represents a feature map with the number of channels denoted in the picture. All the Conv3D and TransposeConv3D 
have the kernel size of 3× 3× 3. The pool sizes in the Maximum pooling and the stride sizes in TransposeConv3D are 2× 2× 2. 

Table 1 
The comparison between our ML-based model, the two cropped expansions and 
Ground-truth CTV on all testing samples. The values of the overlapping volume, 
OV, with OARs were calculated only when the OARs are within the 8 mm vi-
cinity of the corresponding iGTVs. The CTV volumes were summarized as the 
mean value with minimum and maximum values over all testing datasets.   

ML- 
predicted 
CTV 

Ground 
truth CTV 

Cropped 5 mm 
expansion CTV 

Cropped 8 mm 
expansion CTV 

DSC 0.86 ± 0.03  N.A. 0.81 ± 0.10  0.83 ± 0.04  
Precision 0.89 ± 0.04  N.A. 0.86 ± 0.10  0.76 ± 0.06  
Recall 0.84 ± 0.05  N.A. 0.77 ± 0.10  0.92 ± 0.04  
Median surface 

distance 
[mm] 

1.0 N.A. 1.0 2.0  

Hausdorff 
surface 
distance 
[mm] 

8.6 N.A. 9.1  12.6  

95% surface 
distance 
[mm] 

3.9 N.A. 4.5  6.1  

*OV with the 
esophagus 
[cm3] 

0.4 ± 0.3  0.1 ± 0.2  0.0 ± 0.0  0.0 ± 0.0  

*OV with the 
heart [cm3] 

1.2 ± 0.6  0.8 ± 0.6  0.0 ± 0.0  0.0 ± 0.0  

**CTV Volume 
[cm3] 

95.2 [31.7, 
290.2] 

101.1 
[27.5, 
314.0] 

88.0 [17.2, 
282.0] 

120.6 [44.1, 
356.4] 

Contouring 
Time 

3.8~4.0 s 5~20 min 5~20 min 5~20 min  
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and mean dice score of 0.86, which means a higher DSC and smaller 
difference between recall and precision than the two cropped expan-
sions, as shown in Fig. 3 (a). 

3.2. Surface distances 

In the test group, the median values for the Hausdorff distance, the 
mean, the median, and the 95-percentile, were 8.6 mm, 1.4 mm, 1.0 
mm, and, 3.9 mm, for our model predicted CTVs respectively. For the 5 
mm cropped expansions, the mean values were 9.1 mm, 1.6 mm, 1.0 
mm, 4.5 mm, while the values for the 8 mm cropped expansions were 
12.6 mm, 2.2 mm, 2.0 mm, and 6.1 mm. Compared to both cropped 
expansions, our ML model predictions have smaller distances. The re-
sults are plotted in Fig. 3(b) and summarized in Table 1. 

3.3. Overlapping volumes with OARs 

We compare the intersection with OARs of our model predicted CTV 
contours with the ground-truth CTVs for both the esophagus and the 
heart, which were important organs in the chest. The overlapping vol-
umes (OVs) with the esophagus and the heart are 0.4 ± 0.3 cm3 and 1.2 
± 0.6 cm3 for the ML-predicted CTVs. The ground truth CTVs have 0.1 ±
0.2 cm3 and 0.8 ± 0.6 cm3 OV with the esophagus and the heart, 
respectively. The OVs are zero for both cropped expansion CTVs by 
definition. All results are shown in Fig. 4 and summarized in Table 1. 

3.4. Ablation studies 

The model performance under the ablation study was evaluated 
using the same evaluation metrics as defined in Section 2.4. The 

Fig. 2. Two typical examples of the CTV delineation 
generated by our model overlaid on the patient CT 
scan with tumor in a) the upper lobe and b) the lower 
lobe. The yellow lines stand for the automated pre-
dicted CTV. The red and green lines are the CTV and 
corresponding iGTV drawn by the physicians, 
respectively. The blue, purple, and pink lines are the 
cropped expansion CTV, the esophagus contour, and 
the heart contour, respectively. As shown in the axial 
view of b), our predicted CTVs, similar to the physi-
cian’s contoured CTVs, have less expansion in the 
anterior direction from iGTV to avoid the heart. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the web version of 
this article.)   
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standard 3D UNet achieved a mean value of 0.84 for the DSC, 0.91 for 
the precision, and 0.81 for the recall. The mean values of the DSC, the 
precision and the recall are 0.85, 0.89, and 0.82 for the model trained 
with BCE loss fuction with elastic augmentation, and 0.85, 0.88, and 
0.84 for the model trained with AM-GM loss function without elastic 
augmentation. All those results are summarized in Table 1 in the sup-
plementary material. 

4. Discussion 

In our study, a 3D UNet based neural network model was trained 
with 60 datasets that were randomly selected from 84 available datasets. 
The remaining 24 datasets were used for model testing. The model’s 
performance was evaluated using the shape similarities and the OAR 
sparing between our model and the physician’s contours. 

Using the 3D UNet architecture and a modified loss function, our 
approach resulted in an automated CTV delineation system which is 

trainable in an end-to-end fashion and capable to approximate the 
physician contoured CTVs. As shown in the results session, our model on 
NSCLC had similar performance as existing deep-learning based ap-
proaches applied to other sites (0.86 mean DSC, 1.5 mm the median 
mean surface distance (MSD)). Cardenas [14] had the mean DSC values 
ranged from 0.843 to 0.909 for different lymph node levels. The ach-
ieved mean MSD values were from 1.0 mm to 1.3 mm, and mean 
Hausdorff surface distance (HD) values from 5.5 mm to 8.6 mm. Men 
[15] achieved mean DSCs from 62.3% to 82.6% with a deep deconvo-
lutional neural network (DDNN) for target segmentation of the naso-
pharyngeal cancer. In terms of OAR overlap, our trained model behaved 
similarly to physicians: the overlapping volume was at the same 
magnitude as the ground-truth by physicians in terms of the intersection 
volumes. 

Unlike the existing approaches applied to the other sites, our 
approach on NSCLC required little manual intervention: no hyper- 
parameters tuning or post-processing steps. For example, Cardenas 

Fig. 3. Contour shape similarity with ground-truth contours. The box plots in (a) show the three metrics for performance evaluation: precision, recall, and dice score. 
The dark blue color stands for our trained model prediction, the red color represents the 5 mm cropped expansion, and the green color the 8 mm cropped expansion. 
We also calculated four measures of the surface distances from the physician contours, as shown in Fig. 3(b): Hausdorff (maximum), mean, median, and 95-percentile 
of the surface distance. The color coding is as in Fig. 3(a). (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.) 

Fig. 4. Comparisons of intersections with OARs. (a) and (b) are the intersection volumes (OVs) in unit of cm3 for the esophagus, and the heart. When the OAR is not 
available for the patient, the case is excluded from both plotting and the mean value calculation. 
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[14] needed to tune a hyper parameter to combine the “DSC” (in fact, it 
is an AM-GM inequality loss) and the “FND” (false-negative AM-GM 
inequality loss). 

For the ablation study, we also implemented the standard 3D UNet. 
The model trained from the standard 3D U-Net did suffer the problem of 
bias to high precision and low recall. Our model with the AM-GM 
inequality loss and elastic deformation augmentations out-performed 
the standard 3D U-net with a 3% higher recall, 1% better DSC, and 
0.1 mm smaller median mean surface distance. It also showed that the 
AM-GM inequality based loss function resulted in an estimation less bias 
to the background (or less difference between precision and recall). As 
shown in Supplementary Table 1, the AM-GM inequality based loss 
function accounts for 2% improvement of the recall (reduces the prob-
lem of the underestimation). In the other words, this AM-GM inequality 
based function alone handled imbalance well. Similar to our approach, a 
dice coefficient based loss function to replace BCE for UNet was reported 
in [16,17]. 

One advantage of using our ML-based CTV delineation was the 
reduced contouring time for those who wanted to follow our institu-
tional approach. Once the model was trained, it typically took less than a 
minute per patient to generate the whole 3D CTV contour from input 
images and GTV contours. Then physicians can examine the predicted 
contour lines in each 2D plane overlaid on the patient’s CT images in all 
three views (axial, sagittal, and coronal) with minimal adjustments. This 
automation has the potential to be used in a clinical setting to free 
physicians from the labor-intensive process and allow them to handle 
more complex cases. For our patients, using the center of the CT images 
as the region center for our model is sufficient without cropping the 
patient anatomy. This operation was nearly instantaneous (<1 ms) on a 
Dell 8930 PC. Therefore, adding this cropping time wouldn’t affect the 
contouring time of our model in Table 1. 

Another advantage of using the ML-based automated CTV prediction 
was the smoothness of the generated contours in the superior-inferior 
direction. This result was expected because of the 3D convolution ker-
nels used in this study. Similar results were reported in [17] even with a 
semi 3D approach. Different from clinicians (or uniform-expansion in 
TPS) who handle the CT images and delineate the CTV contours slice-by- 
slice, our trained model took the full 3D volumetric information into 
account and naturally enforced the smoothness of the predicted con-
tours in axial direction. This greatly reduced artificial contour shape 
changes across slices. 

The biological considerations behind our CTV delineation practice is 
that the microscopic tumor spread depends on tumor’s environment, e. 
g. the nearby anatomical structures. This means that the expansion 
could vary in all directions on each slice, which is individualized for 
each patient. In this sense, fitting this anisotropic expansion pattern 
using the deep learning approach is reasonable and cannot be done by 
the simple uniform expansion with cropping OARs. 

Shown in Table 1, when compared to the 8 mm cropped expansion 
method, although our model had a little lower recall, it had more 
balanced scores in all the other similarity measures to the ground truth 
contours. When compared to the 5 mm cropped expansion, our model 
had a higher recall. In other words, the 8 mm cropped expansion method 
was biased to recall, which meant that this expansion includes larger 
amounts of normal tissues and could lead to unnecessary dose delivered 
to those normal tissues. On the other hand, the 5 mm cropped expansion 
was biased to precision, which meant that some target volumes were 
excluded which could affect the tumor local control and the patient 
survival rate. There were a few outliers with large HD and 95-percentile, 
which were outside the scales shown in the Y-axis in Fig. 3(b). Those 
outliers resulted in much larger mean values than the median values in 
Table 1. 

In this study, we presented the first study on CTV delineation using a 
deep 3D convolutional neural network for NSCLC patients. Since our 
physicians contoured the patient specific CTVs based on each in-
dividual’s case, when our model was trained, those clinical variables 

were learned implicitly. Trained from a dataset of limited size, the model 
demonstrated the capability of intelligent CTV delineation with 
consideration of patient anatomy and clinical variables (e.g. the tumor 
location, the distances to the OARs, tumor biology, etc) for NSCLC pa-
tients. Our model showed better shape similarity and smaller surface 
distances to the ground-truth CTVs than the standard 3D U-net. 
Compared with a simple cropped expansion algorithm, our trained 
model matched the physician-drawn contours better, while it only 
slightly increased the overlap with the OARs. 
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