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Abstract
Background: Recently, the development and application of targeted therapies like 
tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) have 
achieved remarkable survival benefits in non-small cell lung cancer (NSCLC) treat-
ment. However, epidermal growth factor receptor (EGFR) wild type and low expres-
sion of programmed death-ligand 1 (PD-L1) NSCLC remain unmanageable. Few 
treatments for these patients exist, and more side effects with combination therapies 
have been observed. We intended to generate a hypoxia-related lncRNAs (hypolncR-
NAs) classifier that could successfully identify the high-risk patients and reveal its 
underlying molecular immunology characteristics.
Methods: By identifying the bottom 25% PD-L1 expression level as low expres-
sion of PD-L1 and removing EGFR mutant samples, a total of 222 lung adenocar-
cinoma (LUAD) and lung squamous carcinoma (LUSC) samples and 93 adjacent 
non-tumor samples were finally extracted from The Cancer Genome Atlas (TCGA). 
A 0 or 1  matrix was constructed by cyclically pairing hypoxia-related long non-
coding RNAs (hypolncRNAs) and divided into the train set and test set. The univari-
ate Cox regression analysis determined the prognostic hypolncRNAs pairs. Then, the 
prognostic classifier contained nine hypolncRNAs pairs which were generated by 
Lasso regression and multivariate Cox analysis. It successfully stratified EGFR wild 
type and low expression of PD-L1 squamous and adenocarcinoma NSCLC (double-
negative LUAD and LUSC) patients into the high- and low-risk groups, whose ac-
curacy was proved by the time-dependent receiver operating characteristic (ROC) 
curve. Furthermore, diverse acknowledged immunology methods include XCELL, 
TIMER, QUANTISEQ, MCPcounter, EPIC, CIBERSORT-ABS, CIBERSORT, and 
the single-sample gene set enrichment analysis (ssGSEA) revealed its underlying an-
titumor immunosuppressive status in the high-risk patients.
Conclusions: It is noteworthy that hypolncRNAs are associated with the survival 
of double-negative LUAD and LUSC patients, for which the possible mechanism is 
inhibiting the antitumor immune process.
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1  |   INTRODUCTION

Over the years, oncogenic molecular alterations such as epi-
dermal growth factor receptor (EGFR) were widely recognized 
in non-small cell lung cancer (NSCLC) and contributed to 
clinical treatment. Extensive somatic mutations in the EGFR 
gene were observed in Caucasian and East Asian lung ade-
nocarcinoma (LUAD) patients (approximately 10% and 50%, 
respectively).1,2 The EGFR tyrosine kinase inhibitors (TKIs) 
that target EGFR mutation have been proved to be one of the 
most effective treatment options. Advanced NSCLC patients 
with EGFR mutation have achieved noticeable survival im-
provement compared with platinum-based chemotherapy.3–5 
Meanwhile, immune checkpoint inhibitors (ICIs) targeting 
programmed death receptor-1 (PD-1) and programmed death 
receptor ligand-1 (PD-L1) also achieved advanced NSCLC. 
By binding to PD-L1 expressed on the surface of tumor cells, 
PD-1 mediates the T-cell inactivation, leading to the immune 
escape of tumor cells.6 Pembrolizumab, a PD-1 inhibitor, has 
shown a more effective response in tumor PD-L1 overexpres-
sion of at least 50% of patients than first-line platinum dou-
blet chemotherapy.7

However, TKIs were less useful for EGFR wild-type pa-
tients. And predominant patients with EGFR mutation devel-
oped resistance with TKIs in 12 months.4 The clinical efficacy 
of ICIs was also related to PD-L1 expression. Patients with 
higher tumor and immune cell PD-L1 expression got more 
treatment benefit from ICI atezolizumab.8,9 When the ex-
pression of PD-L1 was between 1% and 50%, ICIs showed 
less therapeutic benefit and more adverse events.9 This led 
to the use of TKIs and ICIs restricted to a small percentage 
of patients, leading to the majority of patients with EGFR 
wild type and low expression of PD-L1, the double-negative 
LUAD and lung squamous carcinoma (LUSC), remain in the 
treatment dilemma. Searching for more effective therapeutic 
markers is urgent.

Hypoxic microenvironments are formed when the de-
mand of cancer cells exceeds intravascular oxygen supply, 
leading to hypoxia-related gene (HRG) expression fluc-
tuations.10 The hypoxic microenvironments are essential 
factors affecting cancer cell phenotype and behavior,11 af-
fecting prognosis and treatment response. Hypoxia is re-
ported to trigger tumor immunosuppression via inhibition 
of T-cell proliferation and upregulation of co-inhibitory 
receptors or recruitment of immunosuppressive cells.12–15 
Long non-coding RNAs (lncRNAs) are a class of RNAs 
larger than 200 nucleotides and cannot encode proteins,16 
which are also involved in tumor immunodeficiency. For 

example, lncRNA Lnc-Tim3 intensifies CD8  T-cell ex-
haustion in hepatocellular carcinoma.17 lncRNA SNHG1 
regulates Treg cell differentiation and leads to immune es-
cape in breast cancer.18 lncRNA NKILA mediates T-cell 
sensitivity to tumor cell death, playing an immunosuppres-
sive role in tumor immunology.16

We intended to reveal immunologic disturbances of the 
double-negative LUAD and LUSC and identify new treat-
ment markers in view of the low responsiveness of double-
negative LUAD and LUSC to therapy. In the present work, 
we proposed a hypoxia-related lncRNAs (hypolncRNAs) 
prognostic classifier using public RNA sequencing data from 
The Cancer Genome Atlas (TCGA). The current immune 
analysis methods such as XCELL, TIMER, QUANTISEQ, 
MCPcounter, EPIC, CIBERSORT-ABS, CIBERSORT, and 
the single-sample gene set enrichment analysis (ssGSEA) 
analysis were used to reveal tumor-infiltrating immune 
cells disturbances between subgroups. Considering the two-
biomarker combination strategy has higher accuracy in prog-
nosis prediction,19 we used a new algorithm, pairing two 
lncRNAs as an integrated biomarker, in which the specific 
expression levels were not required, to construct the prognos-
tic classifier.

2  |   METHODS

2.1  |  Preparation of data and differentially 
expressed analysis

The present study included LUAD and LUSC patients from 
a public dataset, transcriptome profiling (RNAseq) data, 
mutation data, and clinical data were retrieved from TCGA 
(https://tcga-data.nci.nih.gov/tcga/). The probe data were 
transformed into fragments per kilobase million (FPKM). 
Gene expression profiles were summarized to provide gene-
level information after the microarray probes (raw data 
profiles) were mapped to gene symbols depending on their 
chips and platform, which was annotated by gene transfer 
format files downloaded from Ensembl (http://asia.ensem​
bl.org). The HRGs list was downloaded from the hallmark 
gene sets in the Molecular Signature Database (MSigDB) 
(https://www.gsea-msigdb.org/gsea/msigd​b/). We defined 
the lncRNAs that satisfied the Pearson correlation coeffi-
cients >0.4 and p < 0.001 between them and HRGs as hy-
polncRNAs. The differentially expressed HRGs (DEHRGs) 
and hypolncRNAs (DEhypolncRNAs) between tumor and 
adjacent non-tumor samples were screened out when both 
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log fold change (FC) >1.5 and false discovery rate (FDR) 
<0.05 were satisfied.

2.2  |  Definition of double-negative 
LUAD and LUSC and pairing DEhypolncRNAs

By excluding samples of EGFR mutations, the TCGA co-
hort comprised 904 EGFR wild-type samples and 93 adja-
cent non-tumor samples. PD-L1 low expression was defined 
as the bottom 25% expression level. A total of 222 tumor 
samples were finally identified as EGFR wild-type and low 
expression of PD-L1 samples.

A 0 or 1 expression matrix was established by cycli-
cally pairing all the DEhypolncRNAs. The value of the 
DEhypolncRNAs pair was equal to the value of lncRNA A plus 

lncRNA B. When the expression level of lncRNA A was higher 
than that of lncRNA B, the pair value was defined as 1; other-
wise, it was defined as 0. We considered that a pair without a 
certain value fluctuation could not correctly predict the progno-
sis. A pair is considered valid when more than 20% of a single 
DEhypolncRNAs pair have a value of 0 or 1. A total of 17,534 
valid DEirlncRNAs pairs were finally generated, randomly di-
vided into the train set and test set. The prognostic classifier 
was generated from the train set and then verified by the test set.

2.3  |  Establishment of the prognostic classifier

We used the univariate Cox regression analysis to filtrate 
the prognostic DEhypolncRNAs pairs from the 0 or 1 ex-
pression matrix. The 10-fold cross-validation least absolute 

F I G U R E  1   The workflow of the 
present study
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shrinkage and selection operator (Lasso) regression was set 
for a 1000-cycle and every random stimulation for 1000 
times, of which the multivariate Cox analysis was per-
formed on DEhypolncRNAs pairs satisfying the frequency 
more than 100 times. Thus, a prognostic classifier was con-
structed with certain regression coefficients. The highest 
point of receiver operating characteristic (ROC) curve indi-
cates the maximum area under the curve (AUC) was selected 
as the cutoff of the classifier values. Samples with a classi-
fier index higher than the cutoff value were considered as 
high-risk. The Kaplan–Meier analysis showed the survival 
differences between high- and low-risk groups. The inde-
pendent predictive ability of the prognostic classifier with 
clinical parameters including age, gender, and pathologi-
cal stage were tested by the univariate Cox regression and 
the multivariate Cox regression analysis. Furthermore, the 
Kaplan–Meier analysis and ROC curves of the same clas-
sifier were validated under diverse clinical conditions. The 
R packages survival, glmnet, survivalROC, and survminer 
were utilized in this procedure.

2.4  |  Functional annotation and principal 
component analysis

Through Gene Ontology (GO) enrichment and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis, we explored the potential biological functions of 
HRGs in tumorigenesis. Major biological attributes identi-
fied in GO and KEGG were determined and visualized by 
the R package clusterProfiler and GOplot. To determine 
whether the prognostic classifier accurately differentiated 
patients at different risks, principal component analysis 
(PCA) was performed respectively to expression profiles 
and different risk groups. The R package scatterplot3d ac-
complished three-dimensional PCA plots.

2.5  |  Investigation of tumor-infiltrating 
immune cells in microenvironment

Current acknowledged methods such as XCELL, TIMER, 
QUANTISEQ, MCPcounter, EPIC, CIBERSORT-ABS, and  
CIBERSORT were united to reveal the immunologic char-
acteristics between groups. Diverse immune-infiltrating 
cells were estimated by Spearman correlation analysis and 
Wilcoxon signed-rank test with classifier index and risk 
groups. The estimation files for the TCGA project to calcu-
late the immune infiltration statues were downloaded from 
the TIMER website (http://timer.comp-genom​ics.org). The 
R packages ggplot2, ggtext, scales, and limma were used 
in this procedure.

F I G U R E  2   (A) The volcano plot of DEhypolncRNAs between 
tumor and adjacent non-tumor samples. (B) The heatmap of 
DEhypolncRNAs between tumor and adjacent non-tumor samples. (C) 
The Lasso regression was performed with the optimal value of λ. (D) 
Nine DEhypolncRNAs pairs were chosen by Lasso regression analysis

http://timer.comp-genomics.org
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The  ssGSEA is  an expanded version  of Gene Set 
Enrichment Analysis (GSEA), which classifies gene sets with 
common immune biological roles and physiological func-
tions.20,21 A total of 782 immune-related genes were divided 
into 29 gene sets based on current information,22 representing 
specific immune cell populations and functions. The 29 gene 
sets were obtained: aDCs (activated dendritic cells), antigen-
presenting cell (APC) co-inhibition, APC co-stimulation B 
cells,  CC chemokine receptor  (CCR),  Check-point,  CD8+ 
T cells, cytolytic activity,  dendritic cells  (DCs),  human 
leukocyte antigen  (HLA),  interdigitating dendritic 
cells  (iDCs),  inflammation-promoting, mast cells, mac-
rophages,  MHC class I,  NK cells,  neutrophils,  para-
inflammation,  plasmacytoid dendritic cells  (pDCs),  T-cell 
co-inhibition, T helper cells, T-cell co-stimulation, follicular 
helper T cells  (Tfh),  Th1 cells,  tumor-infiltrating lympho-
cytes  (TIL),  Th2 cells,  Type I IFN response, regulatory T 
cells (Treg), and Type II IFN response.

2.6  |  Validation of the prognostic classifier in 
The Cancer Immunome Atlas

The Cancer Immunome Atlas (TCIA) is an online search-
able database that enables researchers to develop and test 
hypotheses about the impact of cancer genomes on tumor 
microenvironment and immune characteristics, particularly 
with regards to ICIs treatment responses. The immunophe-
notypes of 20 solid cancers in TCGA were determined by the 
cellular characteristics of the immune infiltrates, suggesting 
a potential mechanism of tumor escape. Machine learning 
methods were used to identify tumor immunogenicity and 
generate an immunophenotypic scoring scheme. The immu-
nophenoscore can be used as a good predictor of cytotoxic 
anti-T-lymphocyte-antigen-4 (anti-CTLA-4) and anti-PD-1 
antibodies responses, which have been validated in two inde-
pendent cohorts. A higher immunophenoscore predicts a bet-
ter prognosis and better response to immunotherapy. In the 
present study, patients were grouped according to the expres-
sion of CTLA-4 and PD-1, in which the immunophenoscore 
of the high- and low-risk patients were compared among 
subgroups to validate whether patients at different risks have 
different responses to ICIs treatment.

3  |   RESULTS

3.1  |  Identification of DEhypolncRNAs and 
construction of prognostic classifier

As shown in the workflow (Figure 1), 200 HRGs were ex-
tracted from MSigDB. A total of 1,4086  lncRNAs and 
1,9604 mRNAs were identified, of which 864 hypolncRNAs 
were targeted depending on co-expression analysis. A total 
of 106 downregulated and 103 upregulated DEhypolncRNAs 
were retrieved (Figure 2A and B). After cyclically pairing the 
DEirlncRNAs, a loop matrix was constructed and comprised 
of 1,7534 DEirlncRNAs pairs. The matrix was randomly di-
vided into the train set and test set, and there was no statisti-
cal difference between the two groups in gender, age, and 
pathological stages (Table 1). The univariate Cox regression 
identified 25 prognostic DEhypolncRNAs pairs compressed 
to 9 DEhypolncRNAs pairs by Lasso regression analysis 
(Figure 2C and D) and multivariate Cox analysis and con-
structed the prognostic classifier. The formula of prognostic 
classifier was listed as follows: AL606489.1|AL512413.1 ×  
0.2986 + AL606489.1|AC024361.1 × 0.1159 + AL161431.1  
|LINC01010 × 0.0117 + AP004608.1|TUSC8 × −0.0847 + C2C  
D4D-AS1|AC027288.3 × −0.5404 + AC104461.1|C20orf197 
× 0.1638 + AC026471.3|HS1BP3-IT1 × −0.1492 + AC  
245128.3|C20orf197 × 0.5289 + HS1BP3-IT1|AC024361.1 
× 0.2299.

The AUCs of the ROC curve were shown in Figure 3A. 
The maximum AUCs referred to 0.788 when the cutoff value 
of 1-year ROC referred to 0.006. Furthermore, 2-year and 3-
year AUCs reached 0.864 and 0.922, which showed a high 
authenticity in predicting survival (Figure 3B). Meanwhile, 1-
year ROC curves of clinical parameters including age, gender, 
and pathological stage were also generated (Figure 3C). The 
AUCs of the classifier index were higher than other indicators, 
indicating a more accurate prognostic and predictive ability.

3.2  |  Clinical evaluation and validation of the 
prognostic classifier

A total of 102 LUSC and LUAD patients were identified as 
low-risk, and 112 patients were high-risk, depending on the 

T A B L E  1   No statistical differences in terms of gender, age, and pathological stages in the train and test sets

Covariates Type Total Train Test p value

Age ≤65 74 (43.02%) 30 (37.5%) 44 (47.83%) 0.2263

Age >65 98 (56.98%) 50 (62.5%) 48 (52.17%)

Gender Female 60 (34.88%) 30 (37.5%) 30 (32.61%) 0.6094

Gender Male 112 (65.12%) 50 (62.5%) 62 (67.39%)

Stage Stage I–II 129 (75%) 54 (67.5%) 75 (81.52%) 0.0522

Stage Stage III–IV 43 (25%) 26 (32.5%) 17 (18.48%)
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cutoff point (Figure 3E and F). The Kaplan–Meier analysis 
showed the prognosis of the low-risk patients was superior 
to the high-risk patients (Figure 3D). To further verify the 
validity of the prognostic classifier under different clini-
cal conditions, we performed a t-test and survival analysis 
under different clinical classifications. The classifier index 

was higher in older patients or patients with worse patho-
logic stages (Figure 4A–E). In young or old patients, female 
and male, and early or late stage, the prognostic classifier 
still clearly differentiated between different risk groups for 
prognosis (Figure  4F–Q). The univariate and multivariate 
Cox regression analyses demonstrated that the prognostic 

F I G U R E  3   (A) The ROC curve 
achieved the maximum AUC when the 
cutoff point was set at 0.006, for which the 
optimal models were determined. (B) The 
ROC curve of the prognostic classifier in 1, 
2, and 3 year. (C) The 1-year ROC curves 
of diverse clinical parameters showed the 
predictive advantage of the prognostic 
classifier. (D) The Kaplan–Meier analysis 
of train set showed that the low-risk patients 
have better prognosis than the high-risk 
patients. (E and F) The classifier index and 
clinical outcome of the TCGA cohorts are 
shown
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F I G U R E  4   (A) Patients older than 
65 years have higher classifier index than 
patients younger than 65 years. (B–E) The 
higher classifier index was shown in worse 
N stage, T stage, M stage, and pathological 
stages. (F–Q) The prognostic classifier well 
distinguished the high- and low-risk patients 
for prognosis in diverse clinical parameters 
(age, gender, and pathological stages). (R) 
The survival analysis indicated that the 
prognostic classifier was validated in an 
independent cohort GSE31210

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
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F I G U R E  5   (A) The univariate Cox regression analysis showed the classifier was statistically significant for prognosis. (B) The multivariate 
Cox regression demonstrated the classifier presented as an independent prognostic predictor. (C) The survival analyses of the test set indicated that 
the prognostic classifier was validated in randomized grouping. (D and E) The univariate Cox regression and multivariate Cox regression analyses 
indicated the classifier served as an independent predictor for survival. (F) The AUC of the test set reached at 0.823

F I G U R E  6   (A) The PCA showed the classifier could successfully distinguish double-negative LUAD and LUSC patients at different risks. 
(B) The calibration plot of the nomogram indicating a good predictability of the classifier. (C) Nomogram of the classifier index and other clinical 
factors for predicting 1-,2-, and 3-year survival in double-negative LUAD and LUSC
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classifier was an independent predictor of prognosis (p < 
0.001) (Figure 5A and B).

To further verify the accuracy of the prognostic classi-
fier, patients in the test set were classified using the same 
formula. The low-risk patients uniformly showed better out-
comes (Figure 5C). Moreover, the classifier index was still 

an independent prognostic predictor in the test set (Figure 5D 
and E). The 1-year AUCs reached 0.823 in the test set 
(Figure 5F).

The PCA plots revealed that the classifier index could 
clearly distinguish the high- and low-risk patients (Figure 6A). 
Moreover, we used another quantitative method, nomogram, 
to predict the individual probability of survival, in which the 
classifier index was combined with clinical features. The 
nomogram calculated 1-,2-, and 3-year survival rates for 
double-negative LUAD and LUSC patients (Figure 6C). The 
calibration diagram showed that the predicted curve was in 
good agreement with the observed curve (Figure 6B), indi-
cating the hypolncRNAs classifier had a great promise in 
predicting survival outcomes.

Further independent cohort verification was carried 
out in the Gene Expression Omnibus (GEO) database. 
GSE31210 contained RNA expression profiles and clinical 
data of 226 LUAD patients. Gene expression matrix includ-
ing lncRNAs expression data was obtained after annotation 
by platform GPL570. A total of 97 patients were identified 
as the high-risk and 129 as the low-risk by the same for-
mula. The survival analysis showed that the low-risk pa-
tients had significantly better outcomes than the high-risk 
patients (Figure 4R).

3.3  |  Functional enrichment 
analysis of DEHRGs

Functional enrichment analysis of DEHRGs offered a bio-
logical understanding of related processes in double-negative 
LUAD and LUSC. The GO terms (Figure 7A) for biologi-
cal processes (BP) are enriched mainly in glucose metabolic 
processes, such as canonical glycolysis, glucose catabolic 
process to pyruvate, and glycolytic process through fruc-
tose−6−phosphate. The cellular components (CC) included 
golgi lumen, endoplasmic reticulum lumen, and collagen-
containing extracellular matrix. DEHRGs are mainly en-
riched in monosaccharide binding, growth factor binding, 
and carbohydrate binding with molecular function (MF). 
As for KEGG pathway enrichment analysis (Figure  7B), 
DEHRGs were significantly related to glycolysis/gluconeo-
genesis, HIF-1 signaling pathway, and carbon metabolism.

F I G U R E  7   (A) The GO enrichment of DEHRGs. The count 
shows the number of enriched gene in specific pathways. The smaller 
the p value, the greater the authenticity of enrichment. Gene ratio 
refers to the ratio of the enriched HRGs number to the total number of 
DEHRGs. (B) KEGG enrichment of DEHRGs. The count shows the 
number of enriched gene in specific pathways. The smaller the p value, 
the greater the authenticity of enrichment. Gene ratio refers to the ratio 
of the enriched HRGs number to the total number of DEHRGs. (C) 
The classifier index was negatively associated with multiple tumor-
infiltrating immune cells shown by Spearman correlation analysis

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
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F I G U R E  8   The Wilcoxon signed-
rank test revealed lower levels of T-cell 
CD8+ central memory, T-cell CD4+ Th2, 
myeloid dendritic cell, and macrophage 
in XCELL (A–D), T-cell CD4+ memory 
activated, mast cell activated, and monocyte 
in CIBERSORT (E–G), T-cell CD4+ 
memory activated, T-cell CD4+ memory 
resting, monocyte, and macrophage M2 in 
CIBERSORT-ABS (H–K), macrophage in 
EPIC (L), macrophage M2 in QUANTISEQ 
(M), endothelial cell in MCPCOUNTER 
(N), and B cell in TIMER (O), indicating an 
immunosuppression status in the high-risk 
patients
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3.4  |  Integrated analysis for tumor-
infiltrating immune cells revealed 
immunosuppressive status with the 
prognostic classifier

Based on current acknowledged methods, immune infiltration 
fluctuations were revealed between groups. The negative cor-
relation coefficients were widely observed, which meant an 
immunosuppression state in higher classifier index patients. 
Multiple immune cell types of XCELL, including B cell, 
T-cell CD8+ central memory, myeloid dendritic cell, mac-
rophage, macrophage M2, monocyte, and T-cell CD4+ Th2 
were negatively correlated with the classifier index. T-cell 
CD4+ memory resting, T-cell gamma delta, monocyte, and 
macrophage M2 in CIBERSORT-ABS, T-cell CD4+ mem-
ory resting, T-cell gamma delta, monocyte, and macrophage 
M2 in CIBERSORT, B cell and macrophage in EPIC, mac-
rophage M2 and T-cell regulatory (Tregs) in QUANTISEQ, 
B cell and endothelial cell in MCPCOUNTER, and B cell 
in TIMER also showed negative correlations with classifier 
index (Figure 7C).

The Wilcoxon signed-rank test obtained similar results. T-
cell CD8+ central memory, T-cell CD4+ Th2, myeloid den-
dritic cell, and macrophage in XCELL (Figure 8A–D), T-cell 
CD4+ memory activated, mast cell activated, and monocyte 
in CIBERSORT (Figure 8E–G), T-cell CD4+ memory acti-
vated, T-cell CD4+ memory resting, monocyte, and macro-
phage M2 in CIBERSORT-ABS (Figure 8H–K), macrophage 
in EPIC (Figure  8L), macrophage M2 in QUANTISEQ 
(Figure 8M), endothelial cell in MCPCOUNTER (Figure 8N), 
and B cell in TIMER (Figure 8O) showed lower level in the 
high-risk patients.

Previously, we found the immunosuppression state and 
survival disadvantage  with  the high-risk patients, consis-
tent with the immune functions and pathways analysis in 
ssGSEA. Among the 29 immune gene sets, immune-related 
functional cells such as aDCs, aDCs, B cells, CD8+ T cells, 
DCs, iDCs, and macrophages showed lower ssGSEA scores 
in the high-risk patients (Figure 9A). Similarly, immune path-
ways such as APC  co-stimulation, CCR, Check-point, cy-
tolytic activity, MHC class I, para-inflammation, and T-cell 
co-stimulation gained lower ssGSEA scores in the high-risk 
group (Figure 9B).

3.5  |  Assessment of the immunophenoscore 
from TCIA to predict the response to ICIs

In the previous steps, we proved the negative correlation be-
tween the classifier index and the immune-infiltrating cells, 
which directly indicated the immunosuppression status of 
the high-risk patients. We further determined the relation-
ship between the classifier index and immunotherapy. TCIA 

F I G U R E  9   (A) The immune-related functional cells between 
the high- and low-risk patients. (B) The immune pathway functions 
between the high- and low-risk patients. (C–F) The low-risk patients 
showed lower classifier indexes in all four subgroups as CTLA-4 
positive PD-1 positive, CTLA-4 negative PD-1 positive, CTLA-4 
positive PD-1 negative, and CTLA-4 negative PD-1 negative
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is a web-based database (https://tcia.at/home) that provides 
information on the cellular composition of tumor-infiltrating 
lymphocytes (TILs) and the response to checkpoint-blocking 
immunotherapies for 20 solid cancers in TCGA. TCIA gen-
erates a comprehensive score, the immunophenoscore, to re-
veal the tumor immune heterogeneity of 20 valid cancers as 
an indication of the tumor cell types that may be susceptible 
to ICIs treatment. Higher immunophenoscore was positively 
associated with better anti-CTLA-4 and anti-PD-1 treatment 
responses. According to the expression of CTLA-4 and PD-
1, patients were divided into four groups as CTLA-4 posi-
tive PD-1 positive, CTLA-4 negative PD-1 positive, CTLA-4 
positive PD-1 negative, and CTLA-4 negative PD-1 negative. 
The high- and low-risk patients showed a distinct difference 
of immunophenoscore for all four subgroups. The low-risk 
patients all had higher immunophenoscores, suggesting that 
the prognostic could predict responses to immunotherapy 
regardless of CTLA-4 and PD-1 expressions (Figure 9C–F).

4  |   DISCUSSION

Previous studies have attempted to construct lncRNAs pre-
dictors to assess cancer risk, mostly based on quantifying 
the transcripts level directly.23,24 However, the difference of 
detection method and platform will lead to the fluctuations 
of expression values. We generated a particular approach to 
construct the 0 or 1 matrix by an interaction loop to address 
the batch effect's bias. The raw profiles of RNA sequencing 
were retrieved from TCGA, of which the co-expression rela-
tionship between lncRNAs and mRNAs was determined. By 
cyclically pairing DEhypolncRNAs, the interaction loop of 
hypolncRNA pairs was accomplished, and candidate prog-
nostic hypolncRNA pairs were screened out to build the 
prognostic classifier. The optimal cutoff value was chosen by 
counting each point on the AUC of the ROC curve to divide 
the high- and low-risk patients. In addition to validation of 
the prognostic classifier in the test set, we also selected an 
independent cohort for validation in the GEO database. We 
further evaluated the classifier under various conditions with 
other clinical parameters such as age, gender, and pathologi-
cal stages. Our classifier was able to identify the high-risk pa-
tients among different ages, genders, and pathological stages.

lncRNAs are very versatile molecules that can drive many 
cancer-related phenotypes directly or indirectly to promote or in-
hibit the expression of protein-coding genes. Recent studies in-
dicate that lncRNAs are also deeply involved in developing and 
activating immune cells, especially in the tumor immune micro-
environment.25,26 Tumor-infiltrating immune cell pathways such 
as the differentiation and exhaustion of T cells or the immuno-
deficiency of natural killer cells were affected by lncRNAs.17,24 
Hypoxia is common in malignancy and can promote the in-
vasive behavior of tumors.27 Metabolic adaptations of tumor 

cells to hypoxia, such as increased glucose uptake and lactate 
production, also promote and maintain an immunosuppressive 
tumor microenvironment.13,28 The immunosuppression may be 
induced by inhibiting T cells or promote T-cell death.29 HRGs 
such as hypoxic-inducible factor 1α (HIF1A) can promote the 
expression of PD-L1 in mouse models of cancer.30 Moreover, 
multiple HRGs (such as HIF1A, VEGFA, GLUT1, and CAIX) 
were correlated with PD-L1 expression in LUAD.31 The com-
bination of HRGs and lncRNAs can more effectively reveal the 
immune characteristics of double-negative LUAD and LUSC. 
Proper combination strategies of HRGs and lncRNAs can even 
predict responses to immunotherapy, which have been proved 
in immunophenoscore analysis based on TCIA. Common ac-
ceptable methods including TIMER,32,33 CIBERSORT,34,35 
XCELL,36,37 QUANTISEQ,38,39 MCPcounter,40 EPIC,41 and 
CIBERSORT-ABS42 were used to analyze the relationship 
between classifier index and tumor-infiltrating immune cells, 
which were thought to impact the treatment response of ICIs. 
For example, a higher CD8+ T-cell infiltration predicts a bet-
ter response from pembrolizumab.43 Tumor-infiltrating T lym-
phocytes were positively associated with PD-L1 expression and 
survival time in various tumor types.44–46 CD4+ memory T 
cells and B cells are localized and enriched in tertiary lymphoid 
structures, which have shown benefits on many tumor types.47,48 
Memory B cells in both naïve and memory T-cell response as 
antigen-presenting cells, thus inducing an antitumor immune re-
sponse.49 In our analysis, multiple types of immune cells, includ-
ing CD8+ T cells and CD4+ T cells, were negatively related to 
the classifier index and down-expressed in the high-risk patients, 
explaining the potential remodeling of tumor immune environ-
ment in double-negative LUAD and LUSC. We assumed an 
immunosuppression state in the high-risk patients, and the clas-
sifier could be used as a predictor of immunotherapy benefits.

Some of the lncRNAs involved in the classifier have been 
studied in previous research. TUSC8 and LINC01010 are 
reported to act as a suppressor in the invasion of multiple 
cancer cells in different pathways.50–53 Multiple signatures 
that predict tumor prognosis also involve LINC01010.53–55 
AL161431.1 facilitates tumor cell proliferation and migration 
in endometrial carcinoma.56 lncRNAs signature containing 
AL161431.1 can serve as a prognosis predictor in LUSC.57 
However, most lncRNAs involved in our classifier have not 
been reported in other lung cancer studies. This suggested 
that the current studies focus on double-negative LUAD and 
LUSC have not paid enough attention to lncRNAs, especially 
hypolncRNAs, hinting at some critical mechanisms that have 
been overlooked.

5  |   CONCLUSION

In general, we proposed a prognostic classifier based on 
HRGs and lncRNAs. Not only can the high-risk patients be 
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distinguished by the classifier under various clinical condi-
tions, but also different tumor immune microenvironments 
can be identified. This finding may serve as a potential guide 
to targeted immunotherapy and provide ideas for the further 
development of new immunotherapies. Given the nature of 
our primary data, we would recommend multi-center verifi-
cation for the prognostic value of the hypolncRNAs classi-
fier and potential use in EGFR inhibitors or anti-PD-1/PD-L1 
treatment.
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