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Abstract: Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer with rising incidence and
high mortality. Approximately 80% of the cases are caused by the human Merkel cell polyomavirus,
while the remaining 20% are induced by UV light leading to mutations. The standard treatment
of metastatic MCC is the use of anti-PD-1/-PD-L1-immune checkpoint inhibitors (ICI) such as
Pembrolizumab or Avelumab, which in comparison with conventional chemotherapy show better
overall response rates and longer duration of responses in patients. Nevertheless, 50% of the patients
do not respond or develop ICI-induced, immune-related adverse events (irAEs), due to diverse
mechanisms, such as down-regulation of MHC complexes or the induction of anti-inflammatory
cytokines. Other immunotherapeutic options such as cytokines and pro-inflammatory agents or the
use of therapeutic vaccination offer great ameliorations to ICI. Cytotoxic T-cells play a major role in
the effectiveness of ICI, and tumour-infiltrating CD8+ T-cells and their phenotype contribute to the
clinical outcome. This literature review presents a summary of current and future checkpoint inhibitor
therapies in MCC and demonstrates alternative therapeutic options. Moreover, the importance of
T-cell responses and their beneficial role in MCC treatment is discussed.

Keywords: immune checkpoint blockade; Merkel cell carcinoma; immunotherapy; T-cell response;
large T antigen; tumour mutational burden; Merkel cell polyomavirus; tumour microenvironment

1. Merkel Cell Carcinoma
1.1. Definition of Merkel Cell Carcinoma

Merkel cell carcinoma (MCC) is a rare but aggressive neuroendocrine skin malignancy.
It was first described as a “trabecular carcinoma of the skin” in 1972 by Cyril Toker [1].
Patients are usually diagnosed at a median age of 75–80 years, and only 12% are younger
than 60 years [2,3]. Often the primary tumour has already metastasised locoregionally or
to the lymph nodes at the time point of diagnosis [4].

Due to its aggressiveness, the five-year survival rate is as low as 40% [5,6] and even
worse for nodal (35%) or distant (14%) metastasis [7]. More than one third of the patients
diagnosed with MCC dies from this disease [4]. The recurrence rate varies strongly from
26% [8,9] to 60% [10], depending on the stage and whether only local or regional recurrence
was investigated. In the last couple of years, the incidence of MCC has been rising, not
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only in the USA (from 0.44 cases/100.000 in 2000 to 0.66 cases/100.000 in 2016) [3,11,12]
but also in Sweden (from 0.09 cases/100.000 in 1993 to 0.2 cases/100.000 in 2012) [13]
and Australia (from 1.6/100.000 in 1993 to 20.7/100.000 in 2010) [2]. Increasing numbers
could be explained by better immunohistological staining, new diagnostic markers, and
behavioural changes, for example due to increased sun exposure in Australia, which leads
to more mutations.

In general, two types of MCC can be distinguished. One is caused by the Merkel cell
polyomavirus (MCPyV) and the other one by chronic UV-light exposure. The majority
of patients bears MCPyV+ tumours (80%) [14], for which the integration of the viral
genome into the host genome is characteristic. The remaining 20% of cases are virus
negative (MCPyV-negative) and associated with chronic UV-light exposure that causes a
high mutational load, leading to MCC by mechanisms not yet fully understood [15,16].

The cell type of origin of the Merkel cell carcinoma is still discussed. Originally, it
was thought that the cancer rises from Merkel cells due to similar morphological features.
However, Merkel cells are found in the basal layer of the epidermis of the skin, while MCC
cells are mostly detected in the dermal layer of the skin and additionally express different
markers compared to Merkel cells. It is, therefore, now rather assumed that the origin of
MCC are dermal cells. However, there seem to be different origins for both MCC types.
Although it is thought that MCPyV-negative MCC is more often associated with dermal
keratinocytes [17] or early progenitor cells, for MCPyV+ MCC it is likely that the virus
targets dermal fibroblasts [18] and productively infects them. Liu et al. hypothesize that
the virus enters Merkel cells “accidently” and causes MCC [18].

Merkel cell carcinoma regularly appears in anatomical areas that are highly exposed
to sunlight, such as the neck or the face [19]. The clinical features for diagnosis are called
AEIOU factors [20]. They describe an Asymptomatic nodule that Expands rapidly. It
occurs under Immunosuppression in people who are Older than 50 with a location at
UV-exposed sites. Around 89% of patients meet at least three of these criteria [20].

Some of the AEIOU factors are risk factors, including advanced age, UV-exposure and
immunosuppression. It was shown that immune-compromised patients with lymphocytic
leukaemia had a 30-fold increased chance of developing MCC compared to immune-
competent patients [20]. Another example are HIV patients, whose risk of developing
MCC is increased 13-fold compared to healthy individuals [21]. Paulson et al. showed
that the 3-year survival rate in immune-competent patients is twice as high as in immune-
compromised patients [22]. This suggests that a functional immune system plays a very
important role in keeping the tumour under control. Advanced age, as another risk factor,
leads to immune senescence, an age-related alteration of the immune system and a loss
of T-cell receptor repertoire [23]. This could explain the increased incidence of MCC in
elderly people.

Mutagenesis is a frequent event related to cancer development. Patients with MCPyV+

MCC show a low number (12.5 per-exome) of somatic single nucleotide variants (SSNVs)
while MCPyV-negative MCC harbours around 1121 SSNVs per-exome [15]. The two most
commonly mutated genes in MCPyV-negative tumours are tumour protein 53 (TP53),
which encodes for p53, and retinoblastoma-associated protein 1 (RB1), both important
regulators of the cell cycle and apoptosis [15]. Nevertheless, it is known that MCPyV-
negative MCC is associated with a high tumour mutational burden (TMB), which could be
useful for immunotherapy as more tumour neo-antigens can be used as targets [15]. The
MCPyV-negative MCC also shows a typically UV-mutational signature. In comparison
to the non-viral MCC, the viral MCC does not have this UV-mutational signature and a
low TMB [24].

1.2. The Merkel Cell Polyomavirus

The Merkel cell polyomavirus (MCPyV) is a small, non-enveloped double-stranded
DNA virus and the only known virus from the family of polyomaviruses that is thought
to cause cancer in humans. The primary infection is usually asymptomatic with a high
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seroprevalence of about 70% in the human population [25], so that the virus has evolved to
co-exist with its host. Usually, the healthy human immune system is able to keep the virus
replication under control and the asymptomatic infection with MCPyV generally occurs
during childhood but the seropositivity increases with age, from around 50% in children
under the age of 15 years to 80% in people over 50 years [26].

The incidence of only 2000 new MCC cases every year in the US with a seroprevalence
of 70% of MCPyV among the population raises the question why MCC is still a quite rare
cancer type. Nevertheless, new treatment strategies for MCC are rapidly evolving. This
is underlined by numerous recently published reviews concerning MCC and new trends
in treatment [27–29]. The discrepancy between the ubiquity of the MCPyV and the rare
manifestation of MCC is the consequence of the very improbable molecular events; it occurs
by mistake in combination with several other factors resulting in viral transformation of
the host cell.

In addition, the virus can be found in a lot of tissues in the body such as the skin,
the saliva, or the aerodigestive tract, but only the neuroendocrine cells of the skin are
susceptible to transformation by MCPyV [30].

1.3. The Molecular Steps in the Evolution of MCC

Prior to causing MCC by MCPyV, two separate events need to take place. First, the
virus genome needs to be linearized and integrated into the host genome, and secondly
the viral genome needs to acquire a specific mutation. Integration into the host genome
occurs at random sites and by accident, for example via viral fragmentation during viral
replication [31]. UV light can then cause mutations in the viral genome.

The virus genome consists of an early region (ER), and a late region (LR), as well as
a non-coding control region. The LR encodes the viral capsid proteins VP1 (major) and
VP2 (minor), both relevant for productive infection of new host cells. The ER encodes the
two oncogenic proteins: the tumour (T) antigens, namely the large T antigen (LTA) and the
small T antigen (STA). Both share 80 amino-terminal (N-terminal) amino acids [32].

The mutations lead to a C-terminally truncated form of the LTA, referred to in the
following as truncLT if mutated. The full-length LTA has a carboxy-terminus (C-terminus)
containing an origin binding domain and a helicase domain. Both are required for virus
replication. Full-length LTA can also indirectly bind p53 and thus interfere with its activa-
tion [33]. Commonly p53 is known as a tumour suppressor, negatively regulating genes in
the cell cycle. If the activation of p53 is suppressed, the capability to control the cell cycle
and proliferation are lost.

Nonsense or frameshift mutations produce a premature stop codon that leads to the
truncLT. Due to the C-terminal truncation, the helicase domain is lost and the virus is
no longer able to replicate [34], therefore the T antigens are expressed in the host cells.
Thereupon the only regions left are the Rb-binding domain and an N-terminal J region.
Included in the Rb-binding domain is a conserved LXCXE Rb factor binding motif. The
Rb protein plays a significant role in the cell cycle, controlling the progression towards S-
Phase, inhibiting E2F, a transcription factor. By repression of E2F, it prevents the activation
of genes important for the progression of the cell cycle. The truncLT binds with high
affinity [33] and inhibits Rb. Therefore, the cells progress to S-Phase, which leads to
increased proliferation [35].

In contrast to the LTA, the STA keeps its full length and is thought to play a role in cell
survival, as well as proliferation of MCC cells [36], but its full function is still unknown.
In MCPyV+ cell lines, silencing of the T antigens led to growth arrest or cell death [37],
demonstrating their importance as oncogenes in the process of causing MCC. Like other
intracellular proteins, the truncLT is processed in the cytoplasm and presented on major
histocompatibility complex (MHC; also termed human leukocyte antigen, HLA in humans)
class I to cytotoxic CD8+ T-cells, giving rise to diverse peptide epitopes, which can be
recognised by T-cells and cause an immune response against the tumour.
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1.4. Immunogenicity and Immune Escape in MCC

Developing malignancies are under constant immune surveillance and undergo a
process termed immunoediting: the relation between tumour cells and the immune system
changes [38]. At the beginning, in the so-called elimination phase, the immune system can
keep the tumour growth under control. Over time the tumour will gain more mutations,
allowing it to eventually evade the immune system. In the second phase, the equilibrium,
the immune system keeps the balance. The tumour does not grow anymore, but is also
not reduced in size. In the escape phase, the immune system cannot control the tumour
growth anymore. As a result, the tumour escapes and grows by creating an immune
suppressive environment.

During recent years, it was shown that the cellular immune response is especially
important to fight MCC. The immunogenicity of MCC is either based on the presence of
the viral T antigen in MCPyV+ MCC, or the high mutational burden in MCPyV-negative
cases. A recent publication indicated that the viral status can be used as a prognostic
marker, and that MCPyV+ tumours are associated with a better overall survival, as well as
recurrence free survival [39]. T-cells, specifically cytotoxic CD8+ ones, play a very critical
role. The presence of many intratumoural CD8+ T-cells is associated with better prognosis
and survival [40].

However, not only T-cells play a role in the prognosis of MCC. Antibodies against
MCPyV T antigens produced by B-cells correlate with disease burden and MCC recur-
rence [41]. Anti-MCPyV T antibody titres decrease after successful treatment and upon
recurrence they increase again. For these reasons, anti-MCPyV T antibody titre is used to
monitor patients after MCC treatment. Unfortunately, seropositivity for MCPyV cannot be
used for MCC screening or to distinguish MCPyV+ from MCPyV-negative patients due to
the high seropositivity levels in the healthy population.

As described above, the cancer evolves with strategies to suppress or evade the
immune system, which conceal or protect the tumour cells from the immune cells. One
example is the down-regulation of the expression of MHC I molecules on the surface of
MCC cells [42]. Another mechanism is the creation of an immune suppressive tumour
micro-environment with the help of suppressive cytokines and chemokines such as TGF-β
or IL-10 [43–45]. Otherwise, an up-regulation of checkpoint proteins on the surface of
T-cells, such as programmed cell death protein 1 (PD-1) [46] or cytotoxic T lymphocyte
associated protein 4 (CTLA-4) [47], is detected. PD-L1 has been shown to be up-regulated
in tumour cells and immune cells in the tumour microenvironment of MCC patients
with a better overall survival, if PD-L1 is overexpressed [48,49]. This suggests that these
checkpoints are a good target for immunotherapy using checkpoint inhibitors, which is
discussed in the next section.

2. Checkpoint Inhibitors
2.1. The Success Story of Immune Checkpoint Inhibitors

Immunotherapies emerge as an increasingly important treatment option for cancer
patients. In contrast to chemotherapy, which does not only kill tumour cells, but also
healthy cells, immunotherapies can modulate the immune system of patients against the
tumour. Nevertheless, there are currently several clinical trials testing chemotherapy in
combination with checkpoint inhibitor therapy (see Table 1).
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Table 1. Ongoing clinical trials for the treatment of MCC either as monotherapies or in combined treatment with ICIs, Source: Clinicalotrial.gov, July 2021.

Study Treatment Phase NCT Number MCC Status Study Status Notes
PD-1/L1 inhibitors, monotherapy

Pembrolizumab III NCT03783078 mMCC active, not recruiting single-arm, open-label trial

Pembrolizumab II NCT02267603 aMCC, stage III A and B, IV active, not recruiting first-line treatment,
open-label trial

Avelumab (JAVELIN Merkel 200 trial) II NCT02155647 mMCC active, not recruiting multicentre, international,
single-arm, open-label trial

Adjuvant Avelumab (ADAM trial) III NCT03271372 MCC Stage III A and B recruiting patients who already underwent
surgery and/or radiation therapy

Adjuvant Nivolumab or Ipilimumab (ADMEC-O trial) II NCT02196961 resected MCC active, not recruiting national, open-label,
randomised trial

Nivolumab (CheckMate358 trial) I/II NCT02488759 MCC and others active, not recruiting non-comparative, open-label trial
with multiple cohorts

Other checkpoint inhibitors, monotherapy

Retifanlimab (anti-PD-1, POD1UM-201 trial) II NCT03599713 aMCC or mMCC recruiting single-arm, open-label trial

INCAGN02390 (anti-TIM3 antibody) I NCT03652077 MCC and others active, not recruiting open-label, dose-escalation,
safety, tolerability trial

In-situ vaccination with Tremelimumab (anti-CTLA-4)
and IV Druvalumab (anti-PD-L1) + PolyICLC

(TLR3 agonist)
I/II NCT02643303 MCC recruiting open-label, multicentre trial of an

in-situ vaccine for MCC

CK-301 (anti-PD-L1) I NCT03212404 MCC and others recruiting open-label, multicentre,
dose-escalation study

PD-1/L1 inhibitor with/without CTLA-4 inhibitors and/or radiation therapy, combination therapy

Pembrolizumab with or without Stereotactic Body
Radiation Therapy II NCT03304639 aMCC, mMCC recruiting

randomised study of
combination therapy,

open-label trial

Avelumab with 177-Lu-DOTATATE (type of radiation)
(GoTHAM trial) I/II NCT04261855 mMCC recruiting

signal-seeking, biomarker study
to evaluate safety of
combination therapy

Nivolumab and Ipilimumab ± stereotactic body
radiation therapy (SBRT) II NCT03071406 mMCC recruiting randomised, multi-institutional,

open-label trial

Nivolumab + Radiation or Nivolumab + Ipilimumab I NCT03798639 MCC stage IIIA, IIIB recruiting randomised, multi-institutional
pilot study

SO-C1010 ± Pembrolizumab I/Ib NCT04234113 aMCC, mMCC recruiting multicentre, open-label trial

Clinicalotrial.gov
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Table 1. Cont.

Study Treatment Phase NCT Number MCC Status Study Status Notes

Avelumab and/or radiation therapy II NCT04792073 aMCC recruiting prospective, open-label,
single-centre

Palliative RT and Anti-PD-1/PD-L1 II NCT03988647 mMCC active, not recruiting open-label study

Avelumab with surgery/radiation (I-MAT) II NCT04291885 MCC recruiting randomised,
placebo-controlled study

Focused Ultrasound Ablation (FUSA) with/without
PD-1 with/without Imiquimod I NCT04116320 MCC and others recruiting pilot evaluation, open-label study

Laser Interstitial ThermoTherapy (LITT)
+ Pembrolizumab I NCT04187872 MCC and others recruiting open-label, controlled pilot study

NBTXR3 + radiotherapy + anti-PD-1 antibodies I NCT03589339 MCC and others recruiting prospective study

PD-1/L1 inhibitor with TLR agonists, combination therapy

NKTR-262 (TLR agonist) + NKTR214
(Bempegaldesleukin, IL-2 agonist) or NKTR214 +

Nivolumab (REVEAL trial)
I/II NCT03435640 locally aMCC, mMCC recruiting

open-label, multicentre, dose
escalation and

dose-expansion study

Pembrolizumab + Cavrotolimod (TLR9 Agonist) or
Cemiplimab (anti-PD-1) + Cavrotolimod Ib/II NCT03684785 aMCC, mMCC and others recruiting open-label, two-part,

multicentre trial

PD-1/L1 inhibitor combined with interleukin agonists or other therapies, combination therapy

Avelumab + N-803 (IL-15 agonist) + haNK
(QUILT-3.063 trial) II NCT03853317 MCC recruiting relapsed after ICI treatment,

single-arm trial

Atezolizumab (anti-PD-L1) + NT-I7 (recombinant
human IL-7) I/II NCT03901573 MCC recruiting

naïve or anti-PD-1/PD-L1
relapsed MCC, test if addition of

NT-I7 provides clinical benefit

Atezolizumab + Bevacizumab (VEGF inhibitor) II NCT03074513 MCC and others active, not recruiting single-arm, open-label trial

Tacrolimus (calcineurin inhibitor), Nivolumab
and Ipilimumab I NCT03816332 mMCC, Stage III A and B recruiting kidney transplant recipients,

open-label trial

Pembrolizumab ± XmAb18087 (bispecific antibody) I NCT04590781 recurrent mMCC not yet recruiting multiple dose study to evaluate
safety of XmAb18087

Avelumab + Dominostat (HDAC inhibitor,
MERKLIN2 trial) II NCT04393753 aMCC recruiting relapsed after ICI treatment,

single-arm trial

Avelumab + gene modified immune cells
(FH-MCVA2TCR) I/II NCT03747484 mMCC recruiting relapsed after ICI treatment,

single-arm trial
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Table 1. Cont.

Study Treatment Phase NCT Number MCC Status Study Status Notes
Zimberelimab (anti-PD-1 antibody) + Etrumadenant

(adenosine receptor antagonist) I NCT03629756 MCC and others active, not recruiting open-label, dose-escalation,
dose-expansion study

BT-001 (oncolytic virus) with/without Pembrolizumab I/II NCT04725331 MCC recruiting
multicentre, open-label,

consecutive cohorts,
dose-escalation study

OC-001 with/without anti-PD-1 or
anti-PD-L1 antibodies II/II NCT04260802 MCC and others recruiting two-part, open-label,

multicentre study

Nivolumab + talimogene Laherparepvec (modified
oncolytic herpes virus) II NCT02978625 Non-melanoma skin cancers recruiting open-label study

Plinabulin (targets new blood vessels) +
Avelumab/Atezolizumab/Durvalumab/Nivolumab/

Pembrolizumab/radiation therapy
I/II NCT04902040 MCC and others recruiting

open-label, single-centre study,
after progression of PD-1 or
PD-L1 targeted antibodies

Neo-adjuvant Lenvatinib (multikinase inhibitor)
+ Pembrolizumab II NCT04869137 MCC recruiting open-label study

Avelumab + Domatinostat (MERKLIN 1) II NCT04874831 mMCC not yet recruiting treatment-naïve mMCC,
multicentre, open-label trial

N-803 + Pem-
brolizumab/Nivolumab/Atezolizumab/Avelumab/
Durvalumab/Pembrolizumab with or without PD-L1

t-haNK (QUILT-3.055)

II NCT03228667 MCC and others active, not recruiting multicohort, open-label trial

Adoptive cell transfer with/without ICIs, with/without radiation, combination therapy

Transfer of allogenic BK specific cytotoxic
T lymphocytes II NCT02479698 cancers with BK or JC virus,

MCC and others recruiting open-label trial

Localized radiation therapy or recombinant IFNβ and
Avelumab in combination with or without

adoptive immunotherapy
I/II NCT02584829 mMCC, Stage IV active, not recruiting open-label trial, cellular adoptive

immunotherapy + ICI treatment

iPS cell derived cells (NK cells, FT500) + one of the
ICIs (Nivolumab, Pembrolizumab,

Atezolizumab) (FT500-101)
I NCT03841110 MCC and others recruiting

open-label trial, FT500 =
off-the-shelf, iPSC-derived

NK cells

FT500 (allogenic NK cells)—long-term follow-up
of FT500-101 NCT04106167 MCC and others recruiting multicentre, non-interventional,

observation study

Fludarabine + Cyclophosphamide +
tumour-infiltrating lymphocytes (TILs) II NCT03935893 MCC and others recruiting open-label study
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Table 1. Cont.

Study Treatment Phase NCT Number MCC Status Study Status Notes
Additional immunotherapeutic options

Immunotherapy with KRT-232 (inhibitor of MDM2) II NCT03787602 MCC recruiting relapsed after ICI treatment,
open-label trial

Immunotherapy with Ifx-Hu2.0 vaccine I NCT04160065 aMCC recruiting intralesional immunotherapy

aNK infusions in combination with ALT-803 (IL-15
agonist, QUILT-3.009 trial) II NCT02465957 MCC, stage III or IV active, not recruiting

multicentre, non-randomised,
open-label trial determining

effects of aNK in ALT-803
combination

T-VEC (oncolytic virus) ± hypo fractioned
radiotherapy II NCT02819843 MCC recruiting

randomised trial of intralesional
talimogene laherparepvec

(oncolytic virus)

Immunotherapy with TAEK-VAC-HerBy vaccine I/II NCT04246671 MCC and other (HER2
expressing cancers) recruiting

open-label, expansion cohorts
trial of intravenous vaccine

administration

T-VEC (20139157 T-VEC) I NCT03458117 MCC and others recruiting open-label trial

Immunotherapy with the small molecule INCB099318 I NCT04272034 MCC recruiting
2 parts, part 1: dose escalation,
part 2: explore safety, effects,

pharmacokinetics

Immunotherapy with the small molecule INCB099280 I NCT04242199 MCC recruiting
2 parts, part 1: dose escalation,
part 2: explore safety, effects,

pharmacokinetics

Cabozanitinib (XL184, multiple receptor tyrosine
kinase inhibitor) II NCT02036476 mMCC active, not recruiting

Open-label, non-randomised,
patients progressed after
platinum-based therapy

ICI: immune checkpoint inhibitor, MCC: Merkel cell carcinoma, mMCC: metastatic Merkel cell carcinoma, aMCC: advanced Merkel cell carcinoma, BK: human polyomavirus 1, JC: human polyomavirus 2, aNK:
activated natural killer cells.
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In recent years, immune checkpoint inhibitors (ICIs) became one of the most promis-
ing immunotherapeutic type of drugs. These antagonistic antibodies interfere with the
“brakes” of the immune system. Those “brakes” usually regulate lymphocytes and prevent
autoreactive cells from causing autoimmunity. This mechanism is essential in avoiding
autoimmune diseases, but in cancer patients it affects the ability to fight off the cancer by
down-regulating the immune response. As described above, the tumour uses this as one of
multiple evasion strategies.

So far, around 50% of MCC patients benefit from the development of ICIs, and their
use is now approved as standard of care for metastatic MCC (mMCC) [50]. Prior to the
development of ICIs, chemotherapy was the main treatment. However, chemotherapy is
not able to eradicate MCC completely, which is why the recurrence rates are high. Another
issue is the development of chemoresistance and short durable responses with less than
8 months after treatment [51,52]. Furthermore, the complete response rates decrease with
line of treatment. Although the first-line treatment response rates range from 20–60%, they
become worse for second-line (23–45%) treatments [52]. Additional therapy alternatives
such as radiotherapy were recently reviewed in Zwijnenburg et al. [53] and Babadzhanov
et al. [54]. New treatment options and novel agents are needed to induce durable and
effective responses in MCC patients.

The first immune checkpoint was discovered in 1987 by Brunet et al. and was named
CTLA-4 [55]. Several years later, in 1995 Krummel et al. and Leach et al. showed that
CTLA-4 negatively regulates T-cell activation and concluded that inhibitory antibodies
against CTLA-4 can be used to enhance anti-tumour immunity [56,57]. Ipilimumab, an
anti-CTLA-4 antibody, was the first checkpoint inhibitor approved by the Food and Drug
Administration (FDA) in 2011 for the treatment in metastatic melanoma. In the following
years, ICIs were extended to the PD-1/PD-L1 axis, and more antibodies were approved,
for instance Pembrolizumab in 2014 as the first anti-PD-1 antibody.

Since T-cells often display an exhausted phenotype in different cancers including
MCC [47,58], clinical trials were performed to test the efficacy of the ICIs in MCC. The
exhausted phenotype is, among other exhaustion markers, characterized by the presence
of PD-1 on the surface of T-cells, while the tumour cells and immune cells in the tumour
microenvironment (TME) display PD-L1 on their surface, making MCC susceptible for
ICI treatment.

Immune checkpoint receptors can be expressed on all lymphocytes such as T- and
B-cells. The major inhibitory checkpoint-ligand combinations are B7.1 (CD80)/CTLA-4 or
B7.2 (CD86)/CTLA-4, and PD-L1/PD-1. Both checkpoints, CTLA-4 and PD-1 try to confine
the T-cell response within a physiological range and protect the host from autoimmunity.

As the ligands of CTLA-4 are only expressed on professional antigen-presenting cells
(APCs), it acts mainly on T-cell activation in peripheral lymphatic tissue, where it competes
with the co-stimulatory receptor CD28 for the binding to B7. Upon activation of a T-cell,
CTLA-4 expression is up-regulated and therefore thought to be a negative feedback loop
that prevents over-activation of the T-cell. PD-1 in contrast is involved in prevention of
tissue autoimmunity, although some professional APCs such as dendritic cells (DCs) can
also express the corresponding ligand PD-L1. PD-1 appears on chronically stimulated
T-cells and causes the inhibition of the T-cell function via downstream signalling.

In the TME, which will be discussed below, the expression of checkpoint molecules
increases, mediating local immune resistance and evading the immune response. Ligands
binding to the checkpoint receptors are up-regulated on the tumour cells or on APCs in
the TME.

ICIs intent to reverse this blockade of the T-cells by either binding to CTLA-4 (Ip-
ilimumab), PD-1 (Pembrolizumab, Nivolumab) or PD-L1 (Avelumab), unblocking an
anti-tumour response against MCC.
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2.2. Checkpoints Inhibitors in the Treatment of MCC

Pembrolizumab (Keytruda, MK-3475, Lambrolizumab) is an IgG4 anti-PD-1 human-
ised monoclonal antibody. With the first 26 patients from a Phase II multicentre non-
controlled study from 2016 (KEYNOTE-017, NCT02267603, see Table 1), Nghiem et al.
could show that MCC patients without any previous treatment, receiving 2 mg/kg Pem-
brolizumab every three weeks, had an objective response rate of 56%. The progression
free-survival rate at 6 months was 67%. However, 15% of patients showed grade 3 or
4 adverse events (myocarditis and elevated levels of aminotransferase). In general, the trial
showed that Pembrolizumab as a first-line treatment in MCC patients is working and is
only associated with adverse side effects in some patients [59].

When extending the analysis to 50 patients and a median follow-up time of 14.9 months
(KEYNOTE-017, NCT02267603, see Table 1) Nghiem et al. showed tumour control in both
MCPyV+ and MCPyV-negative tumours. The clinical outcome was better, compared to
patients who only received chemotherapy as a first-line treatment [60]. Based on the data
from this trial, the FDA approved Pembrolizumab in 2018 for the treatment of recurrent
locally advanced or metastatic Merkel cell carcinoma [61].

Avelumab, (Bavencio, MSB0010718C), a human IgG1 monoclonal antibody, targets the
ligand PD-L1. In 2017, the FDA approved Avelumab as the first checkpoint inhibitor for
the treatment of mMCC. This approval was based on the results of the following trial.

This phase II, multicentre, and single-arm trial (JAVELIN Merkel 200 trial, part A;
NCT02155647, see Table 1) by Kaufman and colleagues assessed the efficacy of Avelumab in
patients with metastatic refractory MCC who already had undergone different unsuccessful
treatment options such as chemotherapy. Of the 88 enrolled patients, about 40% were six-
month progression free and the six-month durable response rate was around 26% [62]. An
update on these patients was published in 2018 after a 12-month follow-up period. MCC
patients that had been treated with Avelumab a year earlier showed an objective response
rate of 33%, as well as a durable response in general and promising survival outcomes [63].
A follow-up analysis over 36 months after treatment with Avelumab showed no additional
adverse effects and the response was ongoing for over 40.5 months after treatment [64].

In the JAVELIN Merkel 200 trial, part B (NCT02155647, see Table 1), performed by
D’Angelo et al. in 2018, the efficacy and safety of Avelumab as first-line treatment was
evaluated. The pre-planned interim analysis of the phase II trial of 39 patients with mMCC
showed an overall response rate of 62.1% but also grade 3 related adverse events [65].

Confirming the results from these trials, an observational study with patients treated
for advanced MCC was performed in the Netherlands. For the 40 patients receiving the
treatment, the relative response rate was 50%, whereby 28% of patients demonstrated a
complete response (CR). CR was reached in patients receiving Avelumab as a first-line
treatment, showing the importance of using ICIs as a first-line treatment to be effective.
After all, 14% of their patients responded with CRs to second-line treatment [66].

Drusbosky et al. performed a case study in 2020 combining Avelumab treatment with
the interleukin (IL)-15 agonist N-803 in combination with Abraxane® in a patient with
advanced mMCC. This patient did not show durable responses to chemotherapy, surgery,
and Avelumab monotherapy before [67]. IL-15 plays a role in controlling survival and
turnover of memory T-cells. A study in MCC cell lines showed that IL-15 alone enhanced
cytokine production. Together with IL-2 it induced even antigen-independent proliferation
of T-cells [47]. Abraxane®, which is paclitaxel bound to albumin, belongs to the group
taxanes that are often used in chemotherapy. Taxanes induce cellular arrest and lead to
activation of macrophages, therefore initiating an anti-tumour response [68]. The combined
treatment consisting of an ICI, a chemotherapeutic drug, and an interleukin lead to a
complete response in this patient suggesting it as a promising treatment combination
for mMCC [67].

As discussed in Section 1.4, increased PD-L1 expression is associated with better sur-
vival compared to PD-L1 negative patients and PD-L1 expression is mostly associated with
the presence of the MCPyV [48,69]. Therefore, the question arises, if anti-PD-L1 is efficient



Int. J. Mol. Sci. 2021, 22, 8679 11 of 30

as first-line of treatment for these patients. Several studies showed that MCC patients
respond to the anti-PD-L1 antibody Avelumab independently of their PD-L1 or viral status,
suggesting that different underlying mechanism cause the therapeutic benefit [62,65].

Nivolumab (Opdivo, MDX1106) is a humanised IgG4 anti-PD-1 monoclonal antibody.
Until now, it is not approved for treatment of MCC by the FDA, but for other cancers
such as Hodgkin’s lymphoma [70], advanced melanoma [71], or metastasised small cell
lung cancer [72].

A case report from Walocko et al. showed a durable response towards Nivolumab
monotherapy treatment in a patient presenting with mMCC [73]. Nivolumab monotherapy
is currently under investigation in the ADMEC-O phase II trial (NCT02196961, see Table 1).
In the CheckMate358 Trial (NCT02488759, see Table 1) performed by Topalian et al., the
efficacy and safety of Nivolumab in the neo-adjuvant setting was investigated. Admin-
istration occurred 4 weeks before surgery on patients with a stage III resectable MCC.
Thirty-six of the patients who underwent surgery and had the pre-surgical Nivolumab
treatment showed a response rate of 50%. Additionally, they showed that the efficacy of the
anti-PD-1 antibody did not correlate with baseline MCC viral status or PD-L1 expression.
In summary, the administration of Nivolumab in a neo-adjuvant setting together with
surgery was generally safe for the patients and led to a pathological complete response
(pCR) in 47.2% of the patients [74].

The human monoclonal anti-CTLA-4 IgG1 antibody Ipilimumab (Yervoy, MDX-
010) was, as described above, FDA approved in 2011 for the treatment of metastatic
melanoma [75]. Due to the development of PD-1/PD-L1 ICIs, Ipilimumab is not used
as a monotherapy in MCC. In addition, a multicentre study, investigating Ipilimumab
monotherapy in MCC patients, showed disease progression despite treatment and in-
creased toxicity [76].

Compared to monotherapy, the combination of a CTLA-4 and a PD-1/PD-L1 blocking
ICI can improve the therapeutic effect for melanoma or advanced renal cell carcinoma [77,78].
Nevertheless, using two ICIs at once could increase the incidence of treatment-related
adverse events as seen in melanoma patients treated with Ipilimumab and Nivolumab
compared to patients treated only with Ipilimumab or Nivolumab [79].

In a case report from 2019, one patient with stage III MCC, resistant to Avelumab
monotherapy, was treated with a combination of Nivolumab and Ipilimumab (dose: Ipi
3 mg/kg + Nivo 1 mg/kg). Four weeks after receiving the treatment, he showed complete
remission [80]. In the same year, another report was published, showing similar results
in a retrospectively analysed small cohort of 13 patients (dose: Ipi 1 mg/kg + Nivo
3 mg/kg). This suggests that combined therapy of ICIs is a possible second-line treatment
option for patients with refractory anti-PD-1 MCC [81]. A comparable case study with
4 patients was reported from Germany in 2020, showing an overall response rate of 60% to
combination treatment of Nivolumab and Ipilimumab (dose: Ipi 1 mg/kg + Nivo 3 mg/kg)
in melanoma [82]. A case study performed by Glutsch et al. in Avelumab-refractory MCC
patients treated with Nivolumab and Ipilimumab (dose: one half of the patients was treated
with 1 mg/kg Ipi + 3 mg/kg Nivo or 3 mg/kg Ipi + 1 mg/kg Nivo) showed no grade 3 or
4 immune-related events and a good response towards treatment [83]. Taken together, the
combination of different ICIs improved the outcome of patients with a primary resistance
to one ICI, and therefore their disease outcome.

Overall, these different checkpoint inhibitors show that about half of the patients
with MCC show increased survival when being treated with them in a first-line setting
(summarized in Table 2). Nevertheless, some shortcomings with the current ICIs are
discussed in the next section and it is important to investigate other therapeutic approaches
as well.
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Table 2. Results of clinical trials evaluating immune checkpoint inhibitors as a treatment option for MCC.

Drug Reference Phase n Line of
Treatment Dose ORR PFS OS

Avelumab Kaufmann et al., 2016 [62] II 35 second-line
treatment 10 mg/kg 31.8% NR NR

D’Angelo et al., 2018 [65] II 39 first-line
treatment 10 mg/kg 62.1% 3.1–4.6 months NR

D’Angelo et al., 2020 [64] II 88 second-line
treatment 10 mg/kg 33% 24% (24 months) 12.6 months

Pembrolizumab Nghiem et al., 2016 [59] II 26 first-line
treatment 2 mg/kg 56% 67% (6 months) NR

Nghiem et al., 2019 [60] II 50 first-line
treatment 2 mg/kg 56% 48.3%

(24 months)
68.7%

(24 months)

Nivolumab Topalian et al., 2020 [74] I/II 39 neo-adjuvant 240 mg pCR: 47.6% NR NR

n: number of participants, NR: not reported, ORR: overall response rate, PFS: median progression free survival rate, OS: overall survival,
pCR: pathological complete response.

2.3. The Limits of ICI

Even though the response rates of ICIs are quite good in MCC, still 50% of patients
do not respond to the treatment due to possible resistances which can be either primary,
i.e., from the beginning of the treatment or secondary, i.e., when a tumour first responds
but later the treatment stops working and the patients relapse. Reasons for resistance are
manifold and all prevent an effective interaction of T-cells and tumour cells: if a patient
has a priori no MCC-specific T-cells, a release of the inhibitory breaks cannot create a
T-cell activity against the tumour [84]. This lack of T-cells can be caused by absence of
suitable tumour antigens or by an absence of corresponding TCRs in the patient’s repertoire.
However, even if proper antigens are expressed in the tumour, they need to be presented
on MHC molecules, and if the cancer cells’ antigen presentation is incapacitated, e.g., by
down-regulation of MHC [42,85] they will be invisible for the T-cells. In addition, the
tumour microenvironment can prevent the T-cells from entering the tumour or act heavily
immunosuppressive, so entering T-cells are rendered anergic or display an exhausted
phenotype, which cannot be reverted by ICI treatment.

As written above, ICI treatment seems to be the most beneficial if applied in a first-line
setting rather than as second-line treatment after e.g., an unsuccessful chemotherapy. The
combination of two ICIs showed some promising results, but Knepper et al. analysed
genomic data of 317 MCC tumours and found that patients with a resistance to one ICI do
not benefit from just switching to another ICI. Instead, they suggest offering those patients
an alternative immunotherapy by taking part in a clinical trial [24].

Consequently, it is important to overcome possible resistances and find treatment
options that synergize with ICI. The next section will explore such strategies further.

2.4. Extended Therapeutic Options for MCC Patients

Treatment with ICI has been the greatest advance in treatment of MCC so far. Nev-
ertheless, a substantial part of the patients, especially those with metastatic disease, do
not benefit from the treatment. Hence, a variety of alternative treatment strategies was
explored, which may be—or are already—combined with ICI.

2.4.1. Cell Growth Inhibitors

If ICI alone cannot interfere with the growth of the tumour in 50% of the cases, it
could be beneficial to combine ICIs and certain chemicals that inhibit cell growth. A phase
II trial investigates the efficacy and safety of Avelumab treatment together with Domati-
nostat (NCT04393753, see Table 1) for MCC progressing after anti-PD-1/PD-L1 therapy.
Domatinostat is a histone deacetylase inhibitor, which leads to G2/M cell cycle arrest and
initiates apoptosis in MCC cell lines showed by Song et al. Additionally, they observed
an up-regulation of MHC I on the surface, which might result in higher presentation of
neo-antigens on MHC and therefore a better anti-tumour T-cell response. [86].
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2.4.2. Cytokines and Toll-Like-Receptor Agonists

Considering intratumoural T-cells as crucial players in fighting of MCC [40], another
therapeutic option is to increase T-cell numbers and to strengthen their response with the
help of cytokines or toll-like-receptor (TLR) agonists.

Cytokines as interleukins (IL) can be pro-inflammatory and beneficial in a tumour
setting. Bhatia et al. published data from a trial testing an intratumoural application of an
IL-12-encoding plasmid via in vivo electroporation in mMCC patients. Their data showed
a durable response in a subset of patients, without severe adverse effects, and an overall
response rate of 25% in tumour-bearing patients. They further demonstrated that the
intratumoural expression of IL-12 [87] induced the MCPyV-specific T-cell responses, and in
comparison to systematic application of interleukin, local application prevents systemic
toxic effects. Hence the combination with ICI treatment seems very promising.

TLRs are a crucial part of the innate immune system, being present on the surface
of cells recognising for example lipopolysaccharides (LPS), or being inside the cell in
endosomes recognising RNA and DNA, and inducing an interferon (IFN)-based im-
mune response. Stimulation of these TLRs with artificial agonists could enhance the
anti-tumour response.

Bhatia et al. performed another study where they used G100 (Glucopyranosyl lipid A),
a TLR4 agonist, to overcome immune suppressive mechanisms (NCT02035657) [88]. TLR4
is present on several immune cells, such as DCs and macrophages, where it recognises LPS
and induces an inflammatory response, which facilitates T-cell activation. Additionally, it
directs T-cell differentiation into the direction of a Th1 response. Such a Th1 response is
thought to be beneficial for tumour rejection by inducing cellular cytotoxicity and recruiting
innate immune cells such as macrophages. In this trial G100 was tested in combination
with surgery. G100 was able to reverse the immune suppression and re-establish an active
immune response. This suggests that G100 can be used as a co-treatment together with anti-
PD-1/-PD-L1 antibodies [88]. Other clinical trials testing cytokines and toll-like-receptor
agonists are currently running (see Table 1).

2.4.3. Nitric Oxide Blockers to Improve Extravasation

Extravasation is important for T-cells to reach the site of infection or the tumour site,
and crucial mediators of this process are E-selectins. A down-regulation of E-selectin in
the vasculature results in a decreased T-cell recruitment from the blood. Afanasiev et al.
found that E-selectin is down-regulated by nitrogen oxide (NO) in the majority of MCC
cases, correlating with poor T-cell infiltration. Higher E-selectin expression, in contrast,
was associated with better survival [89]. Therefore, the combination of NO blockers and
ICIs could cause more T-cells to enter the tumour, where they in turn are not inhibited by
PD-1-stimulation, thus improving the treatment of MCC.

2.4.4. Therapeutic Vaccines

Therapeutic vaccines are another treatment option. They can support tumour-specific
T-cell development and promote anti-tumour immunity. The target antigen can be either
cancer associated, i.e., germline-encoded but more or less specifically expressed in the
tumour, or it can be cancer-specific, meaning that the antigen is absent from the host
genome and solemnly expressed in the tumour cells. Since the latter are limited to the
tumour tissue and hence not subject to central tolerance, they represent a better target
compared to germline-encoded proteins. In MCC, the truncLT is such a cancer-specific
antigen, which can be processed and presented on MHC molecules to T-cells, and therefore
can induce an MCC-specific immune response. Since truncLT is important for the cancer to
survive [37], the risk of antigen loss is low. Another advantage of truncLT is its similarity
across different patients, allowing it to be used in a general application. However, the
immunogenicity of truncLT is moderate [90,91], which is why the immunogenicity needs
to be increased by using highly active DCs.
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There are different methods how to deliver the antigens into the cells (reviewed in
Tabachnick-Cherny et al., 2020 [92]). One possibility is the use of DCs as a therapeutic
vaccine to induce and activate tumour-specific T-cells. Since DCs are primarily responsible
to initiate adaptive T-cell responses, this may be a promising approach. For this purpose,
usually monocytes from the patient’s blood are isolated and differentiated ex vivo into
mature DCs. These DCs are manipulated to present the tumour antigens on the MHC
molecules to the T-cells. They are subsequently transferred back into the patient, where they
should initiate an anti-tumour response [93,94]. Common methods to load DCs with the
corresponding antigens are pulsing with peptide or protein, or via mRNA-transfection [95].
This method is quite promising as it is highly individualized for each patient but also
associated with high financial effort.

Our group showed in a preclinical evaluation that optimised DCs, activated by NF-κB
and expressing the oncogenic driver of MCC, truncLT, result in a MCPyV-specific T-cell
response [90]. The NF-κB-activated DCs were specially designed to produce IL-12 and
induce memory-like cytotoxic T-cells. When electroporated with truncLT they were able to
induce truncLT-specific T-cells from the blood of healthy donors and MCC patients. mRNA-
electroporation of DCs allows the transient expression of the truncLT, which prevents the
integration into the host DNA, avoiding the theoretical threat of a malignant transformation
of the vaccine cells. Gerer et al. suggest a combination of ICIs and this method to increase
the anti-tumour response [90].

To avoid the laborious process of ex vivo generation of dendritic cells, cell-free RNA
formulations can be injected directly. Such mRNA vaccines showed great effectivity as
preventive vaccines against COVID-19 and also represent a great potential for therapeutic
cancer vaccination (reviewed by McNamara et al. [96] and Pardi et al. [97]). The first trial
of that kind was reported by Weide et al. investigating the response to an mRNA vaccine,
encoding for different melanoma specific antigens injected in 21 metastatic melanoma
patients (NCT01684241). They showed a decrease in regulatory T-cells and an increase in
vaccine-directed T-cells [98]. A more recent phase I clinical trial (NCT02410733) tested a
liposomal RNA vaccine with tumour-associated antigens for advanced melanoma patients
and an interim analysis revealed that the vaccine mediated durable objective responses
in ICI-experienced patients [99]. So far, mRNA vaccines have not been tested in MCC
patients, but due to observations with other kinds of cancer, they present another possible
immunotherapeutic treatment option.

2.4.5. Adoptive T-Cell Transfer

Another approach to increase the number of tumour-specific T-cells is adoptive T-cell
transfer. One source for such cells are peripheral blood mononuclear cells (PBMCs) from
the patient or healthy donors, which are activated ex vivo with a specific antigen, thus
generating T-cells with high-affinity antigen receptors to overcome immune tolerance.
Chapius et al. used MCPyV-specific T-cells generated ex vivo from the patient’s PBMCs
together intralesionally applied with IFNβ to treat an MCC patient. They observed lasting
accumulation of the transferred CD8+ T-cells in the lesions and a regression of 2 out of
3 metastases [100].

Davies et al. used monocyte-derived DCs from healthy donors to generate MCPyV-
specific T-cells with the help of overlapping 15-mer peptide libraries of the MCPyV LTA
and STA. This strategy generated mainly TA-specific CD4+ T-cells and suggest that this
treatment option, together with other immunotherapies, could improve the outcome of
MCC patients [101].

All the above-presented therapeutic options for ICI-resistant MCC patients offer
new possible treatment strategies. Currently several clinical trials are ongoing to expand
our knowledge further (summarized in Table 1). In addition, these therapeutic options
underline the importance of T-cells in the fight against MCC, and therefore this review will
have a closer look at T-cells in the next section.
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3. The Importance of T-Cell Immunity in MCC

MCC tumours are highly immunogenic and the cellular immune response plays a
crucial role in defeating the cancer. In addition to a lot of other functions, T-cells can recog-
nise and eliminate the tumour cells. There are two basic lines of evidence that show how
important a functioning T-cell response in MCC is: (1) CD8+ T-cell infiltration is associated
with a better outcome [40], and (2) immune suppression is a strong risk factor [22].

3.1. The Role of Different T-Cell Subtypes in MCC

With their ability to kill tumour cells, CD8+ T-cells play the most important role
and are in focus for the development of therapeutic approaches. The number of cyto-
toxic CD8+ T-cells in MCC and other cancer types was analysed in a study performed
by Blessin and colleagues with the help of tissue microarrays. From data of 42 MCC
samples they calculated a mean number of 156 CD8+ T-cells/mm2 compared to Hodgkin’s
lymphoma where they found 1573 CD8+ T-cells/mm2, or only 6 CD8+ T-cells/mm2 in
pleomorphic adenoma [102]. This indicates that MCC shows an intermediate level of CD8+

T-cell infiltration.
Paulson et al. reported that the major infiltrating subtypes found in MCC tumours

are T-cells which highly express CD8β and CD3ε on their surface [40]. Both molecules are
part of the CD3-T-cell-receptor (TCR) complex and play a crucial role in the recognition of
antigens and activation of the T-cell. Part of the CD3-TCR complex is the TCR heterodimer
consisting of an α and a β chain, which are connected by disulphide bonds. The TCR is
responsible for antigen recognition, i.e., it recognises antigen peptides presented in MHC
molecules. The CD8β chain interacts with the α3 domain of the MHC I molecule and is
therefore important for the stabilisation of the antigen recognition. The CD3 complex con-
sists of a CD3εδ and a CD3εγ heterodimer as well as a CD3ζζ homodimer. These subunits,
harbouring intracellular immune receptor tyrosine-based activation motifs (ITAMs) allow
signalling and lead to activation of the T-cell upon antigen recognition. The TCR and the
multi-subunit CD3 complex are non-covalently associated (reviewed in Wucherpfennig
et al., 2010 [103]). Therefore, an overexpression of both molecules, CD8β and CD3ε, could
permit better antigen recognition and a faster activation of the T-cell. The favourable CD8+

T-cell infiltration into the tumour was only shown in 20% of MCC patients investigated by
Paulson et al. [40], which suggests that immunosuppressive mechanisms prevent infiltra-
tion. However, even if the T-cells can infiltrate the tumour, they often display an exhausted
phenotype or are dysfunctional.

The number of CD8+ T-cells specific for MCPyV in the blood of patients correlates
with disease burden [46]. In MCPyV+ MCC, LTA and STA are the dominant trigger to
activate the adaptive immune system, while in MCPyV-negative tumours the cause is the
high TMB. Nevertheless, the CD8+ T-cells often display a reversible exhausted phenotype
by expressing PD-1, T-cell immunoglobulin and mucin domain-containing 3 (TIM-3) and
CTLA-4 on their surface due to chronic antigen exposure [46]. In that state the T-cells
are not able to produce cytokines, proliferate or lyse other cells. Exhausted T-cells can be
reactivated by ICIs that bind to those inhibitory receptors as mentioned earlier.

Not only CD8+ T-cells play a role in the fight against MCC. CD4+ T-cells have been
shown to play a crucial role as well. The majority of CD4+ T-cells act as T helper cells
and support the activation of CD8+ T-cells but also activate B-cells so they differentiate
into antibody-producing plasma cells or memory B-cells. In healthy individuals, there is
a high prevalence of antibodies specific for the MCPyV, which suggests a major role of
virus-specific T helper cells [104]. In melanoma it was already shown that enhanced CD4+

T-cell responses contributed to increased anti-tumour CD8+ T-cell responses [105]. This
leads to the conclusion that CD4+ targeted therapies are a possible co-treatment option in
MCC to enhance CD8+ T-cell responses.

Another way to classify T-cells, apart from CD4 or CD8 expression confers to their
development phase. Spassova et al. showed that the prevalence of central memory T-cells
(Tcm) among tumour-infiltrating lymphocytes (TILs) was higher in MCC patients respond-
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ing to ICI treatment compared to non-responders [84]. These Tcm also displayed a highly
diverse TCR repertoire among the TILs. TILs of non-responders, in contrast, predomi-
nantly showed the phenotype of terminally differentiated effectors and a constrained TCR
repertoire [84]. It is thought that a higher and more diverse TCR repertoire can recognise
more antigens compared to a low TCR repertoire. If there are more T-cells recognising
different antigens, ICIs can reactivate more T-cells and the treatment can be more effective.
Additionally, the low TCR repertoire was associated with terminal differentiation and an
irreversible T-cell dysfunction, so these T-cells cannot be reactivated by checkpoint inhibitor
therapy which could explain why some patients do not respond to the treatment [84]. The
loss of TCR diversity is also seen among elderly people who have an increased risk of
developing MCC [23]. This highlights the importance of a broad range of TCRs for a
functional immune system and an effective anti-tumour response.

Tumours of MCC patients can continue to grow even if different effector T-cells are
found in their proximity. This suggests the presence of other regulators in the tumour
microenvironment (TME), leading to suppression of the immune response. An additional
T-cell subtype found in the environment of the tumour are regulatory T-cells (Tregs) [106],
which suppress the immune response by secreting anti-inflammatory cytokines such as
IL-10 or TGFβ, and are characterized by constitutive expression of the transcription factor
FoxP3 [47]. Two inhibitory receptors on the Treg, the lymphocyte activation gene 3 (LAG3)
and the T-cell immunoreceptor with Ig and ITIM domain (TIGIT) can interact with DCs
and suppress their function. TIGIT can interact with poliovirus receptor (PVR, CD155)
on DCs to induce IL-10 secretion for suppressing the Th1 T-cell response, inhibiting the
NF-κB pathway and preventing the effective cytotoxic immune response, which is required
to reject the tumour [107]. Chauvin et al. showed that IL-15 immunotherapy combined
with a blockade of TIGIT leads to an increase in intratumoural NK cells in vivo and in vitro
for MHC class I deficient melanoma [108]. Eventually a combinatorial immunotherapy of
both drugs could also be tested for MCC tumours to see if this mediated an increase in
tumour-specific NK cells as well. LAG3 binds to MHC II on DCs, therefore inhibiting the
interaction of a DC with a CD4+ T-cell, and preventing their activation and maturation [109].
In addition to Treg, a variety of other cell types and immunosuppressive mechanisms can be
active in the TME that give infiltrating T-cells a hard time, as discussed in the next section.

3.2. The Tumour Microenvironment in MCC

The TME consists of different cell types such as fibroblasts, dendritic cells, lymphocytes
as well as the extracellular matrix, and blood vessels [110], and is mostly immunosuppres-
sive. Different studies show that T-cells can be found in the TME, but their activation is
suppressed by different mechanisms: (1) down-regulation of MHC complexes on APCs [42],
(2) expression of inhibitory checkpoints [48], (3) T-cell exhaustion [47], (4) immunosuppres-
sive cytokines such as IL-10 [111], and (5) regulatory T-cells [47].

Next to T-cells, another cell type found in the TME are CD68+ CD163+ tumour-
associated macrophages (TAMs) [106,112]. These macrophages display an immunosup-
pressive M2 phenotype (reviewed by Sica et al., 2008 [113]). Just as with Tregs, they secrete
high levels of IL-10 and show a characteristic high PD-L1 expression on their surface [47,48].
Additionally, high levels of CD200 are found in the TME of MCC. CD200 inhibits classi-
cal macrophage activation and forces the precursors to differentiate into an M2 state. In
addition, CD200 is also associated with a high level of Treg distribution in the immunosup-
pressive environment. It was shown that an anti-CD200 antibody can effectively target
CD200 in MCC in vivo, suggesting a possible treatment option for non-responders. How-
ever, until now no correlation could be found between the presence of CD68+ CD163+

TAMs and the overall survival [114].
Another cell type is a heterogeneous group of myeloid-derived suppressor cells

(MDSC) in the TME [69]. These cells are mostly positive for CD33 and have a high PD-L1
expression, and consist of granulocytes, macrophages, and dendritic cells. They inhibit
effector cell functions and promote tumour growth. Mitteldorf et al. described that tumour-
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cell conglomerates are surrounded by a barrier of PD-L1-expressing immune cells, which
act as a “gatekeeper” preventing the T-cells from entering the tumour [69].

Both MDSC and TAMs are cell types that closely interact with one another and have
anti-inflammatory and pro-tumoural characteristics. MDSCs drive the differentiation of
macrophages into the immunosuppressive M2 type, which leads to a decreased production
of pro-inflammatory IL-12 and a Th2 response. Macrophages are per se able to present
antigens on MHC molecules, but in the tumour environment, MDSCs lead to a down-
regulation of MHC II on the TAMs via IL-10 [115]. In response to the IL-10, secreted by
the MDSCs, low amounts of IL-12 and high amounts of IL-10 are produced by the TAMs.
The IL-6 produced by the TAMs leads to an up-regulation of IL-10 in MDSCs, which then
influence the TAMs. These indirect effects of the crosstalk between both cell types influence
the tumour microenvironment. Direct effects of the crosstalk between MDSCs and TAMs
include T-cell proliferation arrest, inhibition of T-cell signalling via NO, induction of Tregs,
promotion of angiogenesis or down-regulation of CD3ε, which leads to less cytokine
production (reviewed by Ugel et al., 2015 [45]). The MDSC-TAM crosstalk is a regulator of
the homeostatic balance in the tumour environment.

Kervavrec et al. reported an improved survival in patients showing intratumoural
CD8+ T-cells and CD33+ myeloid cells. Due to that finding, they suggest that these CD33+

cells cannot be MDSCs, otherwise the survival would be decreased. They also found them
in non-necrotic areas with expression of MHC molecules and without immunosuppressive
function [112].

A subset of MCC patients presents a low expression of cutaneous lymphocyte-
associated antigen (CLA) on T-cells in the TME [47]. CLA is a specific homing receptor
for the skin. Inside the skin-draining lymph nodes, the T-cells encounter tumour antigens
presented by APCs. After activation of the T-cells, CLA is up-regulated and the cell is
directed towards the skin, where the antigen originated from. In MCC, CLA seems to
be down-regulated, suggesting that T-cell homing to the skin is impaired and therefore
not enough T-cells reach the tumour. However, this study could not detect a correlation
between CLA+ T-cells and a better survival in MCC patients [47].

In addition, those T-cells expressed low levels of CD69 and CD25 [47]. As markers
of early (CD69) and later (CD25) T-cell activation, low expression of both markers further
confirms that in the TME of MCC, T-cells have a less activated phenotype.

In addition to the mentioned cell types there are also natural killer (NK) cells in the
TME [106]. NK cells recognise cells with down-regulated MHC complexes, because this
negative signal triggers NK-cell activation and the release of its granule contents. It is
suggested that NK inhibitory receptors such as killer-cell immunoglobulin-like receptors
and NKG2A are up-regulated in the TME and prevent immune stimulatory secretion of
IFNγ or TNFα, which are important for T-cell activation [116]. A study on a series of
cases with 23 MCPyV+ MCC patients showed an improved survival of patients with a
moderate or high number of tumours infiltrating NK cells, suggesting NK-cell infiltration
as a prognostic marker [117].

A further relevant development in the tumour is the formation of tertiary lymphoid
structures (TLS), which presence in the TME of MCPyV+ MCC correlated with recurrence
free survival and better prognosis [118]. TLS are structures that contain T-cell zone- and B-
cell-rich follicle-like areas [119]. Studies have demonstrated that the presence of B-cells and
TLS play a role for the response to checkpoint blockade for example in melanoma [120,121]
or HPV-associated squamous cell carcinoma [122]. Additionally, HIV infection is known to
interfere negatively with germinal centre B-cells and T follicular helper cells (Tfh) via PD-
1/PD-L1 interference [123]. Tfh interact closely with B-cells in germinal centres to induce
antibody production. Alonso et al. showed in a lung cancer mouse model that anti-PD-1
therapy increases the number of circulating Tfh and therefore additionally increases the
number of TLS, leading to impaired tumour growth and support Tfh-associated antibody
production [124]. In contrast to the above-mentioned cases, Miller et al. showed that
under PD-1 blockade, B-cell antibody production is not increased by checkpoint inhibitor
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treatment. Increased oncoprotein antibody production was rather observed in patients
not responding to ICI treatment at all [125]. Therefore, the role of B-cells in MCC and the
response to ICI treatment is an ongoing discussion. Nevertheless, it would be worthwhile
to investigate the role of TLS in MCC in the context of ICI treatment.

Altogether, the TME (summarized in Figure 1) plays a crucial role in controlling the
immune response against the tumour, and a further increased understanding will help to
design new combinational treatment options.

3.3. The Influence of the MHC Complex in MCC

As discussed earlier, one major problem with MCC and many other cancers is im-
mune evasion. It is thought that in the majority of MCC patients, who do not respond
to ICI treatment, the tumour cells have downregulated the MHC molecules on their
surface [42,85,126]. If antigens cannot be presented to the T cells, a release of the brake
inhibiting the T cells is not resulting in a stronger immune response. For the specific anti-
tumour response MHC molecules are essential, as they present the tumour-neo-antigens to
T cells. The peptides presented on MHC I to CD8+ T cells generally have a specific length
of 8-10 amino acids, while the MHC II complexes display antigens of various length with
more than 13 amino acids to CD4+ T cells. This allows both types of T cells to get activated
by a broad variety of tumour antigens. It is therefore important to re-induce the MHC
molecules if they are absent.

Since it is known that MHC molecules are often downregulated in MCC, Ritter et al.
showed that epigenetic priming can restore MHC I molecules on the surface of APCs
in MCC patients by inhibiting histone deacetylases (HDAC). They propose epigenetic
silencing of the antigen processing machinery (APM) via histone hypoacetylation as the
reason for downregulation [85]. HDAC-inhibitors have already been tested in MCC cell
lines and showed a strong induction of MHC I expression [86]. Khan et al. showed that
HDAC-inhibitor treatment activated proteasomal components like TAP and LPMP2, which
led to an increase in proteasomal mRNA and a higher expression of MHC complexes on
the cell surface [127].

In a case series performed by Ugurel et al. with four patients suffering from mMCC
after PD-1/PD-L1 immunotherapy, two of them were treated with Nivolumab in combina-
tion with Panobinostat. Panobinostat is a HDAC inhibitor and already approved for the
treatment of multiple myeloma in Germany. In one patient they detected a restoration of
the expression of APM-associated genes and enhanced infiltration of CD8+ T-cells, 8 weeks
after treatment. Unfortunately, the patients did not show a clinical benefit from the treat-
ment. They suggest that this is due to the late onset of combination therapy. However,
the treatment was well tolerated but needs further investigation in clinical trials [126]. In
conclusion, HDACs seem to be a pharmaceutic target to increase the MHC expression, as
well as inhibiting the tumour-cell growth as mentioned earlier.

3.4. The Role of Cytokines in T-Cell Responses in MCC

Cytokines are important modulators of the immune response and determine the
development of T-cells. As stimulatory or modulatory molecules they regulate the differ-
entiation in T-cell development and therefore the T-cell subtype. One important group of
cytokines are interferons (IFNs), which play a major role in initiating mostly anti-viral but
also anti-tumour responses. IFNs can be subdivided into three main classes: type I IFN (α,
β, ε, κ, ν,ω, τ, δ, ζ), type II IFN (γ) and type III IFN (λ). While type I and III IFN are mostly
associated with anti-viral responses, type II IFN is associated with activation of T-cells and
NK cells.
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Figure 1. The tumour microenvironment and targets of checkpoint inhibitor therapy in MCC patients. Tumour-cell death
causes the release of tumour antigens, which are taken up by antigen-presenting cells (APCs) such as dendritic cells (DCs),
to be processed and presented on major histocompatibility complexes II (MHC II) to CD4+ or on MHC I to CD8+ T-cells.
A crucial co-stimulatory signal is given by the interaction between CD28 on the T-cell and the B7 family proteins on the
DCs. Upon activation, CD4+ T-cells secrete IL-2 and TNFα, which stimulates CD8+ T-cell activation and proliferation.
DCs secrete IL-12, which is important for the Th1 response. After activation, CD8+ T-cells secrete pro-inflammatory
cytokines such as IL-2 and IFNγ, and may be able to directly kill tumour cells. However, because of the immunosuppressive
TME, inhibitory checkpoint receptors such as PD-1 on the T-cell and its ligand PD-L1 on APCs are up-regulated. Other
checkpoints such as CTLA-4, which competes with CD28 for binding B7 are further up-regulated. Regulatory T-cells
(Tregs) inhibit DCs via TIGIT and LAG3 binding to MHC II, preventing DCs to activate T-cells. They also secret IL-10,
an anti-inflammatory cytokine, which further down-regulates the immune response. Due to chronic antigen exposure,
T-cells often display a reversible exhausted phenotype with high expression of inhibitory checkpoint molecules and can
therefore be targeted with checkpoint inhibitors (ICIs). There are anti-PD-L1 antibodies (A) such as Avelumab or anti-PD-1
(B) antibodies such as Pembrolizumab and Nivolumab, preventing the interaction of this inhibitory checkpoint receptor
with its ligand. Anti-CTLA-4 (C) antibodies such as Ipilimumab are only used in combination with other ICIs in MCC. In
currently ongoing clinical trials, other checkpoint inhibitors such as INCAGN02390 (D) to target TIM-3, Druvalumab (A),
or Retifanlimab (B) are investigated. Additional cell types found in the TME are natural killer (NK) cells, which express
additional inhibitory receptors on their surface (NKG2A) whereby their secretion of pro-inflammatory cytokines such as
IFNγ is suppressed. Tumour-associated macrophages (TAMs) are immunosuppressive M2 macrophages which express
high levels of PD-L1 and CD200 (OX-2), and prevent the development of inflammatory macrophages. In conclusion, the
TME is an immunosuppressive environment that favours tumour growth and evasion rather than killing of the tumour by
the immune system. Created with Inkscape.

In MCC cell lines it was shown that type I IFN treatment (with IFNα and IFNβ)
impaired proliferation, metabolism, and viability of the tumour cells. Nevertheless, they
also inhibited the expression of LTA and induced pro-myelocytic leukaemia (PML) protein
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in some of the tested MCC cell lines [128]. PML is one of the IFN-stimulated genes (ISG)
that are activated downstream of the IFN signalling path-way and is associated with
apoptotic pathways. For the JK virus, another human pol-yomavirus, it was shown in
human glial cells that PML traps free LTA in nuclear bod-ies and therefore down-regulates
it, leading to a reduced infection. Gasparovic et al. assume that IFNβ increases the quantity
of PML [129]. If the LTA is trapped inside these PML bodies, it slows down the proliferation
of the virus [130].

In addition, class I and II IFNs do not only induce apoptosis of MCC cells but also
cause an up-regulation of MHC molecules on the surface of the tumour cells [42]. Another
study in MCC cell lines showed that IFNα can inhibit proliferation and induce apoptosis
in those tumour cells. Apoptosis was detected by caspase-3 and apoptotic DNA strand
breaks [131].

While IFNα and IFNβ show anti-tumour effects, IFNγ is a double-edged sword in
cancer. On the one hand, this cytokine is produced by activated T and NK cells leading to
MHC up-regulation and helps with the recruitment of new T-cells into the tumour site [132].
On the other hand, it can act immune suppressively, activating the PD-1 axis and leading to
an up-regulation of PD-L1 and PD-L2 on cells in the TME, as well as inducing indoleamine-
2,3-dioxygenase (IDO) [133]. IDO leads to the depletion of tryptophan, suppressing effector
T-cells and activating Tregs through the kynurenine pathway. Ayers et al. show that IDO,
LAG3, and TIGIT are up-regulated in melanoma through IFNγ and suggest that these
tumours have an increased response towards anti-PD-1 therapy [134]. MCC patients with
a low mean IDO expression in the tumour cells and low tryptophan-2,3-dioxygenase
2 (TDO2) in the TME showed better survival compared to patients with high IDO and
TDO2 [135].

Furthermore, cancer cells often harbour increased amounts of damaged DNA, which
activates the protein stimulator of interferon genes (STING). In MCC cell lines, STING
expression is repressed, and Liu et al. showed the relevance of STING-activity in the fol-
lowing model system: They transfected MCC cell lines with mutant STINGS162A/G200/Q2661

which is highly responsive to the synthetic agonist DMXAA. Treatment with DMXAA
resulted in a stop of tumour proliferation and reactivated their anti-tumour inflammatory
cytokine/chemokine production. This treatment increases the T-cell migration towards
the tumour cells and their killing [136]. However, in murine models, a systemic activa-
tion of STING resulted in anti-proliferative effects and cell death of T-cells [137]. This
method should therefore be considered locally and could be used in combination with
intratumoural injections.

3.5. MCC T-Cell Epitopes

As described above, most MCC patients bear tumours that have the MCPyV integrated
and express the T antigens (i.e., the small TA and a truncated form of the large TA). Hence,
from an immunological point of view, MCC is a very special tumour, since it expresses a
viral antigen as oncogenic driver. The immune response directed against the T antigens
could be especially effective since these antigens are foreign to the individual and no central
immune tolerance needs to be overcome. Due to the polymorphism of the MHC genes,
the truncLT-epitopes presented on the HLA-A, HLA-B, or HLA-C can vary across patients.
Different splicing of the T antigens can also contribute to this variance. Identification of
these T-cell epitopes and the associated HLA molecules is crucial for the development of
therapeutic vaccines. A vaccine covering different MCPyV-specific T-cell epitopes and HLA
types should be used, since monotherapy with adoptive T-cell transfer of CD8+ T-cells
restricted to one HLA molecule showed tumour evasion by down-regulation of that HLA
molecule due to selection pressure [138]. So far, a higher number of specific epitopes could
be identified for CD8+ [91,104,139,140] than for CD4+ T-cells [141,142], but since detection
of the latter is technically more challenging and lower number of antigen-specific CD4+

T-cells are present in the peripheral blood this may not fully represent reality [141].



Int. J. Mol. Sci. 2021, 22, 8679 21 of 30

Analysis of different MCC samples showed that the T-cell responses were directed
against both the LTA and the STA [90]. These T-cells were not found in healthy individuals
but were inducible in half of the patients. However, responses against the capsid protein
VP1 were existent in both healthy individuals and patients [91]. Iyer et al. identified the
LT92-101 CD8+ T-cell epitope restricted to the HLA-A*24:02 molecule [104]. Lyngaa et al.
showed that the presence of HLA-A2* LTA15-24 and HLA-A2* STA171-182 among specific
CD8+ T-cells indicates that LTA and STA peptides are processed and presented by the MHC
machinery [91].

Samimi et al. suggests that the region between the amino acids 74 and 103 of the
LTA is highly immunogenic and they additionally identified two new epitopes recognised
by MCPyV-specific T-cells. These epitopes are LT95-103 presented in HLA-A*1101, and
LT77-85 presented in HLA-B*1801. For MCPyV+ tumours they propose a vaccine with a
synthetic long peptide of 29 amino acids covering the immunogenic region [140]. Jing et al.
confirmed the identified epitopes by Samimi et al. in another study and found a slightly
extended LT region between amino acids 70–110 to be especially immunogenic [139].

Longino et al. identified a CD4+ T-cell epitope (LT209-228), which is located within the
conserved Rb-binding domain, and could be presented in the context of three different
HLA II alleles. In 78% of the MCC patients, they detected specific CD4+ T-cells, which
were highly enriched in the tumours. The induction or promotion of T-cells specific for
this epitope may be a therapeutic option. A modification of the S220 amino acid would
still allow recognition by CD4+ T-cells of the epitope, but would hamper the LTA from
binding to the Rb protein. This detoxification would make it possible to use this epitope in
a therapeutic vaccine setting circumventing a potential tumourgenic effect [141].

3.6. T-Cells as Potential Predictive Biomarkers for Response to ICI Treatment in MCC

Clinical efficacy of ICIs relies on the reactivation capacity of T-cells. So far, no marker
has been found that is able to sufficiently predict the success of the treatment and that allows
a differentiation between responders and non-responders before treatment. However, RNA
sequencing identified certain gene sets that are up-regulated in non-responders and that
could help with the identification.

The expression of PD-1 on the surface of T-cells seems to influence the reactivation
efficacy of ICI treatment. Simon et al. showed that co-expression of both PD-1 and TIGIT on
CD8+ T-cells was associated with better response to ICI treatment. Those double positive
CD8+ T-cells in the blood of MCC patients seem to define a subpopulation, which should
be monitored to assess clinical efficacy of anti-PD-1 antibodies. Additionally, they found
an enrichment of HLA-DR+ CD38+ CXCR5+ cells within this DP cell population, whereby
CXCR5 represents a marker for CD8+ cytotoxic follicular T-cells [143].

A study by Nakamura et al. showed that MCC can be classified into two subtypes via
their transcriptome. One type displays an immune-active phenotype with a TCR-related
signature, while the other shows a profile related to cell division. The former shows
higher PD-L1 expression and better survival, while the latter is highly correlated with the
expression of glucose-6-phosphate-dehydrogenase (G6PD). The authors show its value as
prognostic marker, since it correlates with tumour activity. Since the expression of G6PD
negatively correlated with PD-L1 expression, the authors suggest that a low level of G6PD
may act as predictive marker for ICI treatment [144]. G6PD is part of the pentose phosphate
pathway (PPP) producing nucleotides and protecting against oxidative cell damage. In
other cancer types it could be shown that it works as a prognostic marker [145,146]. High
G6PD expression is associated with low activity of the immune system. In contrast, a low
G6PD expression is associated with higher activity of the immune system due increased
cell death.

Kacew et al. found that single nucleotide variants (SSNV) in AT-rich interactive
domain-containing protein 2 (ARID2) and neurotrophic receptor tyrosine kinase 1 (NTRK1)
genes may correlate with ICI response. ARID2 is involved in chromatin remodelling, and
its loss is associated with increased sensitivity to IFNγ and T-cell-mediated killing. NTRK1
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codes for tropomyosin receptor kinase (TrkA) of which the influence on T-cell activity is
unclear. The data suggest that the inhibition of ARID2 in ARID2-non-mutated tumours
could enhance their ICI response, but this still needs to be evaluated [147].

Weppler et al. identified clinical and imaging factors that could be helpful for prognos-
tic purposes. The factors they associated with increased immune responses to ICI treatment
were lack of earlier chemotherapy before ICI treatment, a younger age of the patients at
diagnosis, lower baseline [18F]-fluoro-2-deoxyglucose PET/CT (FDG-PET/CT) metabolic
tumour volume, as well as development of tumour-associated immune-related adverse
events (irAEs). They suggest that MCPyV-negative MCC tumours with a higher TMB may
be more responsive, although they could not detect a correlation between the response to
ICI treatment and the TMB [148].

One last promising computational method to predict cancer immunotherapy response
is termed TIDE (Tumour Immune Dysfunction and Exclusion), developed by Jiang et al.,
which combines the models of the primary tumour immune evasion: T-cell dysfunction in
tumours with high TIL rate, and T-cell exclusion in tumours with low TIL rate. Additionally,
it predicted new ICI resistance genes such as SERPINB9, whose inhibition might increase
the efficiency of the ICI treatment. So far, it is only tested in melanoma but could be used
for MCC as well [149].

The above-presented data shows that the knowledge about the role of T-cells in MCC
has grown over recent years and a lot of promising markers for the prediction of successful
ICI treatment have been found. Nevertheless, further research needs to be done to find
reliable markers and durable treatment.

4. Conclusions

The purpose of this review was to give an insight into the current state of research
for MCC treatment. In recent years, the understanding of MCC pathogenesis, underlying
mechanisms, and the immunological background has grown. Although the development
of ICIs has improved the outcome of many naïve or pretreated MCC patients, almost
50% do not benefit from this development due to resistances. However, there is a broad
diversity of promising immunotherapies currently evaluated in clinical trials, for example
the combination of therapeutic DC vaccination or immunostimulants with ICIs, which can
improve the outcome in patients resistant to anti-PD-1/-PD-L1 monotherapy. Furthermore,
T-cells play a major role in defeating MCC, but often display a reversibly exhausted
phenotype in the TME. Especially cytotoxic CD8+ T-cells are crucial for the anti-tumour
response suggesting their reactivation is very important. Nevertheless, to become activated,
they need APCs, which often display down-regulated MHC expression in MCC. Therefore,
therapeutic approaches such as the up-regulation of MHC complexes, or the use of pro-
inflammatory cytokines such as IL-12 could increase the anti-tumour response together
with ICI treatment. The important therapeutic goal is to induce inflammation within MCC
nodules and fight off the cancer with the help of the immune system, without inducing a
systemic shock.

Collectively the reviewed papers show a broad range of research to find a durable
treatment option for mMCC patients who do not respond to ICI treatment. Further
studies should investigate treatment options for immune-compromised patients as well,
as they have an increased risk of developing MCC and represent approximately 10% of
the patients. Additionally, it remains important to find reliable markers that are associated
with a response towards ICI treatment. In addition, it would be interesting to see if
other immune mechanisms, such as alternative inhibitory receptors, or other immune
metabolism pathways in immune cells play a role in the TME, and if they do, how they
can be beneficially altered. In conclusion, the diversity of therapeutic alternatives seems to
have improved the survival of MCC patients, but further clinical trials are needed to assess
the efficacy and durability. Because MCC is a rare cancer, cohorts investigated in clinical
trials are often small, therefore patients should be encouraged to participate in clinical trials
to facilitate significant results.
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Abbreviations
APC antigen-presenting cell
APM antigen processing machinery
ARID2 AT-rich interaction domain 2
BK1 humane polyomavirus 1
CD cluster of differentiation
CLA cutaneous lymphocyte-associated antigen
CR complete response
CTLA-4 cytotoxic T lymphocyte associated protein 4
DC dendritic cell
ER early region
FDA Food and Drug Administration
G6PD glucose-6-phosphate dehydrogenase
G100 glucopyranosyl lipid
HDAC histone deacytelases
HLA human leucocyte antigen
ICI immune checkpoint inhibitor
IDO Indolamine-2,3-dioxygenase
IFN Interferon
IL Interleukine
Ipi Ipilimumab
irAEs Immune-related adverse events
JC John Cunningham virus
LAG3 lymphocyte activation gene 3
LPS Lipopolysaccharide
LR late region
LTA large T-cell antigen
MCC Merkel cell carcinoma
MCPyV Merkel cell polyomavirus
MDSC myeloid-derived suppressor cells
MHC major histocompatibility complex
mMCC metastatic Merkel cell carcinoma
Nivo Nivolumab
NO nitrogen oxide
NTRK1 neurotrophic receptor tyrosine kinase 1
PBMC peripheral mononuclear blood cells
pCR pathological complete response
PD-1 programmed cell death protein 1
PD-L1 programmed cell death ligand 1
PML pro-myelocytic leukaemia
RB1 retinoblastoma protein 1
SSNV somatic single nucleotide variants
STA small T-cell antigen
STING stimulator of interferon genes
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TAM tumour-associated macrophages
Tcm central memory T-cell
TCR T-cell receptor
Tfh T follicular helper cell
TDO tryptophan-2,3-dioxygenase
TIGIT T-cell immunoreceptor with Ig and ITIM domains
TIL tumour-infiltrating lymphocyte
TIM-3 T-cell immunoglobulin and mucin domain-containing protein 3
TLR Toll-like-receptor
TLS Tertiary lymphoid structures
TMB Tumour mutational burden
TME Tumour microenvironment
TP53 tumour protein p53
Treg regulatory T-cell
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