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The brain is recognized as the most complex organ on earth.
The complex neuronal network in the human brain consists
of approximately 86 billion neurons and more than one hun-

dred trillion connections [1]. Even the mouse brain, which is
commonly used as a model in neuroscience studies, contains
more than 71 million neurons. Despite the great efforts made

by the neuroscientists, our knowledge about the brain is still
limited and studies on small model animals have only provided
preliminary results [2–4]. To improve the situation, brainsmat-
ics studies try to accelerate neuroscience research by providing

a standard whole-brain spatial coordinate system and stan-
dardized labeling tools, imaging the brain, as well as discover-
ing new neuronal cell types, neuronal circuits, and brain

vascular structures.
Neuroscience studies at mesoscopic scale

Spatial brain structure can cross several magnitudes, from

synapse, single neuron, and neural circuit to brain nucleus,
brain region, and organ [5], as shown in Figure 1. Structures
at the macroscopic scale include brain regions and white-mat-

ter fibers, which are usually larger than 100 lm and can be seen
by the naked eye without magnifying optical instruments.
Structures that can be viewed only with the help of a micro-
scope, especially an electron microscope, exist at the micro-

scopic scale. In neuroanatomy, structures at microscopic
scales are usually made visible with the help of an electron
microscope. For example, individual synapses and their vesi-

cles are micro-structures with approximately 100-nm spatial
resolution. In addition, there is a mesoscopic scale between
the macroscopic and microscopic scales [9]; these mesoscopic

structures are typically observable with an optical microscope
[10].

Structures at the mesoscopic scale include soma, neurite,

and neural circuits, whose diameters are between 100 nm and
100 lm. Neurons and neural circuits at the mesoscopic scale
also have macroscopic spatial distribution characteristics [8].
Studies on neurons and neural circuits need to be performed

with single-neuron three-dimensional spatial resolution across
nces and
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Figure 1 The various scales in neuroscience research

The diameter of a typical capillary blood vessel is about 4 lm and the diameter for arteriole and artery is about 18 lm and 150 lm,

respectively. The scale of structures in a single neuron is also at this range: the diameter of a neuron soma is around 5–30 lm; the diameter

of dendrite fiber is around 0.2–2 lm; the axon fibers have a similar size (0.2–1 lm); however, synapses have much smaller diameter, 20–

40 nm. Structures in the cytoarchitecture study, such as brain regions, can span at a range of 0.1–10 mm. The figure is illustrated based on

the data reported previously [6-8].
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the entire brain [10]; however, reconstructing an entire human

brain neuronal network at the mesoscopic scale is similar to
taking three-dimensional pictures of a forest with a trillion
trees [12], in which we need to see the whole forest as well as

each twig and leaf of any single tree. Consequently, construct-
ing whole-brain datasets is a massive undertaking that relies
not only on technological advances but also requires massive
investments and extensive cooperation [12]. Nonetheless, the

data obtained by this approach may help to improve our
understanding of the brain. As described previously [13], a
comprehensive whole-brain atlas of the cholinergic system

was obtained based on a mesoscopic whole-brain dataset,
which helps in understanding the role of the cholinergic system
in sensory and motor functions in addition to cognitive

behaviors.

Brain research projects focus on mesoscopic scale

Driven by the huge community demands, scientists have pro-
posed several global-scale brain research projects [14,15]. The
European Human Brain Project (HBP) focuses on collecting

and integrating different types of neuroscientific data, recon-
structing the brain structure, and simulating brain functions
on supercomputers [16,17]. In 2016, HBP released a platform

on its official website, providing researchers with brain simula-
tion, visualization, and computational tools. The Brain
Research through Advancing Innovative Neurotechnologies

(BRAIN) initiative in the United States first develops new
methodology and tools, and then attempts to answer scientific
questions [18]. The two highest priority goals of the BRAIN
initiative are to perform a brain-cell-type census and an atlas
of cross-scale neural circuits [5,11,19]. To march toward these

goals, NIH kicked off a pilot program in 2014 and started the
BRAIN initiative Cell Census Network (BICCN) in 2017. The
task of BICCN is to construct a common whole-mouse brain

cell atlas, in which a main focus is to collect information on
mesoscopic neuron anatomy [20].

Brain science is also well recognized by the Chinese govern-
ment and the Chinese research community. ‘‘Brain science and

cognition” was included in the ‘‘Guidelines on National Med-
ium- and Long-term Program for Science and Technology
Development” a decade ago. Support is provided through

the National Natural Science Foundation of China (NSFC)
and the National Basic Research Program of China (973 Pro-
gram). For example, the key research plan ‘‘Neural Circuit

Foundation of Emotion and Memory” was supported by
NSFC [21]. A Chinese brain project is also in the planning
stages, and ‘‘brain science and brain-inspired intelligence

research” is included as one of the key science and technology
innovation programs and projects in the ‘‘Thirteenth five-year
development plan” and is one of 4 pilot programs of the
‘‘science and technique innovation 2030 key program” [22].

Some institutions have been established for Chinese brain pro-
jects, such as the Center for Excellence in Brain Science and
Intelligence Technology of the Chinese Academy of Sciences

[23] and the Chinese Institute for Brain Research in Beijing
and Shanghai, respectively [24].

Big data in mesoscopic whole-brain imaging

These projects will generate an enormous quantity of data at
an ever-increasing rate; thus, processing and analysis of the
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brain big data will likely become a bottleneck [25]. In 2010, we
used the Micro-Optical Sectioning Tomography (MOST) sys-
tem to obtain a Golgi-stained whole-mouse-brain dataset

[26]. At 0.3 lm � 0.3 lm � 1 lm voxel resolution, this dataset
contains more than 15,000 coronal images, and the total size of
the raw data exceeds 8 TB. The MouseLight project from the

Janelia Research Campus uses serial two-photon (STP) tomog-
raphy to obtain whole-mouse-brain images at a resolution of
0.3 lm � 0.3 lm � 1 lm voxels; the raw data from each chan-

nel is approximately 10 TB [27]. Osten’s group from Cold
Spring Harbor Laboratory also uses STP tomography to study
neural distribution and projection dependent on cell type and
to build a brain architecture database [28]. They recently used

new oblique light-sheet tomography to obtain a whole-mouse-
brain dataset with a raw data size of 11 TB [29].

Human brain volume is approximately 3500 times that of a

mouse brain [1]. Thus, mesoscopic scale imaging of the human
brain will generate a dataset at the 10 PB scale, as shown in
Figure 2. This is equivalent to hundreds of thousands of 4 K

movies and equals the storage capacity of the Sunway Taihu-
Light supercomputer [30], one of the most powerful supercom-
puters in existence today. In addition, as the image techniques

advance, featuring higher resolutions, more color channels and
wider dynamic ranges, systems will generate even larger vol-
umes of data.

Biology labs need a mature and comprehensive solution for

managing mesoscopic whole-brain images when studying neu-
ron types and circuit connections. In 2014, Nature Neuro-
science published a special issue on big data in neuroscience

that says, ‘‘Neuroscientists have to learn to manage and take
advantage of the big waves of data that are being generated.”
[31]. To distill brain science knowledge from the raw images,

the entire processing pipeline typically includes image process-
ing, image registration, information extraction, quantitative
Figure 2 Data size comparison among different species

The brain mass, total number of neurons, and expected data size for

humans are listed. Each dot in the plot represents 10 TB data. The fig
analysis, and visualization, as shown in Figure 3. Conse-
quently, big data bring a range of challenges to data process-
ing, storage, analysis, management, and sharing, because the

size of the research target data increases by several folds. A
decade of systematic studies on whole-brain imaging from sev-
eral groups has established a self-contained system to support

the applied studies [27,32–37]. Nevertheless, we foresee that
there is a long way to go to fully utilize mesoscopic whole-
brain images. We recognize the following challenges listed in

Table 1 and discuss in the following sections.

The challenge of information extraction and neuron

identification

Data segmentation and identification are often recognized as
the bottleneck for studies involving big data. The mesoscopic

brain-image segmentation and identification target brain
regions/nuclei with sizes ranging from hundreds of microme-
ters to millimeters, neuron soma and micro-vessels with sizes

ranging from a few micrometers to 10 micrometers, and bou-
tons with sizes ranging from sub-micrometers to a few microm-
eters. Axon tracing is one of the most difficult tasks in whole-

brain data processing. One reason is that the spatial structures
of neurons are complex, the distribution of the neural fibers
can be dense, and they can cover large distances but have only

a small diameter [38]. Another is that axons and neurites are
small structures with weak fluorescent signals that are often
difficult to distinguish from the strong background noise.
These factors make manual labeling a time-consuming process

and degrade the accuracy of automated algorithmic labeling.
Thus, manual or semiautomatic axon tracing is still the stan-
dard solution in high quality neuron morphology studies. In

2017, Nature reported three giant neurons whose fibers cover
full volume sampling for mice, rats, marmosets, macaques, and

ure is illustrated based on the data reported previously [1].



Figure 3 The pipeline of whole-brain data processing and analysis at the mesoscopic scale

The mouse brain is first labeled by fluorescent protein and chemical dye, and then it is fixed and embedded for sectioning. A brain-wide

imaging at mesoscopic scale acquires large volume images through fine sectioning. Image preprocessing and standardization of the raw

data help to align the images and remove noise. Segmentation, soma detection, and neuron tracing then extract interesting structures from

the preprocessed images. Information extracted from different samples and modalities can be integrated through registration to a standard

brain space. New knowledge about the brain can be discovered and drawn based on the data from this mesoscopic whole-brain data

processing pipeline.

Table 1 Challenges of the whole-brain big data processing and analysis at mesoscopic scale

Tasks Cause of difficulties Possible solutions

Information extraction and

neuron identification

Complex neuronal morphology and long

projection neuronal fibers make neuron

identification difficult

1. Accelerating the manual reconstruction process

with the help of VR and other techniques

2. Developing deep learning-based techniques with

large training datasets

Data integration from

multiple omics study

Data collected in multiple omics study

don’t share the same mode

1. Defining whole brain data point and building a

standard whole-brain spatial coordination system

around it

2. Registering all modes of data to a standard whole-

brain spatial coordination system

Data storage, computation,

and sharing

Huge amount of image data bring burden

on computation platform

1. Establishing a QC/QA process

2. Developing the distributed computation system to

support the whole-brain study at mesoscopic scale

Data and knowledge

visualization

Cross-region and cross-scale visualization

is tricky

Developing fast data representation techniques to

reduce data access and rendering time

Note: VR, virtual reality; QC, quality control; QA, quality assurance.
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almost the entire mouse brain, which were all manually recon-
structed [39]. Because of the low reliability of automatic recon-

struction software, reconstruction may require a day or even a
week or more to map a single neuron with highly complex
morphology.

Deep learning may help improve the neuron reconstruction
issue. However, deep learning currently requires large quanti-
ties of labeled data for training, such as ImageNet [40], before
the models are applicable for neuron reconstruction. Another
approach attempts to accelerate a semiautomatic process using

techniques such as virtual reality [41,42]. Additionally, crowd-
sourcing may be another approach for solving the human
resource problem [43] in data segmentation and neuron fiber

identification. Some examples are the project Fold.it for pro-
tein study [44] and Openworm for electron microscope data
[45].
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The challenge of data integration

Data from different samples and different experimental
batches need to be integrated—even data obtained through

different methodologies and different ‘‘omics” can be inte-
grated together for neuroscientific research [46–49]. A whole-
brain mesoscopic scale data integration process can employ

local, sparse, and cell-type data to build a systematic and com-
prehensive neuronal network [13,50–52]. However, data from
different sources may have nonlinear displacements in spatial
coordinates [53,54], which jeopardizes the possible spatial cor-

relation between data samples. Thus, we need a powerful, stan-
dardized framework for integrating multi-scale, multi-mode
whole-brain big data [15,48,55].

We face the following challenges when building such a
framework. First, the data mode often varies, the metadata
are scattered, and usually, no standard approach exists for

describing the metadata and the data format. The lack of a
standard approach introduces unnecessary barriers to the inte-
gration and reduces the level of confidence for the integrated

data. A second challenge is that no high-resolution whole-
brain reference atlas exists for mesoscopic research yet. For
example, the Waxholm brain coordinate system is based on
magnetic resonance imaging (MRI) data, and its resolution is

approximately tens of micrometers [56]. The highest-resolution
three-dimensional atlas available is the Allen institute’s Allen
mouse common coordinate framework version 3 (CCFv3),

whose isotropic resolution is 10 micrometers. The CCFv3 is
based on 1675 genetically-engineered mouse brains [34]; the
atlasing process eliminated individual differences by averaging

the brain tissue’s auto-fluorescence signals [57]. Finally, no reg-
istration method currently exists that can accurately map
mesoscopic whole-brain datasets to a standard brain space.
While some existing registration methods work well on small

regions of the mesoscopic scale data, no current methods are
able to work on 10-TB data scales to our knowledge [58]. An
ideal anatomical datum is useful because it can be used to

define a standard brain space coordinate system despite sample
and development varieties. However, the existing conservative
anatomical data are small and subject to manual biases.
The challenge of data storage, computation, and

sharing

The quality of data used in neuroscience research can be cate-
gorized. The BICCN project classifies the data into five cate-

gories: raw, quality control/quality assurance (QA/QC),
linked, featured, and integrated (https://biccn.org). The meso-
scopic whole-brain data size in the raw, QA/QC, and linked
categories is quite large, imposing a huge burden on data stor-

age, computation, and sharing. One important approach for
confronting this whole-brain big data challenge is to reduce
the data size when not all the raw data are required. For exam-

ple, we can try to capture high signal-to-noise ratio raw data in
the imaging stage, skip imaging in uninterested areas, as well
as downsample, denoise, and compress the data. Data com-

pression in particular may be a valid option because consider-
able redundant information exists in raw three-dimensional
whole-brain image data [59]. The data compression techniques

used in video compression [27] and compressed sensing [60]
may also be applicable for brain imaging data. Due to the large
volume of mesoscopic-scale whole-brain data, even small
improvements in data compression can have large effects in

relieving the requirements for data storage, computation,
and transmission.

Another concern with mesoscopic whole-brain data pro-

cessing is in big data QC, as expanding studies involve interna-
tional cooperation and data integration efforts. The quality
standards for both raw and derived data are prerequisites for

productive data exchange and cooperation between research
teams. Scientists need easy-to-use processing, analysis, and
QA/QC tools to adhere to and benefit from these quality stan-
dards [61–63]. The International Neuroinformatics Coordinat-

ing Facility (INCF) is a non-profit science organization
established in 2005 that acts as the most important facilitator
for standards, tools, and sharing of big data in neuroscience

between the large international brain initiatives [64]. Individual
scientific software applications can register with INCF Central
to identify their file formats, transformations, standard query

formats, and other essential metadata [48].
In addition, an increasing number of desktop applications

will migrate to cloud platforms, especially those involving

biomedical big data at PB/EB scales (1024 PB equals 1 EB)
[65,66]. Over a cloud platform, users can use client applications
to send commands to the cloud platform; then, a cloud server
executes the requested data manipulations, computations, and

visualizations. Centralizing the data in this way obviates the
need to transport the big data; thus, this mode reduces the
transmission burden and fosters unified data formats and qual-

ity standards. However, building and running big data cloud
platforms requires a huge upfront investment, coordination
with other existing computation facilities, as well as commu-

nity financial and management support.

The challenge of data and knowledge visualization

Eventually, mesoscopic whole-brain image data are refined
into vectorized graphic data via preprocessing, segmentation,
labeling, and integration processes [67]. These graphic data

contain precise spatial positioning information, forming the
basic data needed for further studies, such as neuron cell typ-
ing and connections between brain regions [68,69]. Visualiza-

tion is a necessary aspect of these studies. Visualizations
present complex data using graphics tools, including symbols,
colors, and textures. These graphics tools can deliver informa-

tion effectively and promote data salience. Using visualization
tools makes interpreting, manipulating, and processing data
simpler and allows patterns, characteristics, correlation, and
anomalies to be recognized or constructed. Although visualiza-

tion has been widely applied in biomedical studies, the large
volume, cross-magnitude, high-dimensional, and complex
mesoscopic whole-brain data bring new challenges to the exist-

ing visualization techniques. For example, both main memory
and graphics memory become bottlenecks when three-dimen-
sional data at 10 TB or PB scales need to be rendered

[33,70,71]. Visualization applications should support rendering
from 10 K to millions of neurons, allowing both mesoscopic
neuron morphological detail and macroscopic brain region
connections to be viewed. Visualization should also support

various types of data manipulation and presentation, including
oblique reslicing [29], immersive display [72], neuron recon-

https://biccn.org
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struction analysis [35], brain connection atlas presentation [34],
and visualizations distributed to clients by clouds [73].

Promote brain-inspired artificial intelligence

Artificial intelligence (AI) has achieved remarkable progresses

after more than 6 decades of development. The defeat of the
human Go champion by Google’s AlphaGo in 2016 ushered
in a new wave of intelligent techniques [74]. However, develop-

ments in AI are limited, have weak intelligence, and models
cannot be applied in scenarios other than the one the model
was designed to address. One reason may be that AI studies
have not yet fully learned how brain mechanisms work, and

many are not brain-inspired [75]. The Blue Brain Project from
Ecole polytechnique fédérale de Lausanne (EPFL) tries to sim-
ulate mouse brain cortex activity based on neuron morphology

data, electrophysiology data, and so on [76,77]. The BRAIN
Initiative launched the Machine Intelligence from Cortical
Networks (MICrONS) program to reconstruct neural circuits

in a 1-cubic millimeter brain volume, simulate cortical func-
tion, and develop next-generation machine intelligence systems
[78]. The forthcoming China Brain Initiative also prioritizes
brain-inspired AI over other lower priority long-term subjects

[75]. Neurons are the basic information processing unit in the
brain, and neural circuits are the basic structure involved in
brain function. Thus, the fine spatial–temporal structure and

functional data collected via mesoscopic studies can provide
clues in understanding how brains function and promote
brain-inspired AI efforts [79].

The research and application of mesoscopic whole-brain
image data is just beginning, and many challenges and difficul-
ties lie ahead. We hope to see increasing cooperation between

scientists and engineers for the various brain projects in the
future.
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[32] Amat F, Höckendorf B, Wan Y, Lemon WC, McDole K, Keller

PJ. Efficient processing and analysis of large-scale light-sheet

microscopy data. Nat Protoc 2015;10:1679.

[33] Li Y, Gong H, Yang X, Yuan J, Jiang T, Li X, et al. TDat: an

efficient platform for processing petabyte-scale whole-brain vol-

umetric images. Front Neural Circuits 2017;11:55.

[34] Kuan L, Li Y, Lau C, Feng D, Bernard A, Sunkin SM, et al.

Neuroinformatics of the allen mouse brain connectivity atlas.

Methods 2015;73:4–17.

[35] Shillcock JC,HawrylyczM,Hill S, PengH.Reconstructing the brain:

from image stacks to neuron synthesis. Brain Inform 2016;3:205–9.

[36] Freeman J. Open source tools for large-scale neuroscience. Curr

Opin Neurobiol 2015;32:156–63.

[37] Amunts K, Lepage C, Borgeat L, Mohlberg H, Dickscheid T,
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