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Introduction: Breast atypical ductal hyperplasia (ADH) and ductal carcinoma in situ
(DCIS) are precursor stages of invasive ductal carcinoma (IDC). This study aimed to
investigate the pathogenesis of breast cancer by dynamically analyzing expression
changes of hub genes from normal mammary epithelium (NME) to simple ductal
hyperplasia (SH), ADH, DCIS, and finally to IDC.

Methods: Laser-capture microdissection (LCM) data for NME, SH, ADH, DCIS, and IDC
cells were obtained. Weighted gene co-expression network analysis (WGCNA) was
performed to dynamically analyze the gene modules and hub genes associated with
the pathogenesis of breast cancer. Tissue microarray, immunohistochemical, and
western blot analyses were performed to determine the protein expression trends of
hub genes.

Results: Two modules showed a trend of increasing expression during the development
of breast disease from NME to DCIS, whereas a third module displayed a completely
different trend. Interestingly, the three modules displayed inverse trends from DCIS to IDC
compared with from NME to DCIS; that is, previously upregulated modules were
subsequently downregulated and vice versa. We further analyzed the module that was
most closely associated with DCIS (p=7e−07). Kyoto Gene and Genomic Gene
Encyclopedia enrichment analysis revealed that the genes in this module were closely
related to the cell cycle (p= 4.3e–12). WGCNA revealed eight hub genes in the module,
namely, CDK1, NUSAP1, CEP55, TOP2A, MELK, PBK, RRM2, and MAD2L1.
Subsequent analysis of these hub genes revealed that their expression levels were
lower in IDC tissues than in DCIS tissues, consistent with the expression trend of the
module. The protein expression levels of five of the hub genes gradually increased from
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NME to DCIS and then decreased in IDC. Survival analysis predicted poor survival among
breast cancer patients if these hub genes were not downregulated from DCIS to IDC.

Conclusions: Five hub genes, RRM2, TOP2A, PBK, MELK, and NUSAP1, which are
associated with breast cancer pathogenesis, are gradually upregulated from NME to DCIS
and then downregulated in IDC. If these hub genes are not downregulated from DCIS to IDC,
patient survival is compromised. However, the underlying mechanisms warrant further
elucidation in future studies.
Keywords: weighted gene correlation network analysis (WGCNA), breast cancer pathogenesis, laser-capture
microdissection (LCM), tissue microarrays (TMA), hub gene
HIGHLIGHTS

Hub genes, namely TOP2A, MELK, PBK, NUSAP1, and RRM2,
are closely associated with the occurrence and pathogenesis of
breast cancer.

The hub genes associated with the progression of breast
cancer are gradually overexpressed from normal mammary
epithelium to ductal carcinoma in situ.

The expression of hub genes tends to decline when breast ductal
carcinoma in situ further develops to invasive ductal carcinoma.
INTRODUCTION

The main stages of breast disease consist of no atypical cell
proliferation, atypical proliferation of ductal or lobular epithelial
cells, carcinoma in situ, and invasive cancer. The pathogenesis of
breast cancer proceeds from the development of normal
mammary epithelium (NME) to simple ductal hyperplasia (SH)
and atypical ductal hyperplasia (ADH), subsequently progressing
to ductal carcinoma in situ (DCIS) and eventually to invasive
ductal carcinoma (IDC) (1–4). The prevalence of breast cancer
among ADH patients is four-fold that of the general population
(5). Moreover, individuals diagnosed with DCIS are at increased
risk of IDC (3). If DCIS is not treated, approximately 14–46% of
patients develop invasive breast cancer within the next 10 years (1,
6). Although studies have focused on early molecular changes
before the onset of aggressive cancer, limited information is
available regarding the genetic characteristics of breast
cancer precursors.

Breast cancers usually originate from epithelial tissue (7).
However, previous tissue assessments have revealed numerous
interstitial cells that lead to different outcomes, including
fibroblasts, macrophages, and lymphocytes. Cellular heterogeneity
hyperplasia; DCIS, ductal carcinoma in situ;
, simple ductal hyperplasia; NME, normal
pture microdissection; DEGs, differentially
ssion Omnibus; CN, cancer normal; MEs,
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is a common challenge in genomic and proteomic tissue analyses;
hence, it is necessary to isolate individual cell populations andanalyze
them separately (8). Currently, the use of laser-assisted
microdissection (LCM) of tumor cells facilitates direct microscopic
assessment of heterogeneous tissues and yields a rich cell population
in the sample. Therefore, LCM represents an extremely sensitive and
accurate means of evaluating the pathogenesis of breast cancer in
epithelial cells.

Traditional genetic analysis methods include the identification
of differentially expressed genes (DEGs); however, this method
only compares DEGs between two groups (9). Weighted gene co-
expression network analysis (WGCNA) is commonly used to
investigate the complex associations between genes and
phenotypes (10). WGCNA converts gene expression data into
co-expression modules, providing insights into the signaling
networks that potentially result in phenotypic traits (11). Most
importantly, WGCNA facilitates the analysis of dynamic
expression of gene modules or genes associated with disease
pathogenesis (12, 13).

In this study, we performed LCM to analyze gene expression in
NME cells, SH epithelial cells, ADH epithelial cells, DCIS epithelial
cells, and IDC epithelial cells, using WGCNA to further analyze
dynamic changes in hub genes during breast cancer pathogenesis.
Tissue microarrays (TMAs) consisting of 60 samples derived from
different breast diseases were used to evaluate the protein
expression levels associated with hub genes. This study aimed to
identify dynamic changes in the expression of hub genes
associated with breast cancer development, to improve the
current understanding of breast cancer pathogenesis.
MATERIALS AND METHODS

Microarray Data
Data from datasets GSE5847, GSE9574, GSE11965, GSE16873,
GSE20437, and GSE24506 (n=146 samples) were obtained from
the Gene Expression Omnibus (GEO) (www.ncbi.nlm.nih.gov/
geo) database for microarray-based gene expression profiling
(14). Data for normal terminal ductal lobular units adjacent to
breast cancer tissue (n=14) were also included, denoted cancer
normal (CN). Microarray data annotation (HG-U133A) was
used to match 22283 microarray probes to their corresponding
genes. After eliminating probes with more than one target gene
May 2021 | Volume 11 | Article 634569
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and calculating the average expression level of genes
corresponding to more than one probe, we finally selected the
top 5000 genes with large variance for subsequent analysis.
Identification of Co-Expression Modules
Clusters with appropriate thresholds were generated using the
flashClust tool in the R package (version 3.5) to detect outliers.
To establish a predictive gene co-expression network, we set a soft
threshold for scale independence of approximately 0.8 to analyze
the scale-free topology with inherent module characteristics (15,
16). Modules, identified as sets of genes with high topological
overlap, were constructed using the WGCNA algorithm. To
ensure high reliability of the results, the minimum number of
genes in a module was set to 30.
Determination of the Association Between
Modules and Clinical Traits
By analyzing module–trait associations using the graph function
of the R statistical package (version 3.5), modules with common
expression patterns were analyzed and interactions of co-
expression modules associated with particular traits were
identified from correlations between module eigengenes (MEs)
and clinical traits. We identified modules most closely associated
with the clinical features of breast cancer, including those
positively or negatively associated with the clinical characteristics.
Association Analysis and Hub Genes
WGCNA using the MEs was performed to assess the potential
correlation between gene modules and clinical traits (15). MEs
were defined as the initial principal components determined via
principal component analysis, thus summarizing the expression
patterns of the module genes into a single characteristic
expression profile. Thereafter, the expression of gene modules
associated with a type of sample was determined on the basis of
gene significance (GS) and module significance (MS) (16). GS for
a gene was defined as the −log10-transformed p-value of a paired-
samples student’s t-test measuring differential gene expression
among different types of samples, while MS was indexed as the
average GS for all genes in this module.

The eigengene connectivity (KME) was defined as the
Pearson correlation coefficient between individual genes and
the ME, indicating the distance between the expression profile
of a gene and that of the ME. Therefore, the KME quantifies the
distance between the gene and the module, determining the
module membership of a gene. A pivotal gene is one with high
network connectivity in a particular population. In addition, the
central genes of each module are highly correlated with the
clinical characteristics of each module.
Method for Determining Hub Genes
Hub genes were determined using scatter plots to further clarify
the GS within each module. The connectivity of each gene in
each module was calculated, and the gene with the greatest
Frontiers in Oncology | www.frontiersin.org 3
interactions was considered to be the hub gene. Based on the
GS and KME, hub genes were selected in accordance with the
following criteria: a hub gene had GS>0.2 and KME>0.8.

Functional Annotation Modules
We carried out database annotations, visualization, and
integration to identify sites for enrichment analysis (DAVID,
version 6.8, https://david.ncifcrf.gov/home.jsp), including gene
ontology (GO) terminology (17) and Kyoto Gene and Genomic
Gene Encyclopedia (KEGG) (18) enrichment analysis with
respect to molecular function (MF), biological process (BP),
and cellular composition (CC).
Patient Samples
We collected tissues including normal breast, SH, ADH, DCIS,
and IDC samples from patients undergoing resection in West
China Hospital of Sichuan University. The TMA contained 60
samples from different breast diseases. Normal breast tissue
specimens were paired with breast cancer samples. IDC tissue
samples were obtained from patients who had been diagnosed for
the first time and had not received neoadjuvant chemotherapy. All
patients were independently diagnosed by two pathologists. This
study was approved by the Ethics Committee of West China
Hospital of Sichuan University, and informed consent was
obtained from each patient.
Immunohistochemical (IHC) Staining
TMA sections of 4 mm thickness were placed on a charged slide,
deparaffined, and then rehydrated at a reduced alcohol
concentration. Antigens were recovered, sealed, and incubated
with primary antibodies. After 6 h, glass slides were treated with
secondary antibodies and stained using a DAB peroxidase
substrate kit (Solarbio, China).

IHC assays were performed using the following antibodies:
CDK1, NUSAP1, CEP55, TOP2A, MELK, PBK, RRM2, and
MAD2L1 (Affinity Biosciences, dilution 1:200). Allred scores were
used to analyze immunohistochemistry. The positive staining
intensity (0: negative; 1: weak; 2: moderate; and 3: strong) was
multiplied by the staining area (0: <5%; 1: 5–25%; 2: 26–50%; 3: 51–
75%; and 4: >75%). The final score (on a scale of 0 to 12) was
converted to a scale from 0 to 3 [a score of 0–1 was considered
negative (0); 2–4 was considered weakly positive (1); 5–8 was
considered medium (2); and 9–12 was considered highly positive
(3)]. After immunohistochemical analysis, the sections were
scanned to obtain high-resolution (40X) digital images using a
3DHISTECH scanner (Pannoramic, TaiBei) in the pathology
laboratory of West China Hospital.
Western Blot Analysis
Breast tissue extracts were electrophoresed using 10% sodium
dodecyl sulfate polyacrylamide gel electrophoresis and then
electrotransferred to polyvinylidene fluoride (Solarbio)
membranes. The membranes were sealed with 1X phosphate-
buffered saline, 0.1% Tween-20, and 5% skim milk (Bio-Rad)
May 2021 | Volume 11 | Article 634569
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and then incubated with primary antibodies at 4°C overnight.
Membranes were then washed with 1X TBS-0.1% Tween-20 film
and incubated with secondary antibodies at room temperature
for 1 h. Autoradiography was performed with a Bio-Rad
ChemiDoc XRS+ system.

Survival Analysis
We analyzed correlations between overall survival (OS) and
disease-free survival (DFS) in breast cancer pathogenesis using
Kaplan–Meier plots (http://kmplot.com/analysis/) based on
upregulation and downregulation of hub genes. This tool
provides data on breast cancer, lung cancer, ovarian cancer,
stomach cancer, and liver cancer.
Statistical Analysis
Statistical analyses were performed using the R statistical
software version 3.5 (https://www.r-project.org/) with related
packages or our customized functions. One-way analysis of
variance (ANOVA) was performed to acquire statistical
significance (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001) with
GraphPad Prism v8 (GraphPad Software; La Jolla, CA, USA).

Cox proportional hazards analysis was used to detect the
relationship between breast cancer mortality and the expression
of hub genes in the module; the results were expressed as hazard
ratios (HRs) with 95% confidence intervals. The hypothesis of
proportional risk was satisfied by the Kaplan–Meier curve test
and shown to be statistically significant by log-rank test. SPSS
25.0 (IBM) was used for all statistical analyses.
RESULTS

Construction of Gene Co-Expression
Modules Associated With Clinical Traits
To improve the reliability of the analysis, microarray data for 146
specimens from healthy and diseased individuals, obtained from
the GEO database, were pretreated. Co-expression modules were
constructed with the most varied 5000 genes in 146 normal breast
and pathological breast samples viaWGCNA. The flashClust tool
was used for cluster analysis, and no outlier samples were detected
(Figure 1A). When the power value was equal to 8, the scale
independence approached 0.8 (Figure 1C) and predicted a gene
co-expression network with scale-free topology and an inherent
modular feature. Ten modules were identified from the network of
146 samples via hierarchical clustering based on a topological
overlap measure dissimilarity measure. A hierarchical clustering
system was generated using a color-coded tree diagram for
modules, in which DCIS and IDC showed a clear correlation
with the black module (Figure 1B).

To determine the associations among the ten identified co-
expression modules and clinical traits, we determined the
Pearson’s correlation coefficient among MEs. Compared with
normal tissue, positive correlations with breast cancer
pathogenesis for the black (74 genes), blue (845 genes), and
brown (181 genes) modules were gradually strengthened as the
disease progressed from SH to CN, ADH, and DCIS, with the
Frontiers in Oncology | www.frontiersin.org 4
strongest correlations in DCIS. However, at the stage of invasive
cancer, these positive correlations were weaker; for the green (94
genes), magenta (36 genes), and red (92 genes) modules, the
positive correlations were gradually weakened in comparison
with normal tissue (Figure 2). As shown in Figure 2, the black
module markedly contributed to breast cancer pathogenesis;
simultaneously, as shown in the scatter plot (Supplementary
Figure 1), the genes in the black module were highly correlated
with the module of the eigengene, which was highly correlated
with the occurrence of DCIS. Thus, the black module was
selected for subsequent analysis.

Functional Enrichment Analysis of
Co-Expression Modules
The BPs in the black module exhibited the highest significant
associations with breast cancer pathogenesis and were primarily
enriched in the following KEGG pathways: hsa:04110 (cell cycle,
p=4.3e–12), hsa:04114 (oocyte meiosis, p=6.25e−04), and hsa:03030
(DNA replication, p=2.92e−04). Regarding MF, genes in the black
module were primarily enriched in the following terms:
GO:0030554 (adenyl nucleotide binding, p=9.87e–06),
GO:0005524 (ATP binding, p=3.75e–06), and GO:0032559
(adenyl ribonucleotide, p=4.58e–06). Regarding CC, the genes in
the black module were primarily enriched in the following terms:
GO:0015630 (microtubule cytoskeleton, p=2.61e–15), GO:0043228
(non-membrane-bound organelles, p=1.47e−13), and GO:0043232
(intracellular non-membrane-bound organelles, p=1.47e−13).
Regarding BP, the genes in the black module were primarily
enriched in the following terms: GO:0007049 (cell cycle, p=2.09e–
29), GO:0007018 (cell cycle phase, p=4.08e−27), and GO:0022402
(cell cycle process, p=6.77e−26) (Figure 3).

Hub Gene Analysis of Black Module
Hub genes are closely related to MEs and are highly associated
with breast cancer (here, breast cancer refers to DCIS) (19).
Among the 146 samples analyzed herein, CDK1, NUSAP1,
CEP55, TOP2A, MELK, PBK, RRM2, and MAD2L1 were
significantly correlated with the eigengene in the black module
and were upregulated in DCIS compared with normal tissues;
thus, they were defined as hub genes for breast cancer
pathogenesis. Four hub genes, namely TOP2A (p=0.036),
MELK (p=0.021), PBK (p=0.043), and RRM2 (p=0.012), were
upregulated during breast cancer progression from normal tissue
to DCIS and downregulated during disease progression from
DCIS to IDC. CDK1, NUSAP1, CEP55, and MAD2L1 displayed
similar, albeit non-significant, trends (p>0.05) to those of the
other four hub genes (Figure 4).

Hub Gene Validation by TMA Analysis
Protein expression levels of hub genes were evaluated by IHC
staining of eight hub genes on TMAs containing 60 samples
derived from different breast disease patients. The clinical
characteristics of the patients are summarized in Table 1. In
the TMA analysis, black module hub genes showed a gradual
transition from negative or weakly positive expression to
moderate or strong positive staining from NME, SH, and ADH
May 2021 | Volume 11 | Article 634569
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to DCIS; however, in IDC tissues they were negative or weakly
positive. The final score was converted to a scale from 0 to 3
(Figure 5A). The average IHC scores of the eight hub genes
gradually increased from NME to DCIS and then decreased in
IDC (Figure 5B).
Frontiers in Oncology | www.frontiersin.org 5
Hub Gene Validation by Western
Blot Analysis
The protein expression of black module hub genes was also
validated using western blot analysis. The protein expression
levels of hub genes, namely, MELK, TOP2A, PBK, NUSAP1,
A

C

B

FIGURE 1 | (A) Cluster tree of breast cancer samples. (B) Analysis of network topology of various soft-thresholding powers. NME, normal mammary epithelium;
SH, simple ductal hyperplasia; CN, cancer normal; ADH, atypical ductal hyperplasia; DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma; GS, gene
significance. (C) Hierarchical cluster analysis dendrogram. The gene clustering tree was obtained via hierarchical clustering of adjacency-based dissimilarity.
May 2021 | Volume 11 | Article 634569
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and RRM2, also gradually increased from NME to DCIS and
then decreased in IDC (Figure 6). By contrast, the gene
expression of CDK1, CEP55, and MAD2L1 showed the
opposite trend compared with that of their protein expression.
The specific reasons for this have not yet been clarified.

Survival Analysis
Survival analysis of upregulatedordownregulatedhubgenesduring
breast cancer pathogenesis was performed using data from the
Kaplan–Meier Plotterwebsite. TheHRs for patientOSof hub genes
fluctuated between 1.5 and 2.04 (p<0.05). Even TOP2A, with the
lowest HR (HR=1.5, p=2e−04), could influence OS (Figure 7A).
Moreover, we simultaneously analyzedDFS and observed the same
trend as in the OS analysis. The HRs for DFS of the hub genes
fluctuated between 1.57 and 2.13 (p<0.05), indicating that these
eight hub genes significantly influenced DFS (Figure 7B).
DISCUSSION

Breast disease pathogenesis is generally a gradual process. In most
cases, ADH develops into DCIS, which is a precursor of IDC (3).
Particular genes have critical roles in these phenomena. In this study,
Frontiers in Oncology | www.frontiersin.org 6
we identified the key gene module (black module) and confirmed
that the expression of hub genes in this module was strongly
associated with breast cancer pathogenesis. From normal tissue to
DCIS, hub genes in the module were gradually upregulated.
However, when the disease progressed from DCIS to IDC, the
expression of hub genes displayed a completely opposite trend
compared with that observed in the previous stage. This
phenomenon has not been reported previously. Many experiments
have confirmed that these hub genes are significantly overexpressed
in breast cancer tissue compared with normal tissue; however, these
studies did not include further dynamic comparisons of hub gene
expression in different diseases. Hence, the mechanism underlying
the reversal of the trend of expression of these genes remains unclear.

During the progression of breast cancer from SH to DCIS, the
black module was closely associated with breast cancer
pathogenesis. Functional enrichment analysis revealed that genes
in the black module were primarily enriched in cell-cycle-related
KEGG pathways, indicating that hub genes in this module are
associated with cell proliferation. Healthy cell progression and
proliferation proceed through checkpoints during the cell cycle to
achieve strict cell cycle regulation; one of the hallmarks of cancer is
aberrant cell cycle regulation (20). Furthermore, all cancer cells
depend on abnormalmetabolism to yield the enormous amounts of
FIGURE 2 | Pearson’s correlation coefficients between MEs and clinicopathological variables. Relationships of the GS measure for weight with breast disease-
related genetic and network-based variables of the ten colored modules. NME, normal mammary epithelium; SH, simple ductal hyperplasia; CN, cancer normal;
ADH, atypical ductal hyperplasia; DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma; ME, module eigengene.
May 2021 | Volume 11 | Article 634569
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energy required to continuously promote cell cycle progression (21,
22). Targeting cell cycle progression to alter metabolism is a crucial
therapeutic approach (23), concurrent with our present
conclusions. Cell division normally proceeds through the cell
cycle, and the ability to sustain aberrant proliferation and
dysregulation of the cell cycle is a hallmark of cancer.

Moreover, we assessed breast cancer progression from DCIS to
IDC; compared with disease progression in normal breast tissue in
DCIS, the black module showed a diametrically opposite trend of a
progressive upregulation of gene expression. However, the
mechanism underlying this reversal of gene expression during
disease progression from DCIS to IDC is unknown. The breast
cancer microenvironment includes tumor cells, stromal cells
including fibroblasts and vascular and immune cells, and
extracellular matrix molecules. When breast cancer progresses to
the IDC stage, the microenvironment usually changes (19, 24–26).
The interactions betweenmammary epithelial cells and stromal cells
and the changes in their gene expression and enzymatic activity
profiles are drivers of disease progression (27–29). Immune cells,
including innate immune cells and adaptive immune cells, form an
important part of tumor stroma (30). When cancer cells invade the
Frontiers in Oncology | www.frontiersin.org 7
basement membrane, the immune system in the tumor
microenvironment (TME) can inhibit tumor growth by
destroying or inhibiting the growth of cancer cells (31). When the
immune system in the TME cannot eliminate or control the growth
of neoplastic cells, cancer progression occurs (32).

The change in trends of hub gene expression may indicate the
release of certain substances to the intercellular space, followed
by interactions of the TME with tumor cells, leading to changes
in expression of hub genes.

We screened hub genes in the black module to elucidate the
regulatory mechanism and further assess the evolution of breast
cancer. The selected hub genes displayed the same trend as the
black module, and if this trend did not decline, it would affect
survival. One of the most important genes in breast cancer
pathology (C-erbB-2) also displays the same trend (33). The
probability of Her-2 overexpression in IDC is approximately 20–
30% (34), compared with approximately 50% in DCIS (35). Some
studies have reported that this phenomenon results from COX-2
overexpression having a significant association with HER-2
overexpression (14). The COX-2 expression rate is significantly
higher in DCIS than in IDC (34); thus, Her-2 overexpression
FIGURE 3 | Molecular function (MF), biological processes (BP), cellular composition (CC), and Kyoto Gene and Genomic Gene Encyclopedia (KEGG) pathway
enrichment analyses of co-expression modules. The x-axis shows the ratio of genes and the y-axis shows the KEGG pathway terms. The -log10 (p-value) of each
term is colored in accordance with the legend.
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levels are higher in DCIS than in IDC (36). Therefore, it is
unclear whether this difference in hub gene expression is
regulated by COX-2 or other regulatory mechanisms involving
Her-2. This may also be the reason for the change in hub gene
expression during disease progression from DCIS to IDC.
Frontiers in Oncology | www.frontiersin.org 8
Five of the eight hub genes showed the same variation trends
with respect to gene and protein expression levels. This suggests that
these five genes may have important roles in the initiation of breast
cancer. The five genes have also been linked to the development of
other cancers. NUSAP1 is overexpressed in hepatocellular
FIGURE 4 | Hub genes expressed in breast cancer and normal tissues, using the Curtis breast dataset (n=146). p-values were calculated via log-rank test and
p<0.05 was considered significant. NME, normal mammary epithelium; SH, simple ductal hyperplasia; CN, cancer normal; ADH, atypical ductal hyperplasia; DCIS,
ductal carcinoma in situ; IDC, invasive ductal carcinoma.
TABLE 1 | Clinical characteristics of the patients who provided tissues for the TMA analysis.

NME (n=12) SH (n=12) ADH (n=12) DCIS (n=12) IDC (n=12) Total

Age (mean ± SD) 51 ± 3 34 ± 2 38 ± 3 47 ± 4 51 ± 3 60
Tumor size, cm –

≤2 9 5 4 2 20
>2 3 7 8 10 28

TNM – – – – 12
Stage I 1
Stage II 3
Stage III 8

Nuclear grade – – – – 12
1 2
2 4
3 4
Unknown 2

ER status – – – – 12
postive 9
negative 3

PR status – – – – 12
postive 9
negative 3

Molecular subtype – – – – 12
Luminal A 3
Luminal B 6
HER-2 no-Luminal 2
TNBC 1
May 2021
 | Volume 11 | Article 6
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carcinoma and glioblastoma (37, 38). Furthermore, NUSAP1
overexpression is associated with deterioration in melanoma and
breast and prostate cancers (39, 40). MELK overexpression is
associated with tumor aggressiveness and poor outcomes in
numerous other cancer types, including glioblastoma (41),
astrocytoma (26), and prostate cancer (42). TOP2A upregulation
is closely associated with various tumor types, including breast,
ovarian, and prostate cancers, because TOP2A catalyzes the
cleavage of double-stranded DNA and promotes transcription
during mitosis (43). PBK is overexpressed in malignant tumors
Frontiers in Oncology | www.frontiersin.org 9
including Ewing sarcoma, lymphoma, leukemia, melanin tumors,
and breast and lung cancers (44–47). RRM2 is overexpressed in
cancer and promotes tumor progression (48). Our results show that
if these hub genes are still upregulated in the invasive stage of
cancer, patient survival is significantly decreased.

In addition, high expression of these five genes was associated
with lower survival rates, suggesting that their high expression
levels reflect poor prognosis. Hence, it will be of great clinical
significance to elucidate the mechanisms underlying the
decreased expression of those genes during the transformation
A

B

FIGURE 5 | (A) Average IHC score scale. (B) Average IHC score of eight hub genes using GraphPad Prism v8. One-way ANOVA was performed to determine
statistical significance (*p < 0.05, **p < 0.01,***p < 0.001,****p < 0.0001). NME, normal mammary epithelium; SH, simple ductal hyperplasia; ADH, atypical ductal
hyperplasia; DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma.
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A

B

FIGURE 6 | Protein expression levels of hub genes. (A) Protein expression levels of CDK1, MELK, CEP55, TOP2A, NUSAP1, PBK, RRM2, and MAD2L1 were
determined by western blotting. (B) Western blot analysis of CDK1, MELK, CEP55, TOP2A, NUSAP1, PBK, RRM2, and MAD2L1 in tissue from different stages of
breast disease, and quantification of the intensity relative to GAPDH. One-way ANOVA was performed to acquire statistical significance (*p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001). NME, normal mammary epithelium; SH, simple ductal hyperplasia; ADH, atypical ductal hyperplasia; DCIS, ductal carcinoma in situ;
IDC, invasive ductal carcinoma.
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from preinvasive to invasive carcinoma, and to further explore
the roles of these genes in the initiation and progression of breast
cancer. The present results provide a theoretical basis for the
prevention and treatment of breast cancer. In further studies, we
intend to focus on the mechanisms underlying the downregulation
of these genes fromDCIS to IDC and identify pathways that could
be used to inhibit the high expression of these genes to prevent and
treat breast cancer.
CONCLUSIONS

This study shows that hub genes associated with breast cancer
pathogenesis, namely RRM2, TOP2A, PBK, MELK, and NUSAP1,
are gradually upregulated from NME to DCIS and then
downregulated in IDC. If these hub genes are not downregulated
Frontiers in Oncology | www.frontiersin.org 11
from DCIS to IDC, patient survival is compromised. However, the
underlyingmechanismswarrant further elucidation in future studies.
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