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SUMMARY

Respiratory viral infections are a significant burden to
healthcare worldwide. Many whole genome expres-
sion profiles have identified different respiratory viral
infection signatures, but these have not translated to
clinical practice. Here, we performed two integrated,
multi-cohort analyses of publicly available transcrip-
tional data of viral infections. First, we identified a
common host signature across different respiratory
viral infections that could distinguish (1) individuals
with viral infections from healthy controls and from
those with bacterial infections, and (2) symptomatic
from asymptomatic subjects prior to symptom onset
in challenge studies. Second, we identified an influ-
enza-specific host response signature that (1) could
distinguish influenza-infected samples from those
with bacterial and other respiratory viral infections,
(2) was a diagnostic and prognostic marker in influ-
enza-pneumonia patients and influenza challenge
studies, and (3) was predictive of response to influ-
enza vaccine. Our results have applications in the
diagnosis, prognosis, and identification of drug tar-
gets in viral infections.

INTRODUCTION

Respiratory viruses such as influenza and SARS pose a major

threat to global health, yet antiviral drugs have been difficult to

develop. In addition, treating potential pandemic viral strains is

problematic because of the many unknowns about the patho-

genesis of infection. Current anti-viral drugs, which target a path-

ogen’s enzymatic functions and provide a ‘‘one-bug-one-drug’’

approach, use resources inefficiently and are often limited by

the emergence of viral resistance (Locarnini and Warner, 2007;

Richman et al., 2004). The drug-development process requires

the ability to identify specific host factors that are necessary

for viral growth and virulence that could also be potential drug

targets. In light of the large unmet need for novel antiviral strate-

gies, an efficient solution would be to repurpose currently
Imm
approved drugs as broad-spectrum, host-centered antivirals

that could impair viral transmission and prevent clinical pathol-

ogy by identifying host factors that are targeted by existing drugs

and are required for viral growth.

The prevailing approach for studying gene expression profiles

is limited in its ability to identify thesewould-be targets for broad-

spectrum antiviral therapeutics. Many gene expression microar-

ray studies have proposed distinct gene signatures to discrimi-

nate different viral infections (Zaas et al., 2009) or influenza

from bacterial infections (Parnell et al., 2012, 2011; Ramilo

et al., 2007). However, these experiments aim to reduce the ef-

fect of various biological and technical confounding factors as

much as possible by focusing on only one viral infection in one

tissue and using one type of microarray. This standard, single-

cohort approach increases the risk of confounding factors on

gene expression profiles from the specific tissue, technologies,

demographics, and inclusion criteria of the respective studies

or by other unknown biological and technical factors (Parnell

et al., 2011, 2012; Ramilo et al., 2007), all of which can mask

the broad pathways used by multiple viruses to establish

infection.

We have developed an integrated, multi-cohort analysis

framework that leverages the heterogeneity present in public

data repositories (e.g., GEO and ArrayExpress), which in turn in-

creases sample size and allows for the identification and valida-

tion of robust and reproducible signatures of a disease pheno-

type. We have demonstrated the utility of this framework in

identifying novel drug targets, diagnostic biomarkers, and repur-

posing FDA-approved drugs (Chen et al., 2014; Khatri et al.,

2013; Li et al., 2015; Mazur et al., 2014; Sweeney et al., 2015).

We applied our method for two different hypotheses. First, to

obtain a common transcriptional signature across all respiratory

viral infections, we applied our method to three gene expression

datasets of 205 human blood samples from three viral infections

(influenza, human rhinovirus [HRV], and respiratory syncytial vi-

rus [RSV]), measured on two different microarray platforms in

three countries to identify a robust 396-gene meta-virus signa-

ture (MVS) of respiratory viral infections. We tested this signature

against 14 independent cohorts composed of 1,087 blood sam-

ples to show that it was not confounded by sample tissue, treat-

ment, viral strain, or microarray technology.

We performed a separate multi-cohort analysis of influenza

infection studies to illustrate that there were virus-specific
unity 43, 1199–1211, December 15, 2015 ª2015 Elsevier Inc. 1199
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Figure 1. Discovery and Validation of Meta

Virus Signature

Effect size heatmaps of 396-gene MVS in 5 dis-

covery (A) and 10 validation (B) cohorts. Each

column is a gene and row is a cohort. The first row

in both heatmaps displays summary effect size for

each gene in discovery or validation cohorts.

Genes are sorted in decreasing order of their

summary effect size in discovery cohorts for both

heatmaps.
signatures encompassing smaller subsets of genes. We applied

ourmethod to five influenza gene expression datasets consisting

of 292 samples and identified an 11-gene influenza meta-signa-

ture (IMS). Using 11 additional independent cohorts, we showed

that this influenza-specific signature was able to discriminate (1)

symptomatic from asymptomatic subjects, (2) influenza infection

from other respiratory viral infections, and (3) patients with mixed

influenza and/or bacterial pneumonia from those with bacterial

pneumonia alone. Finally, we bridge the gap between influenza

infection and vaccination by demonstrating that the influ-

enza infection signature is also increased significantly in influ-

enza vaccine responders compared to non-responders.

These two multi-cohort analyses showed that (1) there was a

conserved host response to respiratory viral infections and (2)

there were virus-specific responses that could distinguish

different virus types. Both have significant potential for use in

the diagnosis and treatment of viral infections.

RESULTS

Integrated, Multi-cohort Analysis of Viral Infections
Identifies Broad Anti-virus Responses
We downloaded 18 microarray gene expression datasets from

the NCBI GEO (Barrett et al., 2005) database comprising 2,939

samples obtained from whole blood, PBMCs, or primary epithe-

lial cells (Table S1; Bermejo-Martin et al., 2010; Franco et al.,

2013; Herberg et al., 2013; Hu et al., 2013; Ioannidis et al.,

2012; Li et al., 2011; Loveday et al., 2012;Mejias et al., 2013; Par-

nell et al., 2011, 2012; Ramilo et al., 2007; Reghunathan et al.,

2005; Shapira et al., 2009; Sutejo et al., 2012; Tsang et al.,

2014; Woods et al., 2013; Zaas et al., 2009). These datasets

included healthy controls; individuals with various viral infec-

tions, bacterial infections, or non-infectious systematic inflam-
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matory response syndrome (SIRS);

individuals that were vaccinated for influ-

enza; and in vitro transfection experi-

ments expressing different viral antigens.

We used five cohorts from three data-

sets, composed of 205 samples for

studying three respiratory viral infections

to identify a potential common viral

response (Table S1; Herberg et al.,

2013; Hu et al., 2013; Ioannidis et al.,

2012). We refer to each study (unique

GSE ID) in GEO as a dataset and a set

of samples for each comparison within a

dataset as a cohort. Unlike a single-
cohort experiment, where the goal is to control as many con-

founding factors as possible, we included broad biological and

technical heterogeneity, such as treatment protocols and demo-

graphics, observed in the population by choosing discovery co-

horts that were collected at different centers (with different treat-

ment protocols and demographics) and that profiled more than

one viral infection (influenza, RSV, HRV) across different age

groups (infant and pediatric). We incorporated technical hetero-

geneity in our samples by choosing datasets that were profiled

using microarrays from two different manufacturers and repre-

sented different technological confounding factors (e.g., length

of oligonucleotide probes, sample preparation protocols). In or-

der to avoid the potential influence of a single cohort on the re-

sults due to unequal sample sizes or other unknown confounding

factors among cohorts, we performed a ‘‘leave-one-cohort-out’’

analysis. We hypothesized that the resulting set of genes that

were significantly differentially expressed, irrespective of the

set of cohorts analyzed, would constitute a robust signature of

respiratory viral infection.

We identified 396 differentially expressed genes (161 over-

and 235 underexpressed, p < 3 3 10�5, FDR < 1%; Figure 1A

and Table S2) during respiratory viral infection, many of which

have been previously identified as differentially expressed after

viral infection such as OASL, TYK2, toll-like receptors (TLRs),

and interferon induced transmembrane proteins (IFITMs) (Par-

nell et al., 2011, 2012; Ramilo et al., 2007; Woods et al.,

2013; Zaas et al., 2009). We refer to the 396-gene set as a

meta-virus signature (MVS). KEGG pathway analysis using

iPathwayGuide (Draghici et al., 2007; Khatri et al., 2008; Tarca

et al., 2009) of the MVS identified 18 significant pathways,

including pathways for viral infections such as Epstein-Barr vi-

rus, influenza A, herpes simplex, and measles (Table S3). Other

significant and relevant KEGG pathways included cell cycle,
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Figure 2. MVS Scores in Four Independent Cohorts of Blood Samples

(A) Comparison of MVS scores in virus-negative, afebrile controls, and patients infected with bacteria or HRV.

(B) Comparison ofMVS scores in healthy controls and patients infectedwith SARS coronavirus. Error bars indicate mean ± SE for a given group of samples.Width

of a violin plot indicates density of samples, where each dot represents a sample.

(C and D) MVS scores in symptomatic and asymptomatic subjects inoculated with influenza (H3N2 in C or H1N1 in D). Smoothed lines indicate loess curves for

symptomatic and asymptomatic subjects. Gray bars indicate 95% confidence intervals for each group.

See also Figure S1.
NF-kB signaling, toll-like receptor signaling, lysosome, and

sphingolipid metabolism.

Next, we analyzed the expression of these 396 MVS genes in

10 additional independent cohorts consisting of 329 PBMC or

whole blood samples (226 viral infection samples, 103 controls).

136 out of 161 MVS overexpressed genes (84.5%), and 139 out

of 235 underexpressed MVS genes (59.14%) were statistically

significant (p < 0.05) in the validation cohorts (Figure 1B). These

data indicated that the MVS defined broad immunological re-

sponses in the host to respiratory viral infection.

The MVS Is Specific to Viral Infection
Differential diagnosis of bacterial versus viral infection is

confounded by similar clinical symptoms and underlying condi-

tions such as immunosuppression and extrapulmonary compli-

cations (Babcock et al., 2008; Ison and Lee, 2010; Parnell

et al., 2011, 2012; Ramilo et al., 2007). Therefore, we explored
Imm
whether the MVS could distinguish viral infections from bacterial

infections.

First, we examined an independent cohort of children under 3

years of age (GSE: GSE40396) (Hu et al., 2013). For each sample,

we defined an MVS score as the difference between the geo-

metric mean of the 161 overexpressed genes and 235 under-

expressed genes in the MVS. As expected, the MVS scores

in virus-infected children were significantly higher than those in

virus-negative controls (p = 6.88 3 10�7; receiver operating

characteristic [ROC] area under the curve [AUC] = 1). The MVS

scores were significantly higher in afebrile RSV-infected children

than in those with febrile bacterial infections (p = 6.21 3 10�4)

and distinguished both groups with high accuracy (ROC

AUC = 0.98) (Figures 2A and S1A). These results suggest that

theMVS score is not confounded by the febrile status of children.

The MVS scores were also higher in another independent

cohort (GSE: GSE1739) (Reghunathan et al., 2005), comprised
unity 43, 1199–1211, December 15, 2015 ª2015 Elsevier Inc. 1201



of patients infected with severe acute respiratory syndrome

(SARS) coronavirus (Figures 2B and S1B). Interestingly, in

GSE40396, the MVS scores were also higher for children with

other viral infections (adenovirus, HHV6, and enterovirus)

compared to virus-negative controls (p = 1.023 10�8) and those

with bacterial infections (p = 0.012), although none of these infec-

tions were used to define theMVS (Figure S1C). TheMVS scores

also distinguished samples with these viral infections from those

with bacterial infections and samples from healthy controls with

relatively high accuracy (Figure S1D). This indicates that theMVS

might be more broadly applicable than respiratory viruses.

Next, we used an influenza challenge study (GSE: GSE52428),

which inoculated healthy adults with H3N2 or H1N1 to evaluate

changes in the MVS scores over the course of infection (Woods

et al., 2013). The MVS scores remained unchanged over time in

asymptomatic subjects that were not shedding any virus in both

groups. However, the MVS scores increased significantly for vi-

rus-shedding symptomatic subjects over 24–72 hr and began to

decline toward asymptomatic baseline levels as symptoms

resolved (Figures 2C, 2D, S1E, and S1G). Specifically, the MVS

scores for six of the nine H3N2 symptomatic volunteers (67%)

were higher than those of the H3N2 asymptomatic volunteers at

36 hr after inoculation (Figure 2C). Similarly, the MVS scores for

9 of the 12 H1N1 symptomatic volunteers (75%) were higher

than those of the H1N1 asymptomatic volunteers at 53 hr after

inoculation (Figure 2D). The median onset time of symptoms for

H3N2- and H1N1-inoculated volunteers was 49.3 hr (range 24–

84 hr) and 61.3 hr (range 24–108 hr), respectively. Hence, the in-

crease in theMVSscorespreceded respiratory infection symptom

onset inbothstrains anddistinguishedH3N2andH1N1symptom-

atic fromasymptomatic volunteerswith high specificity and sensi-

tivitywithROCAUC forH3N2andH1N1of 0.94 at 36 hr (p = 0.009)

and 0.84 at 53 hr (p = 0.008), respectively (Figures S1F and S1H).

Three H1N1-inoculated subjects (one asymptomatic and two

symptomatic) showedMVS score profiles that were the opposite

of their respective group (Figure S1G). Further examination

of these individuals revealed that the asymptomatic subject,

who followed a trajectory similar to the symptomatic group,

was shedding the virus. The original study referred to this subject

as an ‘‘asymptomatic shedder’’ (Woods et al., 2013). Similarly,

one of the symptomatic subjects, who followed a trajectory

similar to asymptomatic group, was not shedding any virus,

and was therefore referred to as a ‘‘symptomatic non-shedder’’

in the original study. These results provide strong evidence of

the accuracy of MVS score in correctly identifying infected indi-

viduals independent of their symptoms.

Collectively, our results showed that the MVS was a common

transcriptional signature of a respiratory viral infection, indepen-

dent of the subjects’ symptoms. The MVS was also able to iden-

tify symptomatic subjects prior to symptom onset in an influenza

challenge study. Further, higher MVS scores in other viruses

(adenovirus, enterovirus, and HHV6) in addition to influenza,

RSV, and HRV suggested that the MVS might be more broadly

applicable than respiratory viruses. However, a larger systematic

analysis of diverse viruses would be necessary to identify such a

core signature. Our results also suggest that the MVS might be

able to distinguish other viral infections prior to symptom onset

similar to influenza, though additional challenge studies using

other viruses are needed for validation.
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Identification of an Influenza-Specific Response
Signature
A number of studies have previously reported virus- and strain-

specific signatures (Hu et al., 2013; Zaas et al., 2009). There-

fore, we hypothesized that despite a common transcriptional

response to most respiratory viral infections, there might be a

virus-specific transcriptional response. We applied our method

to several influenza infection studies to see whether we could

identify an influenza meta-signature (IMS).

As before, we chose expression profiles from 292 blood sam-

ples in five cohorts from three countries and profiled using two

types ofmicroarrays to represent biological and technical hetero-

geneity. In the discovery cohorts, we used samples from healthy

individuals, patients with bacterial infection, and day 0 (pre-inoc-

ulation) individuals as controls. We used samples with influenza

infection and individuals after inoculation as cases.

We identified 127 genes (FDR < 0.5%) as significantly overex-

pressed (Table S4 and Supplemental Experimental Procedures).

Although our very stringent criterion might have left out some

genes with varying expression in influenza, it allowed for the

identification of a reproducible transcriptional profile that was

found in all five influenza discovery cohorts despite the presence

of significant heterogeneity.

These 127 genes include RIG-1-like receptor (RLR) molecules

(DDX60, DHX58, IFIH1), transcription factors known to be over-

expressed during influenza infection (IRF7, STAT1), interferon-

alpha inducible genes (IFI44, IFI44L, IFI6), transport molecules

(RAB8A), and antiviral molecules such as myxovirus resistance

gene (MX1), 20-50-oligoadenylate synthetases (OAS1, OAS2,

OAS3), guanylate-binding protein 1 (GBP1), and RSAD2. Many

of these genes have been shown to be overexpressed after influ-

enza infection (Ramilo et al., 2007), confirming the validity of our

results. Network analysis of these 127 genes by Ingenuity

Pathway Analysis (IPA) confirmed that 71 of the 127 genes are

part of a network involved in innate virus sensing and initiation

of antiviral response pathways (Figure S2). Thus, our analysis

was able to capture the known biology of the response to influ-

enza by defining a gene subset of the larger, common MVS.

We then applied a leave-one-cohort-out strategy to avoid

the undue influence of a single cohort on the results. We identi-

fied 16 overexpressed genes: CD38, HERC5, HERC6, IFI44L,

IFI6, IFIH1, IFIT1, LGALS3BP, LY6E, MX1, OAS1, OAS2,

PARP12, RTP4, XAF1, and ZBP1, using a very stringent FDR <

0.01%. Of these 16 genes, 5 (IFI44L, IFIT1, OAS1, OAS2, and

XAF1) had significant heterogeneity in effect size (p < 0.025)

andwere removed from further analysis. The remaining 11 genes

were homogeneously overexpressed in patients infected with

influenza across all discovery cohorts (Figures 3A–3K; Table

S5). Network analysis by IPA showed that 10 of these 11 genes

were interconnected, with IRF7 and STAT1 forming a central

axis of transcriptional regulation (Figure 3L). We will now refer

to these 11 genes as the IMS.

The IMS Discriminates Influenza Infection from
Bacterial Infections with High Specificity and Sensitivity
We asked whether the IMS could distinguish between influenza

and bacterial infections, similar to the MVS. Therefore, we

defined the geometric mean of the 11 IMS genes as the IMS

score of a sample. In GSE: GSE40012 (Parnell et al., 2012), the
c.



Figure 3. 11-Gene Influenza Meta Signature
(A–K) 11 genes were significantly overexpressed during influenza infection in all discovery cohorts analyzed. The x axes represent standardized mean difference

between influenza and control samples, computed as Hedges’ g, in log2 scale. The size of the blue rectangles is inversely proportional to the SEM in the study.

Whiskers represent the 95% confidence interval. The orange diamonds represent overall, combined mean difference for a given gene. Width of the diamonds

represents the 95% confidence interval of overall mean difference.

(L) Network analysis by Ingenuity Pathway Analysis showed that 10 out of the 11 genes are part of a single regulatory network. Blue nodes in the network represent

IMS genes, and red nodes represent genes that were significantly overexpressed during influenza infection but are not included in the IMS.
IMS scores of influenza pneumonia patients were significantly

higher than healthy controls, bacterial pneumonia patients, and

non-infectious SIRS (p = 13 10�11; Figure 4A). Importantly, there

was no significant difference between the IMS scores of influ-

enza pneumonia patients and mixed pneumonia patients (indi-

viduals with both influenza and bacterial infections). These

data suggested that even with concurring bacterial infection, in

the same patient the IMS score could still identify influenza infec-

tion.We also showed that using only the samples obtainedwithin

24 hr of hospitalization, the IMS score identified influenza pneu-

monia patients with high specificity and sensitivity (AUC = 0.92;

Figure 4B). These results validate the utility of the IMS as an index

of influenza infection that can distinguish it from bacterial infec-

tion in clinical settings.

Next, we compared the IMS scores from PBMCs of pediatric

patients (age % 18 years) with influenza or bacterial infection

(Staphylococcus aureus, Streptococcus pneumoniae, and

Escherichia coli) in an independent cohort (GSE:GSE6269) (Ram-

ilo et al., 2007). Despite the presence of biological (age, patho-

gens, antibiotics) and technological (three microarray platforms)

confounding factors, the IMS scores of the patients with influenza

infection were significantly higher than those of healthy controls

and patients with bacterial infections (p % 2.83 3 10�3; Figures

4C, 4E, and4G),with high specificity and sensitivity in distinguish-

ing influenza patients from those with a variety of bacterial infec-

tions (AUC range 0.86–0.97; Figures 4D, 4F, and 4H). The lack

of statistical significance in Figure 4G is an artifact of a very small

sample size (n = 3) in the S. pneumoniae group with an outlier.

Collectively, these results provide strong evidence that the

IMS (1) is able to specifically distinguish influenza infection

from bacterial infections and (2) is not confounded by age or

the array technology used for profiling.

The IMS Can Distinguish Influenza from Other
Respiratory Viruses
The IMS scores of patients with viral infections were not different

from those of virus-negative controls and patients with bacterial
Imm
infections (Figure S3A) or SARS coronavirus (Figure S3B). In fact,

the IMS scores were significantly lower in virus-infected patients

than virus-negative controls (p = 0.003; Figure S3A). In contrast,

the MVS scores were significantly higher in both of these co-

horts. These results suggested that the IMS might be specific

to influenza, because none of the patients in these cohorts

were infected with influenza.

Therefore, we compared the IMS scores of influenza-infected

patients with those of patients with other respiratory viral infec-

tions (RSV and HRV) using three datasets (GSE: GSE34205,

GSE42026, and GSE38900). These datasets profiled whole

blood samples from children (age < 17 years). We note that influ-

enza-infected samples and healthy control samples from

GSE34205 and GSE42026 were used as discovery cohorts for

identification of IMS (Table S1). The IMS scores were signifi-

cantly higher in influenza samples compared to RSV samples

in GSE34205 and GSE38900 (p < 0.0002) and marginally signif-

icant in GSE42026 (p = 0.061; Figures 5A–5C). Influenza samples

also had an IMS score that was significantly higher than that

for HRV samples in GSE38900 (p = 2.33 3 10�5; Figure 5C).

Notably, in these three datasets, the MVS scores of subjects

with any viral infection were significantly higher than the healthy

controls (p < 13 10�6) but were similar when compared to each

other (p > 0.05; Figures 5D–5F), with the exception of HRV and

RSV in GSE38900 (p = 0.002; Figure 5F). These data confirmed

that the genes in the IMS were able to accurately discriminate

influenza from other viral infections.

The IMS Score Distinguishes Symptomatic and
Asymptomatic Individuals with High Specificity and
Sensitivity
Similar to the MVS, we further explored the change in the IMS

scores after inoculation in an influenza challenge study (GSE:

GSE52428) and two influenza and bacterial pneumonia cohorts

(GSE: GSE20346 and GSE40012). Both pneumonia cohorts

profiled longitudinal samples that were obtained from patients

within 24 hr of their admission to an intensive care unit. The
unity 43, 1199–1211, December 15, 2015 ª2015 Elsevier Inc. 1203



Figure 4. The IMS Discriminates Influenza Infection from Bacterial Infections with High Specificity and Sensitivity in Multiple Cohorts
ROCs are for distinguishing patients with influenza infection from all other samples in a given cohort.

(A and B) For GSE40012, only samples on the first day of admission are used for violin plot (A) and ROC (B).

(C–H) Violin plots (C, E, G) and ROCs (D, F, H) for samples profiled with three microarray platforms in GSE6269 are displayed individually.

Error bars indicate mean ± SE for a given group of samples. Width of a violin plot indicates density of samples, where each dot represents a sample. See also

Figure S3.
challenge study allowed for analysis of the IMS scores during the

initial acute phase of infection, whereas the pneumonia cohorts

allowed for analysis of the IMS scores in patients with an estab-

lished infection as they progress through recovery and resolution

of symptoms.

Similar to theMVS scores, the IMS scores were unchanged for

asymptomatic volunteers inoculated with H3N2 or H1N1 but

increased significantly for symptomatic patients (Figures 6A

and 6B). Furthermore, an increase in the average IMS score of

symptomatic volunteers also preceded symptom onset in both

groups. For example, the IMS scores for all H3N2 symptomatic

volunteers were higher than for asymptomatic volunteers at

69.5 hr after inoculation (AUC = 1; Figure S4A), suggesting that

the IMS score correctly identified symptomatic volunteers prior

to symptom onset. For H1N1 volunteers, who showed symp-

toms later than the H3N2 group (Woods et al., 2013), the IMS

score also began to increase at a later time point as compared

to the H3N2 group, achieving maximum discrimination between

symptomatic and asymptomatic volunteers at 60 hr (AUC = 0.9;

Figure S4B), which was also prior to symptom onset in all H1N1

volunteers. Thus, the kinetics of IMS gene expression might pro-

vide prognostic capability in the clinic for tracking potential

morbidity after a known exposure by identifying susceptible indi-

viduals prior to symptom onset.

However, MVS and IMS behaved differently in the GSE52428

challenge study, where MVS achieved higher discriminatory po-

wer than IMS at the same time point after inoculation (Figures 6C

and 6D). For instance, 36 hr after inoculation, ROC AUCs were

0.94 and 0.65 in the H3N2 cohort for MVS and IMS, respectively.

Similarly for H1N1, 45.5 hr after inoculations, ROC AUCs were
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0.81 and 0.64 for MVS and IMS, respectively. Furthermore,

IMS scores of symptomatic volunteers remained higher than

those of asymptomatic volunteers at the end of the time course

(Figures 6A and 6B) and is in contrast to MVS scores that began

to decrease toward asymptomatic baseline levels at the same

time point (Figures 2C and 2D). These results suggested that

the MVS, a common transcriptional response to viral infection,

was turned on earlier than the influenza-specific response and

then also returned to baseline earlier than the influenza-specific

response.

In the pneumonia cohorts, our analysis showed that the IMS

score remained unchanged from baseline in healthy controls

and patients with bacterial pneumonia or SIRS (Figures 6E and

6F). In contrast, the IMS scores of the influenza pneumonia pa-

tients were significantly higher than those of bacterial pneumonia

(p = 3.35 3 10�13 in GSE40012 and p = 0.0017 in GSE20346) at

the time of admission and progressively decreased over time in

the influenza pneumonia patients (p = 1.3 3 10�5 in GSE40012

and p = 4.23 3 10�5 in GSE20346) (Figures 6E and 6F). The

mean IMS score in mixed pneumonia patients, defined as those

with both bacterial and influenza infections, were also signifi-

cantly higher at admission, decreased over time, and were indis-

tinguishable from those of influenza pneumonia patients, sug-

gesting that the IMS score is not confounded by co-infection

with bacterial pathogens.

IMS Score Is Significantly Higher in Vaccine Responders
than Non-responders
The ultimate goal of influenza vaccination is to induce the same

immune response as infection to induce amemory response, but
c.



Figure 5. The IMS Scores Distinguish Influenza-Infected Patients from Healthy Controls and Patients with Other Respiratory Viral Infections

but the MVS Scores Do Not

(A–C) In GSE34205 (A) and GSE42026 (B), samples from influenza patients and healthy controls were used for discovery of the IMS, but samples from RSV-

infected patients were not used. None of the samples from GSE38900 (C) were used for discovery of the IMS.

(D–F) All samples from GSE34205 (D) and GSE42026 (E) were used for identification of the MVS. None of the samples from GSE38900 (F) were used for

identification of MVS.

Error bars indicate mean ± SE for a given group of samples. Width of a violin plot indicates density of samples, where each dot represents a sample. See also

Figure S3.
without the corresponding pathology. Despite a large number of

influenza infection (Mejias et al., 2013; Parnell et al., 2012; Ramilo

et al., 2007) and vaccination (Franco et al., 2013; Furman et al.,

2013; Nakaya et al., 2011; Tsang et al., 2014) studies, no com-

mon transcriptional signature between influenza and vaccination

has been proposed. Therefore, we explored the change in the

IMS scores after influenza vaccination in three independent co-

horts of 310 individuals.

Tsang et al. (2014) (GSE: GSE47353) divided 63 vaccinated

(Fluvirin, Novartis) healthy individuals into three groups (low,

moderate, and high responders) that were defined as the lowest

20th percentile, 21st to 80th percentile, and above 80th percentile

of microneutralization titers, respectively. The IMS scores

increased significantly for the high (paired t test p = 0.008) and

moderate (paired t test p = 6.36 3 10�6) responders, but not

for low responders (paired t test p > 0.05) on day 1 after vaccina-

tion compared to day 0 (Figure 7A).

Unlike in Tsang et al. (2014), typically vaccine responders and

non-responders are defined based on 4-fold change in hemag-

glutination-inhibition (HAI) assay titers 28 days after vaccination.

Therefore, we used this definition to categorize responders and

non-responders in two independent vaccination cohorts (GSE:

GSE48018 and GSE48023 from Franco et al., 2013) and

explored whether the IMS scores showed difference between

vaccine responders and non-responders prior to the 28-day

mark. In a cohort of 128 females (GSE48023), the IMS scores

increased significantly on day 3 after vaccination in responders

for H1N1 (paired t test p = 0.002) and H3N2 (paired t test p =

0.015), but not in non-responders (paired t test p > 0.2) (Figures
Imm
7B and 7C). Similarly, in a cohort of 119 males (GSE48018), the

IMS scores increased significantly in responders for H1N1 and

H3N2 (paired t test p < 2.2 3 10�16) on day 1 after vaccination

for both H1N1 and H3N2 (Figures 7D and 7E). However, the

IMS scores also increased significantly in non-responders

(paired t test p < 0.01) for H1N1 and H3N2 in the male cohort,

although the increase in the non-responders after vaccination

was lower than the responders (Figures 7D and 7E). When we

used 4-fold increase in the microneutralization titers on

28 days after vaccination to define responders, the IMS scores

showed similar results for both cohorts (Figure S5). These results

show that the IMS score increases significantly in vaccine re-

sponders and could potentially serve as a marker for successful

vaccination.

The IMSScore Increases in Influenza-Infected Epithelial
Cells
We investigated whether the IMS response could be seen in

epithelial cells, the target cell population for influenza replication.

Indeed, in three independent datasets of 154 samples, the IMS

scores increased significantly in cell lines of epithelial origin

(Calu-3 and A549) after influenza infection (Figure S6).

Next, we compared the IMS scores in primary human bron-

chial epithelial cells (HBECs) after infection with influenza or

treatment with relevant ligands (Shapira et al., 2009). Shapira

et al. (2009) (GSE: GSE19392) used four different strategies to

highlight distinct components of the host response to influenza

infection: (1) infection with wild-type A/PR/8/34 (PR8) influ-

enza virus that can mount a complete replicative cycle; (2)
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Figure 6. IMS Score Is a Prognostic Marker of Influenza Infection
(A and B) IMS scores in symptomatic and asymptomatic subjects inoculated with influenza A (H3N2 in A; H1N1 in B). Smoothed lines indicate loess curves for

symptomatic and asymptomatic subjects. Gray bars indicate 95% confidence interval.

(C and D) Comparison of MVS and IMS scores in the same subjects inoculated with H3N2 (C) or H1N1 (D).

(E and F) Change in IMS scores in healthy controls and patients with non-infectious systemic inflammatory response, influenza pneumonia, bacterial pneumonia,

or both (influenza and bacterial pneumonia) during their stay in the hospital.

See also Figure S4.
transfection with viral RNA (vRNA) isolated from influenza parti-

cles, which does not result in the production of viral proteins or

particles; (3) treatment with interferon beta (IFN-b) to identify re-

sponses mediated through type 1 interferons (IFNs); and (4)

infection with a PR8 mutant virus lacking the NS1 gene

(DNS1), which normally inhibits vRNA- or IFN-b-induced path-

ways in host cells.
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IMS scores increased significantly for all strategies (Figure S7),

where the kinetics and magnitude of the increase in the IMS

score reflected the hierarchy of influenza virus detection in the

epithelial cells and host response. For example, at 18 hr after

infection, IMS scores were the lowest after infection with wild-

type PR8 influenza virus. However, the magnitude of the change

in the average IMS score at 18 hr after infection was higher for
c.



Figure 7. IMS Score Increases Significantly in Vaccine Responders

(A) Change in IMS scores on day 1 after vaccination for high (p = 0.008), moderate (p = 6.36 3 10�6), and low (p > 0.05) responders defined based on micro-

neutralization titers.

(B and C) Change in IMS scores for vaccine responders and non-responders, defined based on HAI titers, in a female cohort after influenza vaccination (H1N1 in

B; H3N2 in C).

(D and E) Change in IMS scores for vaccine responders and non-responders, defined based on HAI titers, in a male cohort after influenza vaccination (H1N1 in D;

H3N2 in E).

See also Figure S5.
cells exposed to influenza viral RNA, infected with PR8 influenza

virus lacking NS1 protein, or treated with IFN-b and is probably

due to the absence of the NS1 protein that inhibits vRNA- or

IFN-b-induced pathways in each of these conditions.

Furthermore, the increase in the IMS score was fastest in cells

treated with IFN-b (1.5 hr), slowest for infection with wild-type

PR8 influenza virus with or without NS1 protein (6 hr), and inter-

mediate for transfection with only viral RNA (4 hr). Taken

together, these differences in the timing of when the average
Imm
IMS score begins to rise suggests that the IMS consists of

host response genes that are directly or indirectly targeted by

the influenza virus to suppress the host response, evade detec-

tion, and dampen the effects of IFN-b.

DISCUSSION

The goal of this studywas to integrate gene expression data from

multiple heterogeneous sources to define both a conserved host
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response to respiratory viral infection and one specific to influ-

enza. These dual goals could be useful in multiple settings,

such as determining (1) the likely prognosis in a viral infection,

(2) the diagnosis of a specific viral infection, (3) identifying vac-

cine responders, and (4) uncovering new biological pathways

and possible drug targets for further study.

Using our previously described multi-cohort analysis frame-

work, we analyzed 26 independent cohorts from 18 datasets

consisting of 2,939 samples that were collected in 7 countries

and represented infections from 7 viruses and 4 bacteria in

whole blood, PBMCs, and epithelial cells to identify the MVS

and IMS that are robustly and consistently differentially ex-

pressed across age, gender, clinical time course, and illness

severity. Our results showed that the MVS is able to (1) distin-

guish virus-infected patients from those with bacterial infections

or healthy controls with high accuracy and (2) identify influenza-

infected subjects at risk for being ill before onset of clinical

symptoms. Although the clinical utility of the MVS might be

limited due to the large number of genes in the signature, it pro-

vides a potential starting point for simpler diagnostic gene sets.

Importantly, it has identified novel pathways to better under-

stand viral host response and identify targets for novel anti-viral

therapies. We also showed that the IMS (1) is specific to influ-

enza infection, (2) is able to distinguish influenza infection

from bacterial infections, (3) is predictive of clinical illness in

challenge studies, (4) is prognostic in influenza pneumonia pa-

tients, (5) is correlated with gene expression changes in sub-

jects responding to influenza vaccination, and (6) showed

different dynamics in males and females after influenza

vaccination.

Although several groups have proposed influenza infection-

specific gene sets, there is little overlap among them. For

instance, although the total number of genes reported by these

studies ranged from 25 to 615, none of the IMS genes were re-

ported by all studies. For example, the most reported gene,

MX1, was reported as being overexpressed by only seven data-

sets, whereas CD38was reported as overexpressed by only one

dataset. These observed discrepancies in the reported results of

influenza infection across multiple studies also underscore the

importance and advantage of using our rigorous integrated

multi-cohort analysis approach. It enables the researchers to

leverage the large amounts of publicly available datasets and

the biological and technological heterogeneity present among

them to create ‘‘Big Data’’ from multiple ‘‘Small Data’’ that are

better representative of the heterogeneity observed in the real-

world population. This approach has been previously found

to be effective at uncovering genes with consistent expression

profiles that are mechanistic, diagnostic, and therapeutic

(Chen et al., 2014; Khatri et al., 2013; Li et al., 2015; Mazur

et al., 2014; Sweeney et al., 2015).

Identification and validation of these robust and reproducible

signatures across multiple independent cohorts could in turn

enable further systematic global analyses. For instance, none

of the existing studies of influenza infection and vaccination

have explored how their proposed signatures relate infection

and vaccination to each other (Furman et al., 2014; Hu et al.,

2013; Li et al., 2014; Nakaya et al., 2011; Parnell et al., 2011,

2012; Ramilo et al., 2007; Tsang et al., 2014; Woods et al.,

2013). In contrast, we explored the IMS in three influenza vacci-
1208 Immunity 43, 1199–1211, December 15, 2015 ª2015 Elsevier In
nation studies to show that the same signature also correlates

with influenza vaccine response, thereby bridging the gap be-

tween influenza infection and vaccination because the IMS is

diagnostic and prognostic in influenza-infected patients and cor-

relates with vaccine response.

Compelling clinical data have shown that men and women

differ in their innate, humoral, and cell-mediated response to viral

vaccines (Klein et al., 2010). For example, testosterone can have

immunosuppressive role in response to influenza vaccination

(Furman et al., 2014). In line with this, the IMS scores changed

significantly in responders on day 1 for males and on day 3 for

females after vaccination. These results suggest that the effect

of sex differences on immune response might be more nuanced

in that males respond sooner to vaccination compared to fe-

males and that sex differences might also have an effect on

the dynamics of an immune response, not just its magnitude.

These results further suggest that future vaccination studies

should be designed to sample subjects more frequently in the

first 3 days after vaccination to further understand sex differ-

ences in immune response after vaccination.

Jenner and Young (2005) previously carried out an analysis of

785 samples in 32 studies. However, contrary to our integrated

multi-cohort analysis, which focused on identifying a robust

signature of viral infection, their analysis focused on identifying

a common transcriptional response to pathogenic infections ir-

respective of source (bacterial or viral). Furthermore, their anal-

ysis relied on a clustering of gene expression patterns across all

studies to identify a ‘‘common host response’’ of 511 genes,

where these genes were not ubiquitously expressed across all

datasets. Instead, we employed an established statistical

framework to account for the variability of gene expression,

array types, and the number of samples within each study. In

addition, all samples used in our analysis for the identification

of MVS and IMS were peripheral blood samples, whereas Jen-

ner and Young (2005) used samples from various sources

including cell lines, sorted immune cells, and other tissues (liver,

skin, astrocytes, fibroblasts, etc.). Because of these important

differences in study design, many genes identified by Jenner

and Young (2005) as those mediating inflammation were not

significantly differentially expressed in our analysis, because

they are probably overexpressed during both bacterial and viral

infections compared to uninfected individuals. However, a num-

ber of the IFN-inducible genes they identified were also overex-

pressed in our analysis, suggesting that although these genes

are overexpressed during bacterial and viral infections, they

have greater changes in their expression after influenza infec-

tion than bacterial infections.

Many type-1-interferon-stimulated genes (ISGs) have been

reported in the literature. However, depending on the cell

type, IFN dose, and time of treatment, the number of ISGs

can vary from 50 to 1,000 (Schoggins and Rice, 2011). Thus,

it has remained unclear which of these genes were most

relevant to influenza infection. Herein we identified a concise

influenza response signature with many ISGs. Indeed, IFN-b

treatment of HBECs suggests that some or all of the genes in

the IMS are stimulated by IFN. This finding indicates that

whereas ISGs are a common element among signatures, a

concise and specific gene subset features most importantly in

response to influenza.
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Although the IMS was identified using whole blood or PBMC

samples, most of the IMS genes were also overexpressed after

influenza infection in primary human bronchial epithelial cells

and lung adenocarcinoma cell lines A549 and Calu-3. These

results provide further evidence of the conservation of the

response to influenza infection and identify a correlation be-

tween the systemic immune response in blood and epithelium

at the onset of infection as has been observed before (Ioannidis

et al., 2012). However, not all IMS genes were overexpressed in

these in vitro studies. For example, as expected, CD38 was not

differentially expressed, since its expression is specific to lym-

phocytes (Moreno-Garcı́a et al., 2005; Sandoval-Montes and

Santos-Argumedo, 2005). These results suggest that the IMS

response to influenza infection is present in both circulating

blood and in separate tissue types.

This paper has some limitations. First, the MVS gene set might

include too many genes to allow for a simple clinical test; further

optimization might be needed before reduction to practice. Sec-

ond, the IMS signature was specific to influenza against the other

viral infections for which data were available, but there are other

clinical infections similar to influenza infection (i.e., parainfluenza

infection) that would need further testing. Finally, prospective

testing will be needed for both gene sets.

The commonality of the MVS across multiple viral infections

and specificity of the IMS for influenza infection suggest a num-

ber of potential applications. First, the MVS could serve as a

starting point to identify broad host factor targets for developing

broad-spectrum anti-viral drugs. Most of the existing anti-viral

drugs are based on the one-drug-one-bug philosophy, which

is inefficient and ineffective because viruses often mutate to

develop drug resistance and novel viral strains can emerge

from animal carriers. Instead, developing anti-viral drugs that

target host factors involved in multiple respiratory viral infections

could provide protection against a broader group of viruses and

be more effective against novel strains. Second, the IMS score

can be used clinically to distinguish influenza infections, regard-

less of whether there is concurrent bacterial pneumonia, which

could help clinicians to determine whether to initiate antiviral

treatments in patients with potential co-infections. Third, the

IMS score can be used as a more objective measure of a vacci-

nation response. Our results in influenza-vaccinated individuals

show that the IMS score increases significantly in responders

but remains unchanged in non-responders.

Finally, the specificity of IMS to influenza compared to other

respiratory viruses enables identification of a virus-specific im-

mune metric that can be applied to both vaccination and natural

infection studies, and might be a starting place for studies of dif-

ferential biology of influenza infection. In general, the ability to

define metrics for the immune system, such as we have done

here, goes beyond the concept of biomarkers and provides a

means to measure and understand functional and, potentially,

mechanistic pathophysiological relationships for other disease-

specific clinical cohorts.
EXPERIMENTAL PROCEDURES

Data Collection and Pre-processing

Our entire analysis was performed with publicly available data. We down-

loaded 18 microarray gene expression datasets from the NCBI GEO
Imm
comprising 2,939 samples derived from whole blood, PBMCs, epithelial cells,

or cell lines (Table S1). The samples in these datasets represented different

biological conditions including viral infections (influenza, RSV, HRV, SARS,

adenovirus, enterovirus, HHV6), bacterial infections (E. coli, S. aureus,

S. pneumonie, Salmonella), non-pathogenic systematic inflammatory

response, and healthy controls. We incorporated technical heterogeneity in

our analysis by choosing datasets that were profiled using microarrays from

different manufacturers. All datasets, except one (GSE: GSE19392), are whole

blood or PBMC samples obtained from patients with or without a viral infection

over wide range of ages (from fewer than 2 months to more than 60 years).

Furthermore, the samples were independently collected and profiled at 14

centers in 7 countries. Supplemental Experimental Procedures provide brief

description of each of these datasets.

For all datasets, we verified that the expression was normalized and log2-

transformed. For each study, we used the sample phenotypes as defined by

the primary publication of a source study. Microarray probes in each dataset

were mapped to Entrez Gene identifiers (IDs) to facilitate integrated analysis. If

a probe matched more than one gene, the expression data for that probe were

expanded to add one record for each mapped gene (Ramasamy et al., 2008).

Integrating Discovery Cohorts by Meta-analysis

We applied two meta-analysis methods as described in our previous publica-

tions (Figure S1; Tables S1 and S2): (1) combining effect sizes and (2)

combining p values (Chen et al., 2014; Khatri et al., 2013; Sweeney et al.,

2015). We estimated the effect size for each gene in each dataset as Hedges’

adjusted g. If multiple probes mapped to a gene, the effect size for each gene

was summarized via the fixed effect inverse-variance model. The study-spe-

cific effect sizes for each gene were then combined into a single meta ef-

fect-size using a linear combination of study-specific effect sizes, fi, where

each study-specific effect size was weighted by inverse of the variance in

the corresponding study. After computing meta effect-size, p values were cor-

rected for multiple hypotheses testing via Benjamini-Hochberg false discovery

rate (FDR) correction (Benjamini and Hochberg, 1995), and significant genes

were identified via Z-statistic.

We used Fisher’s sum of logs method (Fisher, 1934) for meta-analysis by

combining p values. For each gene, we summed the logarithm of the one-

sided hypothesis testing p values across k studies and compared the result

to a c2-distribution with 2k degrees of freedom.

In order to avoid influence of a dataset with a large sample size on the re-

sults, we removed one dataset at a time and applied both meta-analysis

methods at each iteration.We did not filter for heterogeneity between datasets

when identifying MVS because different viruses can induce various genes at

different levels. However, we ensured that there was no significant heteroge-

neity (p > 0.05) in effect size across all datasets for the IMS.

Meta Virus Signature and Influenza Meta-Signature Score

We defined the MVS score of a sample as the geometric mean of the normal-

ized, log2-transformed expression of the 161 overexpressed genes minus that

of the 235 underexpressed genes. We defined the IMS score of a sample as

the geometric mean of the normalized log2-transformed expression of the

11 overexpressed genes. We scaled and centered the MVS or IMS scores of

all samples in a given dataset (mean = 0, standard deviation = 1) to enable

comparisons between datasets. We used the Wilcoxon-Mann-Whitney

(Wilcoxon, 1945) or ANOVA to test whether there was a statistically significant

difference between the MVS or IMS scores of two groups.

If a dataset contained negative values, computing a geometric mean is not

possible. In these datasets, we usedmean of the normalized log2-transformed

expression values to compute the MVS and IMS scores.

Pathway Analysis

We performed functional pathway analysis via iPathwayGuide (Draghici et al.,

2007; Khatri et al., 2008; Tarca et al., 2009). Meta-effect size across all viral in-

fections was used as fold change in iPathwayGuide to identify significant path-

ways.We used FDR% 10%as a threshold for identifying significant pathways.

We performed network analysis of influenza-specific genes by IPA with an op-

tion to include only ‘‘direct relationship’’ to avoid spurious connections caused

by ‘‘indirect relations.’’ Direct relationships in IPA result from publications cit-

ing experimental evidence for an interaction.
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