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Abstract
Aims: Neurogranin (NRGN) is a postsynaptic protein kinase substrate that binds 
calmodulin in the absence of calcium. Recent studies suggest that NRGN is involved 
in neuropsychiatric disorders, including schizophrenia, ADHD, and Alzheimer's dis-
ease. Previous behavioral studies of Nrgn knockout (Nrgn KO) mice identified hy-
peractivity, deficits in spatial learning, impaired sociability, and decreased prepulse 
inhibition, which suggest that these mice recapitulate some symptoms of neuropsy-
chiatric disorders. To further validate Nrgn KO mice as a model of neuropsychiatric 
disorders, we assessed multiple domains of behavioral phenotypes in Nrgn KO mice 
using a comprehensive behavioral test battery including tests of homecage locomo-
tor activity and nesting behavior.
Methods: Adult Nrgn KO mice (28-54 weeks old) were subjected to a battery of 
comprehensive behavioral tests, which examined general health, nesting behavior, 
neurological characteristics, motor function, pain sensitivity, locomotor activity, anx-
iety-like behavior, social behavior, sensorimotor gating, depression-like behavior, and 
working memory.
Results: The Nrgn KO mice displayed a pronounced decrease in nesting behavior, im-
paired motor function, and elevated pain sensitivity. While the Nrgn KO mice showed 
increased locomotor activity in the open field test, these mice did not show hyper-
activity in a familiar environment as measured in the homecage locomotor activity 
test. The Nrgn KO mice exhibited a decreased number of transitions in the light-dark 
transition test and decreased stay time in the center of the open field test, which 
is consistent with previous reports of increased anxiety-like behavior. Interestingly, 
however, these mice stayed on open arms significantly longer than wild-type mice in 
the elevated plus maze. Consistent with previous studies, the mutant mice exhibited 
decreased prepulse inhibition, impaired working memory, and decreased sociability.
Conclusions: In the current study, we identified behavioral phenotypes of Nrgn KO 
mice that mimic some of the typical symptoms of neuropsychiatric diseases, including 
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Neurogranin (NRGN) is a neuron-specific protein that regulates 
calmodulin availability. Increases in postsynaptic calcium result in 
the release of calmodulin from neurogranin and participates in the 
protein kinase C signaling pathway.1,2 A genome-wide association 
study identified a significant association with schizophrenia at a 
locus near the NRGN gene in European populations.3 Children with 
Jacobsen syndrome, which involves attention deficit hyperactivity 
disorder (ADHD), have a deletion in the NRGN gene.4,5 In patients 
with Alzheimer's disease (AD), NRGN protein levels are decreased 
in the brain tissue6,7 and increased in the cerebrospinal fluid,8,9 
compared with healthy controls. Elevated NRGN peptide levels in 
the cerebrospinal fluid, which may reflect decreased NRGN pro-
tein levels in the brain,10 have also been reported in patients with 
mild cognitive impairment (MCI).11–14 These findings imply that 
NRGN might be involved in the pathophysiology and pathogene-
sis of various neuropsychiatric disorders. Since the generation of 
Nrgn knockout (Nrgn KO) mice,1 several behavioral studies have 
been carried out on these mice, and hyperactivity,15 deficits in 
spatial learning,16,17 impaired sociability,15 and decreased prepulse 
inhibition18 were identified, suggesting that these mice recapit-
ulate some symptoms of neuropsychiatric disorders. To further 
validate Nrgn KO mice as a model of certain neuropsychiatric dis-
eases, we assessed various behavioral domains in aged Nrgn KO 
mice using a comprehensive behavioral test battery19–21 (summary 
of the results and ages of the mice are available in the supplemen-
tary table).

We found that Nrgn KO mice exhibited a clear decrease in nest-
ing behavior compared with that in wild-type mice (Figure 1A; male, 
P < 0.0001; female, P = 0.0006), which may be analogous to the 
impaired executive function22,23 seen in patients with schizophre-
nia,24,25 ADHD,26,27 and AD.28 In the rotarod test, the mutant mice 
exhibited a shorter latency to fall than that of the control mice 
(Figure 1B; P = 0.0031), which may be analogous to the motor dys-
functions in schizophrenia, ADHD, and AD.25,29,30 The Nrgn KO mice 
showed a slight but significant decrease in the latency of the paw 
response in the hot plate test (Figure 1C; P = 0.023).

In the open field test, mutants were significantly more active than 
controls in the first 60 minutes of the test (Figure 1E; whole period, 
genotype effect, P = 0.0089; the first 60 minutes, P < 0.0001; the 

last 60 minutes, P = 0.618; time × genotype interaction, P < 0.0001), 
suggesting that the expression of hyperlocomotor activity in Nrgn 
KO mice was limited to novel environments. This finding is further 
supported by the results from the homecage locomotor activity 
test, which did not detect a significant genotype effect on distance 
traveled (Figure 1D; P = 0.6108), indicating that the hyperactivity of 
Nrgn KO mice disappeared in a familiar environment. Concordantly, 
the results from the open field test and homecage locomotor activity 
test indicate that Nrgn KO mice show increased locomotor activity 
in response to a novel but not to a familiar environment. Increased 
locomotor activity is also a common characteristic seen in other 
schizophrenia23 and AD31 mouse models.

In the open field test, the Nrgn KO mice spent significantly less 
time in the center of the field during the 2-hours session than the 
control mice (Figure 1E; P < 0.0001), which is generally interpreted 
as increased anxiety-like behavior. In the light-dark transition test, 
Nrgn KO mice tended to stay in the light compartment for less time 
than the control mice, but the difference was not statistically sig-
nificant (Figure 1F, left panel; P = 0.4261). In the same test, Nrgn 
KO mice also exhibited a decreased number of transitions between 
light-dark compartments (Figure 1F, middle panel; P = 0.0233) and a 
tendency of increased latency to enter the light chamber (Figure 1F, 
right panel; P = 0.0525), suggesting increased anxiety-like behavior in 
the mutant mice, which has also been reported previously.16 In con-
trast, in the elevated plus maze, Nrgn KO mice showed significantly 
increased entries into open arms and time on open arms (Figure 1G; 
P = 0.0492 and P = 0.0168, respectively). The paradoxical changes in 
behavioral measures for anxiety-like behavior in Nrgn KO mice may 
be attributed to the increased reactivity to novelty that we found 
in the present study, panic-like behavior,23 or elevated impulsivity.32 
The blood corticosterone concentration in the Nrgn KO mice after 
the elevated plus maze was not significantly different from that in 
the wild-type mice (Figure S2C, P = 0.5517). The Nrgn KO mice also 
showed a significantly higher incidence of falling from the maze than 
the control mice (Figure 1G; P = 0.0076; chi-square test). All of the 
Nrgn KO mice that fell stepped off the open arms backwards rather 
than forwards and clung to the arms to prevent the fall, suggesting 
that the increased incidence of falls in mutant mice is likely acciden-
tal and due to impaired motor function, as seen in the rotarod test. 

impaired executive function, motor dysfunction, and altered anxiety. Most behavioral 
phenotypes that had been previously identified, such as hyperlocomotor activity, im-
paired sociability, tendency for working memory deficiency, and altered sensorimotor 
gating, were reproduced in the present study. Collectively, the behavioral phenotypes 
of Nrgn KO mice detected in the present study indicate that Nrgn KO mice are a 
valuable animal model that recapitulates a variety of symptoms of neuropsychiatric 
disorders, such as schizophrenia, ADHD, and Alzheimer's disease.
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F I G U R E  1   Decreased nesting behavior, selective increase of locomotor activity in a novel environment, and paradoxically increased 
open arm exploration in Nrgn KO mice (A) Nesting behavior. (B) Motor function. (C) Latency of the first fore or hind paw response in the 
hot plate test. (D) Locomotor activity in homecage. (E) Locomotor activity, vertical activity, time stayed in the central area, and number of 
stereotypic behaviors in the open field test. (F) Time spent in the light compartment, number of light-dark transitions, and latency to enter 
the light compartment in the light-dark transition test. (G) Percentage entries into open arms of the total number of entries to all arms and 
percentage of time on open arms of the total duration of the experiment in the elevated plus maze test. Data represent the mean ± SEM. 
ANOVA (in A, C, F, and G) or repeated measures ANOVA (in B, D, E) were used for the statistical analysis. g: genotype effect; s: sex effect; 
g × s: genotype and sex interaction; g × t: genotype and time interaction. For data where a significant sex effect was observed (body weight, 
body temperature; indexes in light/dark transition test, T-maze test, and open field test), the male and female data are shown separately in 
the supplementary figures. Significant interactions between genotype and sex effects, which suggest the sex dependence of the expression 
of the genotype effect, were not detected in any of the tests (see supplementary table for the summary of all the results) [Colour figure can 
be viewed at wileyonlinelibrary.com]
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These behavioral phenotypes may recapitulate the altered anxiety 
states seen in patients with neuropsychiatric disorders.33,34

We also reproduced behavioral phenotypes in the mutant 
mice that have been reported (available as supplementary mate-
rials). The Nrgn KO mice exhibited decreased prepulse inhibition18 
(Figure S5; prepulse inhibition [%]; P = 0.0315), decreased immo-
bility15 in the Porsolt forced swim test (Figure S5; immobility [%] 
on day 2; P = 0.067), and a tendency of decreased sociability and 
social preference in male mice15 (Figure S4, F, and G; time spent 
around a stranger cage [ratio]; P = 0.2069 and P = 0.3295, re-
spectively). Female mutant mice showed a significantly decreased 
ratio of time spent around stranger cage both in sociability and so-
cial preference tests, while sexual attraction of the male stranger 
mice might have confounded their social behaviors (Figure S4, H 
and I; time spent around a stranger cage [ratio]; P = 0.0054 and 
P = 0.0145, respectively). Consistent with the tendency of im-
paired working memory in the radial-arm maze reported previ-
ously,17 in the present study, Nrgn KO mice showed a statistically 
significant decrease in correct responses (Figure S6; correct re-
sponses [%]; P = 0.0062) as measured by the T-maze spontaneous 
alternation test.

Overall, Nrgn KO mice recapitulate a variety of the typical symp-
toms of schizophrenia, ADHD, and AD, including impaired executive 
functions, motor dysfunction, increased activity in response to nov-
elty, and altered anxiety levels, which we found in the present study. 
We also reproduced most of the behavioral phenotypes that were 
previously reported. Until recently, Nrgn KO mice have been sug-
gested to be an animal model of schizophrenia and Jacobsen's syn-
drome with ADHD symptoms,15 as these mice show hyperactivity,15 
altered anxiety-like behavior,16 decreased sociability,15 impaired ref-
erence memory,15–17 and impaired sensorimotor gating.18 Behavioral 
phenotypes of commonly used AD model mice such as decreased 
nesting behavior,31,35–37 hyperactivity,31,37–41 impaired sociability,35 
impaired working/reference memory,31,35,38,39,42–45 and abnormal 
sensorimotor gating46,47 overlap with those of Nrgn KO mice, which 
suggests the potential of Nrgn KO as a model of AD. Considering this, 
a decrease in NRGN in the brains of AD model mice48 and AD pa-
tients6,7 may potentially explain some of the phenotypes or symp-
toms, respectively. Taken together, the behavioral phenotypes of Nrgn 
KO mice indicate that Nrgn KO mice might be a valuable animal model 
for further investigation of the pathophysiology and pathogenesis of 
neuropsychiatric disorders, including schizophrenia, ADHD, and AD.
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