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Abstract: Nanogel is a promising drug delivery approach to improve the pharmacokinetics and phar-
macodynamic prospect of phytopharmaceuticals. In the present review, phytopharmaceuticals with
astonishing therapeutic utilities are being explored. However, their in vivo delivery is challenging,
owing to poor biopharmaceutical attributes that impact their drug release profile, skin penetration,
and the reach of optimal therapeutic concentrations to the target site. Nanogel and its advanced
version in the form of nanoemulgel (oil-in-water nanoemulsion integrated gel matrix) offer better
therapeutic prospects than other conventional counterparts for improving the biopharmaceutical
attributes and thus therapeutic efficacy of phytopharmaceuticals. Nanoemulgel-loaded phytophar-
maceuticals could substantially improve permeation behavior across skin barriers, subsequently
enhancing the delivery and therapeutic effectiveness of the bioactive compound. Furthermore, the
thixotropic characteristics of polymeric hydrogel utilized in the fabrication of nanogel/nanoemulgel-
based drug delivery systems have also imparted improvements in the biopharmaceutical attributes
of loaded phytopharmaceuticals. This formulation approach is about to be rife in the coming decades.
Thus, the current review throws light on the recent studies demonstrating the role of nanogels in
enhancing the delivery of bioactive compounds for treating various disease conditions and the
challenges faced in their clinical translation.

Keywords: nanogels; phytopharmaceuticals; biopharmaceutical attributes; nanoemulgel; thixotropy;
skin permeation; therapeutic efficacy

1. Introduction

Amongst all controlled-release drug delivery systems (such as polymeric nanoparticles
and lipid nanoparticles) hydrogels hold unique and substantial importance owing to their
thixotropic or sol-gel interconvertible nature. The global sales forecast for hydrogel-based
carrier systems is expected to reach a compound annual growth rate (CAGR) of 7.5% from
2021 to 2028 [1]. Hydrogel is one of a kind owing to its characteristic thixotropic property
and tunable stiffness (0.5 kPa to 5 MPa) that allow it to be comparable to different soft
tissues in the human body [2–4]. Hydrogels are three-dimensional polymeric matrices that
can imbibe water in large quantities and mimic biological tissues in their swollen state.
These attributes of hydrogel make them potential vehicles for encapsulating and delivering
bioactive molecules/drugs to the target sites. Hydrogels can very efficiently control the
availability of bioactive molecules/drugs to target cells and tissues over a particular range
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of time. Moreover, the bioactive compound or drug remains protected in the cross-linked
network of the hydrogel by the restricted penetration of various degrading enzymes [5].

At present, hydrogels are being explored in various branches of medicine, including
pain management, wound healing, cardiology, and oncology [5]. Hydrogels can fall in a
wide spectrum of length scales traversing from centimeters to sub-nanometres (nanogels)
that dictates the routes by which hydrogels are delivered into the human body [5]. Nanogels
serve as vehicles for bioactive molecules/drugs by expediting the absorption or desorption
of fluids as a result of environmental changes, including temperature, the presence of
enzymes, ionic strength, and pH [6–8]. Interestingly, despite nanogels being hydrophilic in
nature, they do not get dissolved, rather they swell in the aqueous milieu in vivo attributed
to their structured cross-linked network. These structural crosslinks are formed via hydro-
gen bonding, covalent bonding, Van der Waals interactions, or physical tangling (also called
crystallites) [9,10]. This characteristic cross-linked structural network of nanogels allows
bioactive molecules/drugs to remain entrapped inside such a three-dimensional matrix
for controlled and site-specific release [9–13]. Nonetheless, there are several challenges in
encapsulating lipophilic compounds in nanogel matrices, therefore, distinctive approaches
are being explored to address these concerns. Upon being swelled up, nanogels become
soft and rubbery, possessing low interfacial tension with the aqueous environment and
biological fluid [9,13]. Therefore, they tend to simulate body tissues and this property is
explicitly used in pharmaceutical drug delivery. Moreover, the elastomeric consistency of
the nanogels mitigates mechanical friction between tissues. In this review, the thixotropic
property of nanogels is also profoundly discussed. The mechanical strength, thixotropic
characteristics, and functionality of nanogel are governed by the physicochemical prop-
erties of the polymers it is made up of. The polymeric properties are dictated by various
crucial factors including the chemical nature of the monomer, molecular weight, method
of polymer synthesis, and macromolecular structure. The characteristic physical structure
of the polymer depends on the intensity of the covalent linking, rigidity of bonding, and
strength of intermolecular forces inside the polymer chain [9,12–16]. The classification
of nanogels is based on various significant properties including the polymeric source
(natural, synthetic, or hybrid), structural configuration (semi-crystalline or amorphous),
nature of cross-linking (chemical or physical), and electric charge of the network (ionic
or neutral) [9,13–21]. The distinctive absorption potential of nanogel is because of the
presence of special hydrophilic moieties (such as -OH, -CONH, -CONH2), in the polymeric
components [9,17–24].

In the current scenario, herbal or bioactive compounds have gained splendid attention
as protective or adjunct therapy in the management of various disorders. The bioactive
compounds of natural origin mainly include flavonoids, alkaloids, glycosides, phytosterols,
isothiocyanates, saponins, and phenolic acid [25,26]. The phytopharmaceutical terminology
covers bioactive compounds (molecular structure illustrated in Figure 1) of phytochemical
origin which possess distinctive therapeutic value owing to their potential antioxidant
activity, the enrichment of micronutrients, and the ability to preclude the origin of chronic
and degenerative ailments [27–29].

Despite phytopharmaceuticals being substantially capable of treating severe disorders,
there are ample numbers of hurdles before they can exert their optimal therapeutic effect.
These biopharmaceutical challenges include the low bioavailability of bioactive compounds
owing to their low solubility, low permeability, susceptibility to enzymatic degradation, and
inability to reach the target sites [30]. Encapsulating the bioactive compounds in nanogels
can address these issues very well [31–36]. This idea of the delivery of potentially bioactive
compounds employing encapsulation in nanogel cross-linked matrices for the treatment
of prevalent skin disorders is quite promising (illustrated in Figure 2). More specifically,
nanoemulgel has demonstrated astounding benefits for improving the delivery of these
bioactive agents with poor biopharmaceutical attributes in comparison to conventional
hydrogel formulations.
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Nanoemulgel being a drug delivery vehicle consists of oil-in-water nanoemulsion en-
capsulating therapeutics of lipophilic nature, uniformly dispersed in this drug-loaded emul-
sion system into a hydrogel-based matrix with the consistency of a semi-solid state [34,35].
The nanoemulgel is capable of improving the dissolution and absorption of encapsulated
bioactive compounds in the nanoemulsion system and further controlling and delaying
its release due to outside gel embodiment at the target site [33,36]. Therefore, the con-
trolled and sustained release of a therapeutic moiety at the target site could be achieved,
along with substantially improved bioavailability and the accomplishment of optimal
therapeutic concentration through a nanoemulgel-based drug delivery system. Therefore,
in the present manuscript, nanoemulgel preparation that has considerably modified the
biopharmaceutical attributes and enhanced the therapeutic efficacy of phytopharmaceuti-
cals is emphasized [37–40]. In the preceding literature, nanogels have been elucidated as
nanocarriers predominantly for the delivery of synthetic drugs/pharmaceuticals. There
are a plethora of studies available that have explored the potential of lipid-based carriers
such as liposomes, nanoemulsions, and polymeric nanoparticles for the delivery of plant-
origin therapeutics including herbal extracts [30,33–36]. However, limited studies have
highlighted the potential of nanogels being a delivery vehicle for bioactive molecules of
plant origin.
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Thus, the current review throws light on the recent studies demonstrating the role
of nanogel/nanoemulgel in improving the delivery of phytopharmaceuticals in various
disease conditions and the challenges faced in their clinical translation.

2. Thixotropic Property/Rheological Behavior of Nanogels and Its Clinical Significance

The change in the viscosity of nanogel under shear stress (thixotropic nature) finds
substantial importance in governing the therapeutic efficacy and performance of incor-
porated active ingredients via any route of administration, be it topical, oral, mucosal,
or ophthalmic. For nanogels to exert efficacious therapeutic action, the non-Newtonian
behavior of the thixotropic sol-gel system is highly desirable [41]. This non-Newtonian
behavior is dictated by a yield value that is going to structurally break down the solid
network system of gel and convert it into a sol state to facilitate plastic flow. The greater
this yield value, the stronger the gel network, and the better the therapeutic performance
of the nanogel system. Thixotropy is that inclusive characteristic of a nanogel that is going
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to govern the release behavior, retention efficacy, and systemic bioavailability (in the case
of oral preparations) of a therapeutic agent from a loaded nanogel formulation [41]. The
thixotropy of a nanogel formulation system depends upon its degree of dispersion and
shear history.

The release of a therapeutic agent from a highly interconnected network system is
controlled by the influx of water from components of body fluids and the rheological
properties of nanoemulgel. The influx rate of body fluids serves as a crucial factor that
controls the yield value by swiftly diffusing into the solid matrices of a sol-gel system of
nanogel. The yield value of nanogel is further dictated by the intensity of cross-links formed
and the hydration level upon the incursion of fluid, which, in turn, will govern the release
profile of the encapsulated therapeutic agent [41–43]. In a study, it was demonstrated that
gel composed of a polyethylene glycol (a Newtonian formulation) matrix spontaneously
dissolved upon exposure to simulated saliva, whereas a gel matrix comprising a mixture
of Carbopol and polyvinyl-phenol (a non-Newtonian formulation) swelled and formed a
viscous barrier to drug release, and the release of a therapeutic agent was governed by the
degree of hydration and thixotropic property [41,44]. Such study findings suggest that the
improvement of the gelation process or cross-linking by the components of physiological
fluids have a significant influence on controlling the release of a loaded therapeutic agent
from the thixotropic nanogel formulations in the oral route of drug administration.

Importantly, before any topical nanogel formulation is subjected to in vivo evalua-
tion, it is assessed for its rheological profile, which includes spreadability behavior, and
retention characteristics over the affected area after application [41]. All of these phenom-
ena are based on attaining a specific yield value, employing manual force that leads to
the conversion of gel state to sol state and thus makes nanogel easily extrude out of the
container, spread over the application site, and adhere there for long enough to exert a
therapeutic effect. Here also, non-Newtonian rheological behavior is highly desirable [41].
The higher the yield value, the greater the force required to spread the nanogel formula-
tion over the application area. In the case of a burn wound, a low yield value is needed
for the easy spreadability of the formulation to circumvent the pain of the application
of the formulation over the burnt site [41]. Recently, Algahtani et al. designed and de-
veloped a thymoquinone-loaded nanoemulgel system for topical application in excision
wounds [45]. The developed nanoemulgel system was prepared to utilize Carbopol 940
as a gelling agent at a concentration of 0.5% w/w. It was observed that the rheological
profile of the nanoemulgel system and placebo gel demonstrated similar characteristics
(sol-gel behavior) upon the application of shear rate (illustrated in Figure 3a,b). It indicates
that the thixotropic characteristics of the Carbopol 940 hydrogel system are not affected
by the addition of a phytopharmaceutical-loaded nanoemulsion system and confirms its
suitability in the design of nanogels for bioactive therapeutics of plant origin. Furthermore,
the spreadability behavior of the Carbopol 940 hydrogel system was not affected by the
addition of a phytopharmaceutical-loaded nanoemulsion system (illustrated in Figure 3c)
and indicates its suitability for topical application.

Therefore, in the case of topically applied gel formulations, the thixotropy property
also plays an ultimate key role in governing the biopharmaceutical performance of nanogel.
In the subsequent section, the biopharmaceutical characteristics of nanogel loaded with
phytopharmaceuticals as therapeutic agents have been investigated in recent studies and
are being discussed in detail.
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3. Overview and Biopharmaceutical Characteristics of Phytopharmaceutical-
Containing Nanogels

Plant species serve as a massive reservoir of medicinally active compounds, whose
usefulness and functionality are untapped until today [46]. The obstacles encountered
with the administration of phytochemical compounds for treating ailments include limited
stability, poor aqueous solubility, and low bioavailability, which restrict their therapeutic
efficacy [47,48]. Recently, those investigations are gaining momentum that explores the
use of herbal compounds and oils for the treatment of various ailments. The introduction
of nanotechnology in the arena of herbal bioactive compound delivery has renovated
the results of therapeutic interventions [48]. The loading of a bioactive compound into
the nanosized preparations certainly improves its physicochemical and pharmacokinetic
attributes, subsequently resulting in improved therapeutic prospects [48]. Nanogels present
a promising formulation approach in this context for improving the solubility, penetrability,
stability, pharmacokinetic fate, and overall therapeutic efficacy of bioactive compounds.
The specific range of sizes and shapes of nanoparticulate delivery vehicles in nanogel
systems allows the bioactive compound to attain substantial targetability in the body and
the interconvertibility of sol-gel states results in the prolonged interaction of the nanogel
system with the diseased tissue/application site [47,48]. The phytochemical compounds of
different classes (alkaloids, phenols, fatty acids, and terpenoids) have been exploited to
improve their biopharmaceutical characteristics through the nanogel formulation approach
to accomplish optimal therapeutic effects, as discussed hereunder.
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3.1. Phytopharmaceuticals of Alkaloids Category

The bioactive compounds that fall under the alkaloids category present a plethora of
therapeutically active agents. Alkaloids are heterocyclic nitrogenous compounds and can
be classified as pyrrolidines, quinolines, phenanthrenes, purines, or imidazoles based on
their molecular structure [48,49]. Amongst various alkaloids of different classes, the most
explored bioactive compounds that have utilized nanogels as a delivery vehicle to enhance
their biopharmaceutical performance include berberine, capsaicin, and brucine.

3.1.1. Capsaicin

Capsaicin has been studied for its therapeutic prospects in various diseases, including
several carcinomas, rheumatoid arthritis, and diabetic neuropathy, and studies have es-
tablished it to be extremely effective as a phytopharmaceutical [50,51]. However, its short
half-life (7.06 min), extensive first-pass metabolism, pungency, and patient non-compliance
hamper its clinical applicability for treating the aforementioned disorders. To overcome
these limitations, attempts were made to encapsulate capsaicin in nanogel to overcome the
hurdles in attaining its optimal therapeutic effect. The nanogel formulation of capsaicin
resulted in substantially enhanced skin permeation as compared to the conventional gel
system. Therefore, employing the encapsulation of capsaicin in nanogel formulations, its
physicochemical properties such as size and shape were modulated in a way that facilitated
its improved transdermal administration in patients with diabetic neuropathy [50].

3.1.2. Berberine

Berberine, an isoquinoline alkaloid, possesses a huge amount of therapeutic activities,
including a reduction in blood sugar, improvement in cardiovascular disorders, and signif-
icant antimicrobial activity against several microbes [52]. However, there are significant
biopharmaceutical challenges (poor permeability, low gastrointestinal stability, limited
aqueous solubility) with its delivery, which can supposedly be addressed by employing a
nanogel formulation approach. Amato et al. have reported that 50% of loaded berberine
is released from the nanogel system within 45 min [53]. In another investigation, Xu et al.
reported improvement in the biopharmaceutical characteristics of berberine through de-
signing a nanoemulsion system for oral application [54]. This developed nanoemulsion
system could be converted into a nanoemulgel system and would be a promising approach
to improving the biopharmaceutical characteristics of berberine after topical application.

3.1.3. Brucine

Interestingly, Brucine possesses anti-inflammatory and anti-nociceptive activity that
can be explored to relieve arthritis and traumatic pain. However, its clinical utility is
considerably hindered by its low aqueous solubility, gastrointestinal complications, and
systemic toxicity that might occur after its oral administration. Brucine nanoemulgel
with specific particle size, spreadability, and viscosity altogether improved its release and
permeation profile. The ex vivo drug permeation of the Brucine nanoemulgel formulation
system on rat skin demonstrated significantly boosted permeation and the markedly
increased transdermal flux of Brucine nanogel as compared to Brucine suspension [55]. The
results of this investigation may provide an approach to improving the biopharmaceutical
characteristics of natural bioactive products utilizing a nanoemulgel formulation system.

3.2. Phytopharmaceuticals of the Fatty Acids Category

Fatty acids (saturated and unsaturated) represent an enormous source of therapeuti-
cally functional compounds whose usage is highly encouraged by exploiting the nanogel
formulation approach. Based on the results of solubility and compatibility studies, the
priority of researchers is always to go for an oil of herbal origin into which to load the
lipophilic therapeutically active agent [56]. Oleic acid is being widely explored as a formu-
lation excipient in many nanoparticulate formulations [57]. Other than olive oil, oil from
Nigella sativa seeds is also being investigated for therapeutic application employing the
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nanogel formulation approach. Recently, Algahtani et al. have designed and developed
a nanoemulgel system containing the oil of Nigella sativa seeds for topical application on
excision wounds [45]. The nanoemulsion in the nanoemulgel system may provide greater
surface area for the deeper skin penetration of fatty acid oil in a form of nano oil droplets
after topical application in different disease conditions.

3.3. Phytopharmaceuticals of the Phenolic Category and Related Compounds

The phenolics class of compounds exhibits innumerable therapeutic properties [58].
Phenolic compounds comprise complex molecules including coumarins, flavonoids, tan-
nins, anthraquinones, and stilbenes [59].

3.3.1. Rutin

Rutin is one of the widely explored bioactive compounds of this class in various
nanoparticle formulations attributed to its significant antioxidant, neuroprotective, car-
dioprotective, and anticancer properties [48]. Its chitosan/poly (acrylic acid) nanogel
formulation was formulated by Radwan and Ali and has demonstrated noteworthy im-
provement in the percentage of rutin release at alkaline pH (7.4) compared to the acidic
pH (2.0) of the release media [60]. This system was developed for oral administration. It is
anticipated that if rutin is encapsulated in nanoemulgel it would considerably improve its
biopharmaceutical characteristics such as drug release and thus permeability across biolog-
ical barriers owing to the nano-range globule size and the desirable surface morphology of
nanoemulgel systems developed for topical application.

3.3.2. Hesperetin, α-Mangostin

Another important bioactive compound is hesperetin, which is a flavanone-glycoside
found in citrus fruits and possesses potent therapeutic activities, including lipid regulating,
anti-inflammatory, and anticancer activities [61]. α-mangostin, belonging to this class of
compound, has been reported to possess antibacterial and anti-inflammatory activity [62,63].
All these compounds suffer limited aqueous solubility-related problems which lead to poor
biopharmaceutical performance and low therapeutic efficacy compared to the formulation
design developed without the utilization of nanotechnology [64].

3.3.3. Resveratrol, Curcumin

Resveratrol is another compound of this class that possesses potential anti-inflammatory,
anticarcinogenic, cardioprotective, and neuroprotective activities [65]. However, its inabil-
ity to cross the skin membrane owing to poor aqueous solubility is the major hurdle in
attaining its optimum therapeutic effect through the topical route of drug administration.
Another bioactive compound that is of great interest to researchers is curcumin; how-
ever, it also has major pharmaceutical setbacks due to poor water solubility and limited
stability [66–70]. Therefore, the poor skin penetration of polyphenols and their confinement
to the stratum corneum layer were reported as one of the major issues in their topical and
transdermal administration [65].

In the current scenario, a lot of the focus of scientists has shifted towards the encap-
sulation of phenolic bioactive compounds in novel nanogel, intending to improve their
target reach and accumulation [65]. In an interesting study, the delivery of resveratrol and
curcumin encapsulated nanogel carriers was shown to significantly improve their skin-
delivery and wound-healing potential [65]. The improved skin delivery of these phenolic
compounds was attributed to the improved physicochemical properties of resveratrol and
curcumin employing nanoemulgel formulations. The nanometer-sized system assured
efficient deposition into the deep layers of the skin. It has been established in various
studies that particles smaller than ≤300 nm could reside in the deep skin layers [71], and
therefore nanometric size range could facilitate the deeper skin permeation of polyphenols
through the utilization of nanogel as a delivery vehicle. Moreover, the prepared negatively
charged nanoparticles also contributed to absorption across skin layers. The sufficient
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viscosity of the nanoemulgel is also required for assuring the sufficiently delayed retention
and adhesivity of the nanogel formulation. This is how these biopharmaceutical character-
istics, namely particle size, surface charge, and viscosity, could contribute significantly to
improving the delivery of polyphenols into the deeper skin layers.

3.3.4. Naringenin, Quercetin

In an interesting study finding, naringenin nanoemulgel was designed and charac-
terized for topical application in chronic wound conditions with the intent to improve
drug release and skin absorption and limited the biopharmaceutical fate of naringenin.
The physicochemical properties of naringenin nanoemulgel, namely globule size, surface
charge, viscosity, mucoadhesive property, and spreadability, were critically optimized. The
results of in vitro release studies demonstrated remarkable improvement in naringenin re-
lease from the formulated nanoemulgel, attributed to the nanometric size of the oil globules
(145.58 ±12.5) of the dispersed phase [72]. Therefore, by duly modifying the physicochemi-
cal properties of nanoemulgel, a significant modification in the release and thus dissolution
profile can be brought about by employing a nanogel formulation. Furthermore, in another
study, a nanoemulgel of quercetin, (a potent antimicrobial and anti-inflammatory agent)
was formulated to improve its solubility and bioavailability for the treatment of periodonti-
tis. The formulated nanoemulgel exhibited a significantly increased release of quercetin
(92.4%) as compared to that of pure quercetin-loaded gel (<3% release) [73]. These study
findings are clear evidence of the enhancement of the biopharmaceutical prospects of a
phenolic compound employing a nanogel formulation.

3.4. Phytopharmaceuticals of Terpenoids Category

Terpenoids, structurally built of isoprene blocks, are the major plant-derived secondary
metabolites owning an assortment of pharmacological activities [74,75].

Thymoquinone

Thymoquinone is a potent and efficacious terpenoid with substantial therapeutic activ-
ity against multiple ailments. Nonetheless, its very low aqueous solubility and inadequate
skin permeability limit its clinical applicability [76]. A nanoemulgel system was designed
and characterized to improve the delivery of thymoquinone [45]. The size of formulated
nanodroplets was less than 100 nm, which lead to notable improvement in the release
profile of thymoquinone from the nanoemulgel system (Illustrated in Figure 4).

Moreover, the developed nanoemulgel system of thymoquinone has pseudoplastic
behavior with thixotropic properties that greatly improve the topical efficacy of thymo-
quinone. It was demonstrated in the study outcome that the thymoquinone nanoemulgel
system exhibited significantly augmented skin penetrability and deposition characteristics
post-topical administration in comparison to the conventional hydrogel system. One of
the reasons for the greatly improved skin penetration is the presence of the nanoemulsion-
loaded thymoquinone system in gel, as nanoemulsions provide an enormous surface area
for the better penetration of therapeutic agents into the pilosebaceous region, resulting in
better efficacy [45].

From the above studies, it can be concluded that a nanoemulsion-based hydrogel
system (nanoemulgel) could greatly improve the drug release profiles, absorption (across
deeper skin layers), retention in the targeted area, and overall biopharmaceutical fate of
encapsulated bioactive compounds (illustrated in Figure 5), summarized in Table 1.

The therapeutic performance of nanogel-loaded phytopharmaceuticals investigated in
a recent study is reviewed and discussed in detail in the subsequent section for different
disease conditions.
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Table 1. Physicochemical characteristics and biopharmaceutical performance of phytopharmaceutical-
containing nanoemulgel systems.

Active Agent Gelling Agent Physical Characteristics Biopharmaceutical Performance Ref.

Thymoquinone Carbopol 940
(0.5% w/w)

Mean droplet size of incorporated
nanoemulsion <100 nm, pseudoplastic
behavior with thixotropic properties.

Significant increase (p < 0.05) in skin
permeability and deposition profile. [45]

Capsaicin Carbopol 940
(1% w/w)

Pseudoplastic behavior of the
nanoemulgel and decrease in viscosity

with an increase in the shear rate.

Nanoemulgel revealed a four-fold
improvement in capsaicin’s
cumulative permeation in

comparison to the conventional gel.

[50]

Brucine

Sodium
carboxymethylcel-

lulose
(1% w/w)

Higher drug release from nanoemulgel
formulation compared to

emulgel formulation.

Skin permeation of Brucine through
rat skin was found to be greatly

improved in the case of the
nanoemulgel system compared to

the drug solution.

[55]

Resveratrol and
Curcumin

Carbopol
(2.5% w/w)

Viscosity of nanoemulgel was found to
be 16,020 ± 30.87 cp and particle size of

nanoemulsions was 180 ± 5.20 nm.

Significant retention of the
phytopharmaceuticals in the skin
through nanoemulgels, reaching
about 60% of the applied dose,

observed after 48 h.

[65]

Naringenin
Carbopol 934 and

Carbopol 940
(1%, 1.5%, 2% w/v)

Uniform dispersion (PDI, 0.452 ± 0.03)
of the nanometric globules

(145.58 ± 12.5) of the dispersed phase
and good spreadability.

Improved and sustained release up
to a maximum of 74.62 ± 4.54%

from the developed nanoemulgel
within the time frame of 24 h.

[72]

Quercetin Poloxamer
(23% w/v)

Viscosity was 408.3 ± 0.5 cPs at
26 ± 0.5 ◦C and 30,647.5 ± 0.3 cPs at

37 ± 0.5 ◦C, demonstrating the sol-gel
nature of the formulation.

The developed nanoemulgel
exhibited a significant release of

92.4% of quercetinat the end of 6 h,
as compared to that of pure

quercetin-loaded gel (<3% release).

[73]

4. Current Trend and Future Prospects of Phytopharmaceutical-Containing
Nanoemulgel for Treating Acute/Chronic Disorders

The bioactive compounds loaded in nanogel/nanoemulgel preparations are being
actively explored for pre-clinical evaluations. The promising study findings of the in vitro
release and ex vivo skin penetration of nanogel formulations containing bioactive com-
pounds, as discussed in the earlier section, compel researchers to go further for the pre-
clinical evaluation of these formulations for different pharmacodynamic activities in a
suitable animal model.

4.1. Anti-Inflammatory and Anti-Nociceptive Activity

For instance, when Brucine-loaded nanoemulgel showed markedly enhanced skin per-
meation (as discussed in an earlier section), it was further evaluated for anti-inflammatory
and anti-nociceptive activity [55]. For assessing anti-inflammatory activity, the carrageenan-
induced rat hind paw edema method was utilized, and for evaluating anti-nociceptive activ-
ity, the hot plate method and acetic acid-induced writhing test were employed for Brucine
nanoemulgel and comparison formulations in male BALB/c mice. The study outcome
revealed the efficient anti-inflammatory and anti-nociceptive potential of Brucine-loaded
nanoemulgel in comparison to other prepared formulations and established nanoemulgel
as a potential delivery vehicle for expediting the anti-inflammatory and anti-nociceptive
actions of Brucine [55]. In another study, the anti-inflammatory potential of curcumin and
emu oil by incorporating both in a nanogel system was evaluated in in vivo models by
topical route [77]. The anti-inflammatory efficacy was evaluated in carrageenan-induced
paw edema and Freund’s complete adjuvant (FCA)-induced arthritic rat model. The
in vivo evaluation demonstrated significant improvement in anti-inflammatory activity
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with the nanogel formulation of curcumin and emu oil [77]. Therefore, the nanogel for-
mulation system markedly improved the therapeutic potential of incorporated oils in
rheumatoid arthritis indications. As it is known that mangosteen rind possesses remark-
able anti-inflammatory activity, its nanoemulgel was therefore investigated for the same
in carrageenan-induced laboratory mice [78]. The in vivo results revealed that mangos-
teen rind-loaded nanoemulgel demonstrated significant inflammatory inhibition (p < 0.05)
compared to conventional mangosteen rind gel.

4.2. Wound Healing Activity

In another study, the nanoemulgel system of thymoquinone was shown to exhibit
markedly enhanced and early healing effects in wounded Wistar rats as compared to a
conventional hydrogel of thymoquinone. The outcome of this investigation confirms that
the topical delivery of thymoquinone was substantially improved through incorporation
into the nanoemulgel system, which accelerated the process of wound healing [45].

Interestingly, the specific physicochemical properties of nanoemulgel, including re-
taining moisture, exudate absorption, and gas permeability, provide it huge supremacy as a
drug delivery vehicle in the case of wound healing applications. In this context, a curcumin-
loaded nanoemulgel system was designed and developed for assessing its wound healing
potential [79]. The developed curcumin nanoemulgel exhibited thixotropic rheological
behavior and a significant (p < 0.05) increase in skin penetrability characteristics compared
to the curcumin hydrogel system. Importantly, the in vivo wound healing efficacy study
and the histological examination of healed tissue specimens revealed that the nanoemulgel-
based approach contributed significantly to improving the biopharmaceutical attributes
and thus wound healing efficacy of curcumin (Illustrated in Figure 6).

4.3. Antimicrobial and Anticancer Activity

Researchers have explored the antimicrobial and anticancer effects of coriander oil
incorporated in a nanoemulgel formulation. Encouraging results were obtained with the na-
noemulgel for coriander oil’s antimicrobial potential against different types of bacteria [80].
Furthermore, the results of the anticancer activity of coriander oil nanoemulgel were found
to be remarkably boosted when applying the prepared formulation to human breast cancer
cells (MCF-7), hepatocellular carcinoma cells (Hep3B), and human cervical epithelioid
carcinoma cells (HeLa), which signifies that the nanoemulgel substantially enhanced the
anticancer effects of coriander oil [80]. Therefore, a remarkable formulation benefit of
nanoemulgels as a drug delivery system is that it significantly enhances the therapeutic
efficacy of loaded bioactive compounds. In another study, a local dental nanoemulgel for-
mulation of Nigella sativa oil was formulated for the treatment of periodontal diseases that
showed notably improved antimicrobial activity compared to plain Nigella sativa oil [81].
Furthermore, Safrole is a natural compound that possesses remarkable biological activi-
ties. Safrole oil has potential antimicrobial and anticancer activities, and these activities
were shown to be improved with safrole nanoemulgel formulation [82]. In a study, the
antimicrobial activity of the safrole oil and safrole nanoemulgel were tested and their
cytotoxic potential was assessed against Hep3B cancer cell lines using the MTS assay. The
study outcome revealed that the anticancer and antioxidant activities of safrole could be
substantially improved by employing its nanoemulgel formulations.

4.4. Antipsoriatic Activity

The nanoemulgel formulation of curcumin was also investigated for treating psoriasis
and the study outcome suggested that curcumin nanoemulgel exhibited quicker and early
healing in psoriatic mice compared to curcumin alone [83]. The study findings are strongly
indicative of curcumin nanoemulgel as a promising and potential candidate for the better
long-term management of psoriasis.
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Figure 6. Illustration highlights improved wound healing efficacy of curcumin utilizing nanoemulgel
as a delivery vehicle in Wistar rats. (a) Wound healing efficacy of curcumin nanoemulgel compared
to the control, a marketed product, and curcumin-containing conventional gel. (b) Percentage of
contraction of wound area of curcumin nanoemulgel compared to the control, a marketed product,
and curcumin-containing conventional gel. Reproduced from [79], MDPI, 2021.
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Overall, the above discussion of recent studies is clear evidence of the significant con-
tribution of nanogel formulations as a delivery vehicle in enhancing the biopharmaceutical
fate and thus therapeutic efficacy of loaded phytopharmaceuticals (summarized in Table 2).
However, there are several hurdles in the clinical translation of bioactive compound-loaded
nanogels/nanoemulgels that are discussed in the subsequent section.

Table 2. Contemporary research highlighting the in vivo improvement in the therapeutic efficacy of
phytopharmaceutical-containing nanoemulgel.

Phytopharmaceutical In Vivo Model Application Therapeutic Outcome Ref.

Thymoquinone Wistar rats Topical

Nanoemulgel formulation showed
quicker and early healing in wounded

rats compared to the conventional
hydrogel system.

[45]

Capsaicin Swiss-Webster mice Transdermal
Improvement in anti-nociceptive

properties was observed in the treated
diabetic mice.

[50]

Brucine
BALB/c mice;

Carrageenan-induced rat hind
paw edema method.

Topical
Improved anti-inflammatory and

anti-nociceptive activity of
Brucine-loaded nanoemulgel.

[55]

Resveratrol and
curcumin Wistar rats Topical

Augmented the burn-healing
potential of the nutraceutical
combination nanoemulgel.

[65]

Curcumin and emu oil
Carrageenan-induced paw
edema and FCA-induced

arthritic rat model
Topical

Significant improvement in
anti-inflammatory activity with

nanoemulgel formulations compared
to pure curcumin.

[77]

Mangosteen rind Mice Topical
Nanoemulgels of mangosteen rind

fraction demonstrated potential
anti-inflammatory activity.

[78]

Curcumin Albino rats Topical

Improved the wound-healing activity
of curcumin compared to the
conventional gel formulation

of curcumin.

[79]

Coriander oil

Klebsiella pneumoniae,
Escherichia coli,

Staphylococcus aureus,
Pseudomonas aeruginosa.
Cancer cell line (MCF-7,

Hep3B)

In vitro

Marked antimicrobial and anticancer
activities, as compared to those in

crude oil and positive
control medications.

[80]

Nigella sativa oil Staphylococcus aureus strain
(ATCC 29213) In vitro

Markedly improved antimicrobial
activity compared to the plain Nigella

sativa oil.
[81]

Safrole Hep3B cancer cell line In vitro
Improved antimicrobial and

anticancer activities by means of
safrole nanoemulgel.

[82]

Curcumin
BALB/c mice; Psoriasis

induced by topical application
of imiquimod cream

Topical
Nanoemulgel system showed quicker

and early healing in psoriatic mice
compared to curcumin gel.

[83]

5. Hurdles in Clinical Translation of Phytopharmaceutical-Containing Nanogels

The ultimate goal of emphasizing the benefits of phytopharmaceutical-loaded nanogel
is their clinical translation. However, the number of phytopharmaceutical-loaded nanogels
that have entered the clinic is limited. Various hurdles impede the commercialization of
phytopharmaceutical-loaded nanogels for different indications. The significant challenges
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in their clinical translation include nanogel fabrication at a commercial scale, storage sta-
bility, regulatory complexity, and cost-effectiveness. The high-water content of nanogel
presents a great difficulty in their terminal sterilization, and sterility must therefore be
typically validated for all source materials and fabrication processes. There are other com-
plications related to the degradation of nanogels, therefore the nanogel must be dehydrated
after fabrication to prevent premature degradation during storage [84,85]. The dehydration
process must ensure that the nanogel structure and the bioactivity of the phytopharmaceu-
ticals remain intact during treatment. In case nanogels are maintained in a hydrated state
during storage, the storage conditions should minimize water evaporation and preclude
pre-exposure to any medium that causes the undesirable loss of the phytopharmaceuticals.
The impact of the storage conditions must be carefully examined on phytopharmaceutical
stability [84].

The fabrication of nanoemulgels is cost-consuming; for instance, particle-size reduc-
tion for attaining a nano-size range requires high energy and specialized devices [85]. At
the industrial scale, the production of a nanoemulgel involves high-energy methods accom-
panied by high-pressure homogenizers, which are expensive and demand maintenance
costs. Moreover, microfluidization and ultrasonication techniques are the most commonly
used techniques for achieving size in nano-dimensions, but they are also expensive and
require an extra start-up cost compared to conventional gel formulations, which leads
to a delay in achieving its commercialization scalability [84,85]. Although, the design of
nanoemulsions through spontaneous emulsification (low-energy emulsification) techniques
and conversion into nanogel formulation utilizing a gelling agent as a cost-effective nano
product is also a trend.

There are considerable regulatory concerns, and the cost of commercialization is of-
ten a notable hurdle present in the clinical translation of phytopharmaceutical-loaded
nanogels. The nanogel encapsulating a bioactive compound is considered a combina-
tion product, and therefore its regulatory approval process can take 7–10 years [84]. As
the duration of patent protection is limited, a longer approval time can limit the com-
mercial viability of nanogels encapsulating phytopharmaceuticals. Moreover, the cost
of developing nanogel from bench to bedside is estimated to be high, which provides
a significant setback to commercialization [85]. On top of that, phytopharmaceuticals,
including safrole, are very costly, therefore the development of the nanogel preparations
of such bioactive compounds is a costly affair that discourages the product development
and clinical translation of phytopharmaceutical-loaded nanogels. Researchers need to plug
these loopholes for successful clinical translation, expediting the commercialization process
of phytopharmaceutical-based nanogels by exploiting cost-effective technology.

6. Conclusions

The present review concludes that nanogel is a potential delivery system for enhancing
the biopharmaceutical and therapeutic prospects of phytopharmaceuticals. The thixotropic
characteristics of nanogel have demonstrated their significant role in enhancing the bio-
pharmaceutical attributes of phytopharmaceutical-loaded preparations. Modification in
nanogels such as nanoemulgel, which consists of a nanoemulsion incorporated into a
hydrogel matrix, can efficiently resolve various problems related to phytopharmaceutical
delivery, including the drug-release profile, physical/chemical stability, skin penetrability
to a deeper layer, and targeted release. Furthermore, hydrogels are also utilized to fabricate
polyphenol-based composite hydrogel systems for use in the field of tissue engineering
and the design of hybrid hydrogel systems exploiting stimuli-responsive smart materials
for imparting multifunctionality to the hydrogels [86–88]. The pre-clinical investigations
of nanoemulgel have demonstrated substantially improved biopharmaceutical fate and
therapeutic responses of encapsulated phytopharmaceuticals, as discussed in detail in this
review. Therefore, nanoemulgel represented a potential efficacious delivery approach for
improving the therapeutic prospect of phytopharmaceuticals and its clinical translation-
related hurdles.
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