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Abstract

China’s fast economic growth contributes to the rapid development of its urbanization pro-

cess, and also renders a series of industrial accidents, which often cause loss of life, dam-

age to property and environment, thus requiring the associated risk analysis and safety

control measures to be implemented in advance. However, incompleteness of historical fail-

ure data before the occurrence of accidents makes it difficult to use traditional risk analysis

approaches such as probabilistic risk analysis in many cases. This paper aims to develop a

new methodology capable of assessing regional industrial safety (RIS) in an uncertain envi-

ronment. A hierarchical structure for modelling the risks influencing RIS is first constructed.

The hybrid of evidential reasoning (ER) and Analytical Hierarchy Process (AHP) is then

used to assess the risks in a complementary way, in which AHP is hired to evaluate the

weight of each risk factor and ER is employed to synthesise the safety evaluations of the

investigated region(s) against the risk factors from the bottom to the top level in the hierar-

chy. The successful application of the hybrid approach in a real case analysis of RIS in

several major districts of Beijing (capital of China) demonstrates its feasibility as well as pro-

vides risk analysts and safety engineers with useful insights on effective solutions to com-

prehensive risk assessment of RIS in metropolitan cities. The contribution of this paper is

made by the findings on the comparison of risk levels of RIS at different regions against vari-

ous risk factors so that best practices from the good performer(s) can be used to improve

the safety of the others.

1. Introduction

Given the rapid economic and social development, especially the fast growing industrialization

and automation in a country/region, the occurrence likelihood of industrial accidents declines

in general. For instance, compared with that in 2009, the number of industrial accidents in Bei-

jing decreased by 8.2% in 2015 (Beijing Work Safety Statistical Yearbook, 2015). Fig 1 shows

the number of death due to industrial accidents in China from 2010 to 2015. Although the

number of death is decreasing year by year, the absolute quantities are still very large, revealing
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that the situation of industrial safety is severe as ever, wanting effective solutions to be found.

Many researchers have made large effort to improve the industrial safety. Chryssolouris (1999)

explored a virtual reality based approach for the verification of human related factors in assem-

bly and maintenance processes [1]. Michalos (2015) made research on design consideration

for safe human-robot collaborative workplaces [2]. However, ensuring industrial safety in a

fast developing economy is challenging, given that major and extraordinarily serious accidents

(MESA) often present low likelihoods but significant consequences. For instance, the explo-

sion accident in Tianjin Port in 2015 caused not only a huge loss of properties and lives, but

also a significant impact on industrial safety policy making, concerning the use of advanced

risk analysis approaches to enhance accident prevention in the situations where hazardous

events have not arisen and historical failure data has not formed any base in critical mass yet.

Because of the complicated risk factors influencing regional industrial safety (RIS), it is

extremely difficult, if possible, to get all the relevant data, such as the severity of accident conse-

quences and the occurrence probabilities of the accidents. As a result, there are few studies on

regional risk assessment in the literature and fewer on use of advanced risk modelling to deal

with the uncertainty in risk data. When conducting risk analysis of RIS, it is often the case that

many qualitative and quantitative variables which are of high uncertainty and incompleteness

in data, influence the risk level of RIS simultaneously. It is therefore necessary to develop a

new method capable of tackling such challenges.

This paper aims at developing a new methodology capable of assessing RIS. Following the

relevant literature review and background analysis in Section 2, a hierarchical structure for

modelling the risk factors influencing RIS is first constructed in Section 3. The hybrid of evi-

dential reasoning (ER) and Analytical Hierarchy Process (AHP) is then used to assess RIS in a

complementary way in which AHP is hired to evaluate the weight of each risk factor and ER is

employed to synthesise the evaluations of the risk factors from the bottom to the top level in

Fig 1. Number of death due to industrial accidents in China. Data from: National Economy and Society Developed Statistical

Bulletin 2010–2015 from National Bureau of Statistics of the People’s Republic of China.

https://doi.org/10.1371/journal.pone.0197125.g001
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the hierarchy. In Section 4, the hybrid approach is applied in a real case analysis of RIS across

the major districts in Beijing (capital of China) to demonstrate its feasibility. Section 5 con-

cludes the work and provides useful insights on effective solutions to comprehensive assess-

ment of RIS in metropolitan cities.

2. Literature review

2.1 Evidential reasoning approach

An ER approach was developed in the 1990s to handle uncertainty and randomness, and is

amongst the latest Multiple Criteria Decision Analysis (MCDA) techniques. It is based on the

Dempster-Shafer (D-S) theory of evidence. The D-S theory that was first proposed by Demp-

ster (1967) and developed by Shafer (1976), is regarded as a generalization of the Bayesian the-

ory of probability. With the ability of coping with the uncertainty or imprecision embedded in

evidence, the D-S theory has been widely applied in recent years [3].

ER is based on an extended decision matrix in which each attribute of an alternative is

described by a distributed assessment using a belief structure. Bi et al. (2008) [4] explained that

the D-S theory is an appropriate and suitable approach to dealing with uncertainty and impre-

cision. It provides a coherent framework to cope with the lack of evidence and discards the

insufficient reasoning principle. ER enables to translate the relationship between the objects

and the degree of goodness or badness of their sub-criteria, which are measured by both “the

degree to which the sub-criteria are important to the objects and the degree to which the sub-

criteria belong to the good (or bad) category” [5]. Furthermore, it allows decision-makers’

preference to be aggregated in a structured and rigorous way without accepting the linearity

assumption [6].

Due to such advantages, ER has been widely applied to analyse the risks in various sectors

when uncertainty in failure data is high. The statistics, when using the key words “evidential

reasoning” and “risk” to search on web of science, shows that in 2010–2017 there are 78 jour-

nal papers (e.g. [7–19]), tackling risks in the energy, environmental, transport, offshore and

logistics industries. A further in-depth analysis of these papers reveals that many of them

focused on the theoretical modelling work, while the others dealing with ER’s applications in

risk tend to analyse small scale cases. No studies have been found on the use of ER in RIS and

to solve large scale real problems, revealing a research gap to be fulfilled, particularly from a

practical perspective.

2.2 Analytical Hierarchy Process

AHP, developed by Saaty (1980), is proved to be a powerful tool for handling both qualitative

and quantitative multi-criteria factors in solving decision-making problems. With this

method, a complicated problem can be converted to an ordered hierarchical structure. The

AHP method has been widely applied to multi-criteria decision making (MCDM) situations,

including web site selection [20], tools’ evaluation [21], weapon selection [22], and drugs selec-

tion [23]. Its applications have also been well documented in Vaidya and Kumar, (2006) [24],

Subramanain and Ramanathan, (2012) [25] in operational management, and Schmidt et al.,

(2015) [26] in healthcare.

The first step of AHP is to establish a hierarchical structure of presenting the problem.

Then, in each hierarchical level, a nominal scale is used to construct a pairwise comparison

judgement matrix. The third step is to calculate the eigenvector of the matrix. Before the eigen-

vector is transformed into the weights of elements, the consistency of the matrix should be

checked through a consistency ratio (CR). If the result of CR is less than 0.1, the consistency of

the pairwise comparison matrix M is acceptable. Consequently, the eigenvector of the pairwise
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comparison judgement matrix can be normalized as the final weights of decision elements.

Otherwise, the consistency is not ensured and the elements in the matrix should be revised.

2.3 The selection of ER and AHP

AHP is a systematic technique to evaluate the relative importance between two or more attri-

butes by means of pairwise comparisons [27]. It is able to take all of the factors into account

within a hierarchic style which enables to arrange these factors systematically and to elucidate

their contributions to the risks with priority weights [28]. Especially, AHP is a powerful tool

for handling both qualitative and quantitative multi-criteria factors in decision-making prob-

lems [29].

The ER approach models both quantitative and qualitative attributes with uncertainty using

a distributed modelling framework, in which each attribute is determined by a set of collec-

tively exhaustive assessment grades, called a belief structure. The evidence combination rule of

the D-S theory makes it possible to gather the influence of each attribute in the hierarchy. The

ER approach has been widely used in effectively synthesizing pieces of evaluation from various

criteria in both quantitative and qualitative forms [30].

In the risk assessment of RIS, there are many quantitative and qualitative risk factors involv-

ing high uncertainties in data. Hence, the methodology must have the capability of handling

both uncertainty and quantitative and qualitative data. AHP is one of the most popular meth-

ods of assigning attribute weights with the ability to handle both qualitative and quantitative

multi-criteria factors, and ER has advantage to dealing with both quantitative and qualitative

attributes with uncertainty. The integration of AHP and ER approaches has been seen in many

MCDM studies such as project screening, bridge condition assessment, and risk management.

Zhang (2012) applied AHP combined with ER in assessing the E-commerce security. It is

proved that based on the theory of AHP and ER, the model is flexible and practical to cope

with qualitative, quantitative and/or uncertain factors [3]. Dehe and Bamford (2015) [31]

made a comparison of the results of a MCDA model through a case of healthcare infrastruc-

ture location. It is evidenced that the solution by the combination of AHP and ER, provides a

transparent and robust framework.

Although showing much attractiveness, the applications of ER and AHP in dealing with

RIS, particularly to solve a large scale of real problems need yet to be investigated and vali-

dated. So the method of AHP and ER is chosen to apply in evaluating the RIS in this paper.

3. A new framework for risk assessment of RIS

A flow chart is first presented in Fig 2 to visualise a new framework for risk assessment of RIS,

and each of the detailed steps is described in the ensuing parts ranging from section 3.1 to sec-

tion 3.5, respectively.

3.1 Identify risk variables and construct the hierarchical structure

The “triangular model of public safety”, proposed by Yuan et al. [32], describes public safety

by three fundamental attributes, emergency, hazard-affected carriers, and emergency manage-

ment. The hierarchy of evaluating RIS consists of three fundamental attributes, disaster-induc-

ing factors, vulnerability of hazard-affected carriers, and safety control. Xie et al. (2010) [33]

carried out an index system of industrial safety in Beijing, which concerned more on the his-

torical failure data and safety supervision data, but less on the hazard-affected carriers.

Therefore, six experts possessing relevant expertise as well as representing different groups

of the stakeholders were interviewed at an Expert Seminar on 12th, July, 2016 in Beijing

Industrial safety assessment
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Academy of Safety Science and Technology to go over the index system. The background

information of the six persons is shown as follows.

Expert 1: A professor engaged in mining safety evaluation for more than 10 years.

Expert 2: A senior officer in China Academy of Safety Science and Technology.

Expert 3: A senior officer in Beijing Research Centre of Urban System Engineering.

Expert 4: An expert from China National Institute of Standardization.

Expert 5: A senior officer in State Administration of Work Safety.

Expert 6: An expert from Beijing Municipal Institute of Labour Protection.

The issues such as data availability, situation of industrial safety, the existing index systems

were extensively discussed with the experts before having their consensus on the development

of the factors influencing RIS and the hierarchical structure representing their relationship

(Table 1). During this data collection process, all the participants consented to their participa-

tion in this research. The invited experts were all informed about the purpose and content of

this research and any risks that might be associated with the participation prior to providing

consent. We first asked for their advices about the index system by a defined questionnaire. At

the Expert Seminar, the experts were consulted in verbal ways and the results were recorded in

a written form (See S1 Table). This paper, together with its findings was checked by Beijing

Academy of Safety Science and Technology.

Fig 2. The flow chart of the framework for assessment of RIS (Source: Authors).

https://doi.org/10.1371/journal.pone.0197125.g002

Industrial safety assessment

PLOS ONE | https://doi.org/10.1371/journal.pone.0197125 May 24, 2018 5 / 21

https://doi.org/10.1371/journal.pone.0197125.g002
https://doi.org/10.1371/journal.pone.0197125


Table 1. Comprehensive risk index system of industrial safety.

level 1 level 2 level 3 level 4

disaster-inducing factors

0.3636

accidents

0.4932

severity

0.5726

death toll of industrial safety issues

0.5403

frequency of industrial safety issues

0.4597

accountability

0.4274

number of people investigated and affixed liability

0.5208

the fines of industrial safety accidents

0.4792

hidden dangers

0.5068

number of major hazard sources

0.2664

number of hidden dangers discovered

0.2290

number of units with harm of occupational disease

0.2756

number of people contacted with occupational disease

0.2290

vulnerability of hazard-affected carriers

0.3182

vulnerability

0.5333

population vulnerability

0.3371

the resident population density

0.3875

proportion of aged population

0.2938

proportion of children

0.3187

infrastructural vulnerability

0.3429

number of gas station per km2

1

economical vulnerability

0.3200

the reciprocal of regional GDP per capita

0.4554

unemployment rate

0.5446

adaptability

0.4667

employee’s assurance

0.4486

(-)number of employees joined medical assurance

0.5327

(-)number of employees joined unemployment insurance

0.4673

protection

0.5514

(-)investment of infrastructure

0.3494

(-)number of medical staff per thousand people

0.3313

(-)number of hospital beds per thousand people

0.3193

safety control

0.3182

supervision

0.5159

regulatory capacity

0.4876

(-)coverage rate of supervision

0.3558

(-)economic punishment

0.3252

(-)punishment rate of supervision

0.3190

personnel allocation

0.5124

(-)crew size of safety supervision system

0.3471

(-)number of people attending the inspection

0.2882

(-)�capacity of the safety supervision crew

0.3647

emergency management & publicity

0.4841

emergency capacity

0.5120

(-)number of fire brigade

0.5446

(-)emergency resources reserves

0.4554

safety propaganda

0.4880

(-)number of news manuscripts about industrial safety

0.4750

(-)�the level of public safety awareness

0.5250

� symbolizes the qualitative indexes

(-) symbolizes the negative indexes

Consensus reached at the Expert Seminar on 12th, July, 2016 in Beijing Academy of Safety Science and Technology.

The numerical values in Table 1 stand for the local weight of each variable. They were calculated by using AHP.

https://doi.org/10.1371/journal.pone.0197125.t001
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The three risk parameters in level 1 represent the three fundamental aspects addressing the

comprehensive risk of RIS. In the aspect of disaster-inducing factors, two main factors must be

taken into account. One is historical accidents, and the other one is hidden dangers, which

reflect the potential failures. As far as the details of accidents are concerned, severity and

accountability are taken into consideration in order to reflect their relevant risk levels

accordingly.

The vulnerability of hazard-affected carriers is determined by two factors, vulnerability

(used to describe the easiness of an asset/a system to be destroyed) and adaptability (used to

describe the difficulty of an asset/a system to be destroyed and ability that the asset/system

recovers after disturbances). Vulnerability consists of population vulnerability, infrastructural

vulnerability, and economical vulnerability while adaptability is associated with assurance and

protection taken by the stakeholders. For instance, population vulnerability will be high if

there is a large population density, high proportion of aged population and children. Adapt-

ability will be reflected by the plan on evacuation and rescue work.

To address safety control, supervision and emergency management and publicity are taken

into account. Regulatory capacity and personnel allocation are two main indexes to measure

the supervision work. Similarly, emergency capacity and safety propaganda are used to repre-

sent the index of emergency management and publicity.

3.2 Data pre-processing

The basic input data of the indexes in level 4 are collected through a field investigation from

each district in Beijing and by mining secondary data from Beijing Work Safety Statistical

Yearbook, Beijing Statistical Information Net, websites of Beijing Subway and Beijing Munici-

pal Commission of City Management.

3.2.1 Normalization. Data normalization is threefold in this study. Firstly, max-min nor-

malization is chosen to normalize the quantitative data. The initial max-min normalization

process is performed using the following equation [34]:

tc ¼
xc � xmin

xmax � xmin
ð1Þ

where xc represents the initial datum of district c, xmax and xmin represent the maximum and

minimum values of the initial data associated with the same index respectively.

Secondly, the data of all the negative indexes are processed using the following equation to

ensure they have the same impact on the risk contribution to the top level index.

rc ¼ 1 � tc ð2Þ

The data collected by the field investigation is shown in S1 Table.

Thirdly, linguistics terms with a belief structure are employed to evaluate the qualitative

indexes (i.e. capacity of the safety supervision crew and the level of public safety awareness).

The 10 experts in Beijing Academy of Safety Science and Technology are interviewed to conduct

the evaluation of 16 districts in Beijing based on their valuable experience which comes from

their working on the frontline in the field of industrial safety using the following formula.

FBS ¼ fðFHn; bnÞg ð3Þ

where FHn represents the nth assessment grade; βn represents the corresponding degree of

belief. For instance, the five assessment grades used to define the index of “capacity of the safety

supervision crew” are “Very High, High, Average, Low, Very Low”. Consequently, the S2 Table

shows all the normalized data used in this research.

Industrial safety assessment
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3.2.2 Transformation of quantitative data. The normalized data of the indexes in level 4

needs to be transformed and expressed by the same utility used to describe the qualitative data

in order to synthesise them for safety evaluation of the index in the top level. Fuzzy member-

ship functions are therefore used to realise such transformation [35].

The uniformed set of qualitative grades of “Very low”, “Low”, “Average”, “High” and “Very

high” and their fuzzy membership functions are defined and verified by the experts, and

shown in Fig 3 [36]. It is noted here that all the quantitative data has been normalised to be

associated with a crisp value in [0, 1].

After the definition of fuzzy membership functions in Fig 3, a risk index value of a particu-

lar district can be transformed and expressed by the defined qualitative grades with a belief

structure. Suppose the risk value is associated with two neighbouring grades FHn and FHn+1,

and their fuzzy memberships mFHn and mFHnþ1
indicate the degree to which the risk value

belongs to the grade of FHn and FHn+1, respectively (see Fig 4). The normalised fuzzy belief

structure (FBS), FBS = {(FHn,βn)}, can be calculated by using Eqs (4 and 5) [37]. Consequently,

all quantitative data is transformed into their qualitative counterparties, as shown in the S3

Table.

bn ¼
mFHn

mFHn þ mFHnþ1

ð4Þ

bnþ1 ¼
mFHnþ1

mFHn þ mFHnþ1

ð5Þ

3.3 Use AHP to calculate the weights of each variable

The numerical values in Table 1 stand for the weight of each variable that is calculated by

AHP. For instance, the weights of “number of major hazard sources”, “number of hidden dan-

gers discovered”, “number of units with harm of occupational disease”, and “number of people

contacted with occupational disease” are calculated as follow.

Fig 3. Membership function of the qualitative grades used to transform the quantitative data.

https://doi.org/10.1371/journal.pone.0197125.g003
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A questionnaire (S1 Questionnaire and S2 Questionnaire) was used to collect the subjective

judgements of 12 experts in Beijing Academy of Safety Science and Technology. Initially 12

experts were approached because of their rich experience in the field of industrial safety man-

agement. Data from 2 experts, presenting the same evaluation of the qualitative index for all 16

districts being investigated, was found irrational and hence eliminated. All the questionnaire

data of the rest 10 experts are showed in S2 Questionnaire. The grades defined in Table 2 were

used by individual experts in their initial judgments in terms of the importance of the indexes.

Then the average values of all the initial judgments with respect to a pair of indexes are applied

into the pairwise comparison process of AHP.

The AHP matrix of the investigated four indexes is shown in Table 3.

Based on the standard AHP calculations, the weights of the four indexes are obtained as

0.2664 for “number of major hazard sources”, 0.2290 for “number of hidden dangers discov-

ered”, 0.2756 for “number of units with harm of occupational disease”, and 0.2290 for “num-

ber of people contacted with occupational disease”, respectively.

In a similar way, the weights of other indexes in Table 1 are obtained.

Fig 4. Fuzzy belief structure transforming process. � ri represents the normalized value of quantitative index, and u(r) stands for the fuzzy

membership, indicating the degree to which the risk value belongs to the relevant grade.

https://doi.org/10.1371/journal.pone.0197125.g004

Table 2. The standard of grading.

Importance Grade

Unimportant 1

Slightly important 3

Fairly important 5

Obviously important 7

Absolutely important 9

Among them 2, 4, 6, 8

https://doi.org/10.1371/journal.pone.0197125.t002
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3.4 Synthesis of the risk evaluation of each index

ER can be used to synthesise the transformed risk evaluations in the S3 Table from the bottom

(i.e. level 4) to the top level (i.e. level 1) in Table 1. Suppose every index Sj in an upper level

consists of multiple (L) indexes in a lower level. Through the steps in Section 3.2.2, the fuzzy

belief structure, FBSi = {(FHn,βn,i)}, of every index in the lower level is acquired and expressed

in S3 Table. The relevant weight of every index, ωi, is calculated by the method of AHP and

shown in Table 1. The probability masses associated with each grade of an index in the lower

level can be calculated using the following equations [38]:

mn;i ¼ oibn;i ð6Þ

mH;i ¼ 1 �
PN

n¼1
mn;i ð7Þ

�mH;i ¼ 1 � oi ð8Þ

~mH;i ¼ oið1 �
PN

n¼1
bn;iÞ ð9Þ

where n = 1,2,. . .,N, representing the number of the linguistic terms, which equals to 5 in this

paper; i = 1,2,. . .,L, representing the number of indexes in a lower level;mn,i represents the

basic belief degree to which the risk index Ri belongs to the grade of FHn;mH,i is the unas-

signed probability mass caused by the lack of information, which is split into two parts,

mH;i ¼ �mH;i þ ~mH;i; N represents the number of assessment grades (i.e. 5 in this study); and L
stands for the number of indexes under the same upper index.

Next, it is to aggregate the output from Ri (i = 1,2,. . .,L) to generate the combined degree of

belief of each index Sj at the upper level. The FBS of the index Sj at the upper level,

FBSS ¼ fðFHn; b
S
nÞg, can be calculated using the following equations:

fHng : mn;Iðiþ1Þ ¼ KIðiþ1Þ½mn;IðiÞmn;iþ1 þmH;IðiÞmn;iþ1 þmn;IðiÞmH;iþ1�; n ¼ 1; 2; . . . ;N ð10Þ

mH;IðiÞ ¼ �mH;IðiÞ þ ~mH;IðiÞ ð11Þ

fHg : ~mH;Iðiþ1Þ ¼ KIðiþ1Þ½ ~mH;IðiÞ ~mH;iþ1 þ �mH;IðiÞ ~mH;iþ1 þ ~mH;IðiÞ �mH;iþ1� ð12Þ

fHg : �mH;Iðiþ1Þ ¼ KIðiþ1Þ½ �mH;IðiÞ �mH;iþ1� ð13Þ

Table 3. Judgement matrix.

variables number of major

hazard sources

number of hidden

dangers discovered

number of units with harm of

occupational disease

number of people contacted with

occupational disease

number of major hazard sources (8) 1 1.1633 0.9661 1.1633

number of hidden dangers

discovered (5)

0.8596 1 0.8305 1

number of units with harm of

occupational disease (3)

1.0351 1.2041 1 1.2041

number of people contacted with

occupational disease (3)

0.8596 1 0.8305 1

https://doi.org/10.1371/journal.pone.0197125.t003
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KIðiþ1Þ ¼

(

1 �
PN

t¼1

PN
j ¼ 1

j 6¼ t

mt;IðiÞmj;iþ1

)� 1

i ¼ f1; 2; . . . ; L � 1g ð14Þ

b
S
n ¼

mn;IðLÞ

1 � �mH;IðLÞ
; n ¼ 1; 2; . . . ;N ð15Þ

b
S
H ¼

~mH;IðLÞ

1 � �mH;IðLÞ
ð16Þ

wheremn,I(i) (n = 1,2,. . .,N), ~mH;IðiÞ and �mH;IðiÞ denote the combined probability masses gener-

ated by aggregating the first i indexes.

Through Eqs (10)–(16), the belief structure of the index Sj is obtained. b
S
n means the likeli-

hood to which Hn is assessed. b
S
H is the unassigned degree of belief representing the extent of

incompleteness in the overall assessments. Similarly, the generated assessment for Sj can be

represented by the following distribution:

Sj ¼ fðHn; b
S
nÞ; fn ¼ 1; 2; . . . ;Ng

where Sj is assessed to the gradeHn with the degree of belief of b
S
nðn ¼ 1; 2; . . . ;NÞ.

Such a process continues from the bottom to the top level along the hierarchy (in Table 1)

until the FBS of the index at the top level is acquired.

3.5 Risk analysis and ranking of each investigated region

Through the steps in Section 3.4, the FBS of each index at all the four levels (in Table 1) can be

calculated and expressed by the defined grades with a belief structure. To prioritise the investi-

gated regions in terms of their risks, utility values u(Hn), are assigned in a linear form (i.e. 0,

0.2, 0.4, 0.6, 0.8, 1) to the five defined grades [39], respectively. Consequently, the crisp risk

score of each investigated region can be computed using Eq (17).

uðEÞ ¼
PN

n¼1
bnuðHnÞ ð17Þ

where N denotes the number of the linguistic terms; and N equals to 5 in this paper.

3.6 Validation

A sensitivity analysis is conducted to test the proposed risk assessment framework of RIS. Sen-

sitivity analysis refers to analysing how sensitive the conclusions are to minor changes in

inputs [39]. If the methodology is sound, the sensitivity analysis must, at least, follow the fol-

lowing three axioms.

Axiom 1: A slight increment/ decrement in the degrees of belief associated with any linguis-

tic variables of the lowest-level factors will certainly result in the effect of a relative increment/

decrement in the result of industrial safety risk assessment of each district.

Axiom 2: Given the same variation of belief degree distributions of the lowest-level factors,

its influence magnitude to the result of industrial safety risk assessment of each district will

keep consistency with their weight distributions.

Axiom 3: The total influence magnitude of x factors (evidence) in the lowest level on the

result of industrial safety risk assessment of each district will be always greater than the one

from the set of x − y (y 2 x) factors (subevidence).
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To validate the methodology, a new method of sensitivity analysis [40] is applied in this

case study. First, a belief degree of 0.1 belonging to the grade(s) of the highest risk contribu-

tions (e.g. “Very high” and “High”) is reassigned and moved toward the maximal decrement of

risk of industrial safety at a step of 0.01 to obtain the Low Risk Inference (LRI), which is calcu-

lated using the following equation:

LRI ¼ Riskinitial � Riskafter change ð18Þ

Next, similarly, a belief degree of 0.1 belonging to the grade(s) of the lowest risk contribu-

tions (e.g. “Very low” and “Low”) is reassigned and moved toward the maximal increment of

risk of industrial safety at a step of 0.01 to obtain the High Risk Inference (HRI), which is calcu-

lated using the following equation:

HRI ¼ Riskafter change � Riskinitial ð19Þ

where Riskinitial stands for the initial industrial safety risk based on the initial FBSs; Riskafter change
stands for the industrial safety risk after the change of FBSs in Eqs (18) and (19).

Lastly, the average value will show the True Risk Influence (TRI) of each index, which can

be calculated as follows:

TRI ¼
LRI þHRI

2
ð20Þ

4. Comprehensive risk assessment of RIS in Beijing

4.1 Study areas

Due to its rapid industrialization, Beijing, 39˚260N − 41˚030N, 115˚250E − 117˚300E, the capital

of China, is facing lots of challenges on ensuing its industrial safety. The occurrence of any

major industrial safety accident could cause huge loss in terms of both human lives and finan-

cial costs. In this real case study, the 16 districts in Beijing are investigated to assess the com-

prehensive risks in order to improve their RIS. Through a comparative study of different

districts, the vulnerability of each district in terms of the industrial safety related work are

identified to aid the governments on risk based safety decisions.

4.2 Application of the new methodology to the case

From Table 1, it is known that hidden dangers are influenced by four indexes of “number of

major hazard sources”, “number of hidden dangers discovered”, “number of units with harm

of occupational disease”, and “number of people contacted with occupational disease”. Given

the weights of the four indexes (in Table 1) and the risk evaluation of each district with respect

to the four indexes (in S3 Table), the ER algorithm (i.e. Eqs 10–16) are used to calculated the

risk score of each district in terms of hidden dangers. Using the ER associated computing

software IDS [39], the risk score of each district in terms of their hidden dangers, is shown as

Fig 5.

4.3 The result of assessment

Similar to the analysis in Section 4.2, the final risk score of each investigated district is calcu-

lated by using the IDS software to produce the results graphically. It is seen in Fig 6.

Consequently, the result of district A is

fðVery Low; 53:21%Þ; ðLow; 8:40%Þ; ðAverage; 8:74%Þ; ðHigh; 14:55%Þ; ðVery High; 15:10%Þg:
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It means that the risk of industrial safety in district A is 53.21% “Very Low”, 8.40% “Low”,

8.74% “Average”, 14.55% “High”, and 15.10% “Very High”. Given that 61.61% belongs to

“Very low” and “Low”, district A’s industrial safety situation is relatively good.

Next Eq 17 is used to calculate the risk score of each district with respect to different

indexes. The assessment result of each district with respect to an index at any level of the hier-

archy can be calculated and is showed in Fig 7.

From Fig 7, the strengths and weaknesses of each district can be clearly observed. For exam-

ple, for district A, the figures above show that its vulnerability and supervision are of high risk.

In other words, its vulnerability is high and its supervision related work has not been under-

taken well. It is wise and necessary for the government of district A to put more effort and

resources to improve it.

Finally, the total comprehensive risk score of each district by taking into account all the

indexes is obtained and shown in Fig 8.

From Fig 8, it is clear that the comprehensive risk of district G in terms of industrial safety

is the highest, while the one in district B is the lowest.

The results in Fig 8 provide useful insights on which district possesses the highest level of

industrial safety and which aspects of security work should be enhanced. All of these results

possess an important value to both governments and the related enterprises.

4.4 Sensitivity analysis

To validate the methodology, a sensitivity analysis is carried out. Because of the number of the vari-

ables, it is impracticable to apply sensitivity analysis to all variables. According to the highest weight

distribution, a branch of the hierarchy is chosen to be a representation, as showed in Table 4.

After the input data transformation, the risk evaluations are expressed by FBSs such as (1, 0,

0, 0, 0), and (0, 0, 0, 0, 1), using the method which is mentioned in section 3.6, the results of

the sensitivity analysis are shown as followed.

Fig 5. Assessment result of hidden dangers of each district.

https://doi.org/10.1371/journal.pone.0197125.g005
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Fig 6. Result (FBS) of industrial safety comprehensive risk assessment of each district.

https://doi.org/10.1371/journal.pone.0197125.g006

Fig 7. The result of each part of the hierarchy.

https://doi.org/10.1371/journal.pone.0197125.g007
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First, because the FBSs of these four indexes of district A are all (1, 0, 0, 0, 0), a change of

belief degree from 0 to 0.1 with a step of 0.01 is used for each variable toward the maximal

increment of risk of industrial safety. Then, the risks are calculated and showed in Fig 9.

Then, districts A to D are taken as examples to calculate the true risk inference (TRI).
First, all the results obviously keep harmony with Axiom 1 in section 3.4. That is to say, the

industrial safety of each district is sensitive to the variation of the lowest-level factors. Fig 9

shows the influence magnitude based on the weight distribution. A change of belief degree

from 0 to 0.1 with a step of 0.01 is used for each variable toward the maximal increment of risk

of industrial safety. The result reveals that it is consistent with Axiom 2 in section 3.4.

Then the results in Tables 5–7 show that the total influence magnitude of x factors in the

lowest level on the result of risk assessment of each district will be always greater than the one

from the set of x − y (y 2 x) factors, which means that it keeps consistent with Axiom 3 in sec-

tion 3.4. It can be easily examined by comparing the risk of districts in the chosen row in

Table 7. For instance, Row 12 is chosen as the evidence, and Rows 2, 3, 4, 6, 7, 9 are identified

as the sub-evidence. Comparing all the industrial safety risks of district A (i.e., the TRI of dis-

trict A in Row 12 is 0.00395, which is larger than that in Rows 2, 3, 4, 6, 7, and 9), it indicates

that the model is validated through the investigation of Row 12. Similarly, a comparison of all

the results in Table 7 has also been examined.

Fig 8. The final assessment result of risk score for each district.

https://doi.org/10.1371/journal.pone.0197125.g008

Table 4. A branch chosen to conduct the sensitivity analysis.

number of major hazard sources

number of hidden dangers discovered

number of units with harm of occupational disease

number of people contacted with occupational disease

https://doi.org/10.1371/journal.pone.0197125.t004
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Fig 9. Sensitivity analysis of a branch of hierarchy of district A. Note: 1 stands for number of major hazard sources; 2 stands for number of hidden

dangers discovered; 3 stands for number of units with harm of occupational disease; and 4 stands for number of people contacted with occupational

disease.

https://doi.org/10.1371/journal.pone.0197125.g009

Table 5. High Risk Inference (HRI).

Row I II III IV HRI OF RISK OF DISTRICT

A B C D

1 0 0 0 0 0 0 0 0

2 1 0 0 0 0.0025 0.0042 0.0073 0.0049

3 0 1 0 0 0.0021 0.0021 0 0.0043

4 0 0 1 0 0.0027 0.0045 0.0026 0.0022

5 0 0 0 1 0.0021 0.0034 0.0068 0.0016

6 1 1 0 0 0.0048 0.0065 0.0073 0.0093

7 1 0 1 0 0.0055 0.009 0.0098 0.0073

8 1 0 0 1 0.0048 0.0079 0.0138 0.0067

9 0 1 1 0 0.0049 0.0068 0.0026 0.0066

10 0 1 0 1 0.0043 0.0057 0.0068 0.006

11 0 0 1 1 0.0049 0.0082 0.0094 0.0039

12 1 1 1 0 0.0079 0.0115 0.0098 0.0118

13 1 1 0 1 0.0072 0.0103 0.0138 0.0112

(Continued )
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Table 5. (Continued)

Row I II III IV HRI OF RISK OF DISTRICT

A B C D

14 1 0 1 1 0.0079 0.013 0.0163 0.0092

15 0 1 1 1 0.0074 0.0107 0.0094 0.0085

16 1 1 1 1 0.0106 0.0156 0.0163 0.0139

Note: "1" means that a 0.1 degree of belief is reassigned and move toward the maximal increment of risk of industrial safety of each district.

https://doi.org/10.1371/journal.pone.0197125.t005

Table 6. Low Risk Inference (LRI).

Row I II III IV LRI OF RISK OF DISTRICT

A B C D

1 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 1 0 0 0 0.0019 0.0063 0.0012

4 0 0 1 0 0 0.0017 0.0081 0.0037

5 0 0 0 1 0 0 0.0021 0.0032

6 1 1 0 0 0 0.0019 0.0063 0.0012

7 1 0 1 0 0 0.0017 0.0081 0.0037

8 1 0 0 1 0 0 0.0021 0.0032

9 0 1 1 0 0 0.0035 0.0145 0.0049

10 0 1 0 1 0 0.0019 0.0085 0.0044

11 0 0 1 1 0 0.0017 0.0103 0.0069

12 1 1 1 0 0 0.0035 0.0145 0.0049

13 1 1 0 1 0 0.0019 0.0085 0.0044

14 1 0 1 1 0 0.0017 0.0103 0.0069

15 0 1 1 1 0 0.0035 0.0167 0.0081

16 1 1 1 1 0 0.0035 0.0167 0.0081

Note: "1" means that a 0.1 degree of belief is reassigned and move toward the maximal decrement of risk of industrial safety of each district.

https://doi.org/10.1371/journal.pone.0197125.t006

Table 7. True Risk Inference (TRI).

Row I II III IV TRI OF RISK OF DISTRICT

A B C D

1 0 0 0 0 0 0 0 0

2 1 0 0 0 0.00125 0.0021 0.00365 0.00245

3 0 1 0 0 0.00105 0.002 0.00315 0.00275

4 0 0 1 0 0.00135 0.0031 0.00535 0.00295

5 0 0 0 1 0.00105 0.0017 0.00445 0.0024

6 1 1 0 0 0.0024 0.0042 0.0068 0.00525

7 1 0 1 0 0.00275 0.00535 0.00895 0.0055

8 1 0 0 1 0.0024 0.00395 0.00795 0.00495

9 0 1 1 0 0.00245 0.00515 0.00855 0.00575

10 0 1 0 1 0.00215 0.0038 0.00765 0.0052

11 0 0 1 1 0.00245 0.0029 0.00685 0.0034

(Continued)
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5. Conclusion

This paper proposes a new RIS assessment method using the hybrid of ER and AHP. A hierar-

chical structure of indexes to evaluate the comprehensive risk of RIS is constructed, which can

be used as the reference to guide the development of RIS assessment models for other metro-

politan cities. Compared to the real data from Beijing Work Safety Statistical Yearbook, the

evaluation results of this model reflect the reality to a very high extent. For instance, in terms

of the accidents, district C is of the highest risk value, and district A, L, N possess low risk val-

ues, which is in line with the reality reflected by historical data. However, the model can take

into account both qualitative and quantitative data, which is more all-sided, and deal with the

associated uncertainty to realise comprehensive RIS assessment against different variables and

thus, aid to know the overall safety performance of different districts, which would not be

achieved from the statistical analysis alone.

The contribution of this paper is made by the findings on the comparison of RIS risk levels

of different regions against various risk factors so that best practices from the good performer

(s) can be used to improve the safety of the others. The evaluation results can provide sugges-

tive, useful and scientific support for the governments to rationally allocate the industrial safety

resources to make metropolitan cities safer.
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Table 7. (Continued)

Row I II III IV TRI OF RISK OF DISTRICT

A B C D

12 1 1 1 0 0.00395 0.0075 0.01215 0.00835

13 1 1 0 1 0.0036 0.0061 0.01115 0.0078

14 1 0 1 1 0.00395 0.00735 0.0133 0.00805

15 0 1 1 1 0.0037 0.0071 0.01305 0.0083

16 1 1 1 1 0.0053 0.00955 0.0165 0.011

Note: I stands for number of major hazard sources; II stands for number of hidden dangers discovered; III stands for number of units with harm of occupational disease;

and IV stands for number of people contacted with occupational disease.

https://doi.org/10.1371/journal.pone.0197125.t007
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