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ABSTRACT
Background. Algae encompass a wide array of photosynthetic organisms that are
ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom
in aquatic ecosystems, providing a significant autochthonous carbon input to the
deeper anoxic layers in stratified water bodies. In addition, various algal species
have been touted as promising candidates for anaerobic biogas production from
biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial
community involved in algal detritus turnover under anaerobic conditions remains
largely unexplored.
Results. Here, we characterized the microbial communities mediating the degradation
of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp
Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic
spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local
wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a
seasonally stratified lake (Grand Lake O’ the Cherokees, OK; GL) as inoculum sources.
Within all enrichments, the majority of algal biomass was metabolized within 13–16
weeks, and the process was accompanied by an increase in cell numbers and a decrease
in community diversity. Community surveys based on the V4 region of the 16S rRNA
gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria
(alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were
selectively abundant under various substrate and inoculum conditions. Within all kelp
enrichments, themicrobial communities structures at the conclusion of the experiment
were highly similar regardless of the enrichment source, and were dominated by the
genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrich-
ments the final microbial community was dependent on the inoculum source, rather
than the type of algae utilized as substrate. Lineages enriched included the uncultured
groups VadinBC27 and WCHB1-69 within the Bacteroidetes, genus Spirochaeta and
the uncultured group SHA-4 within Spirochaetes, Ruminococcaceae, Lachnospiraceae,
Yongiibacter, Geosporobacter, and Acidaminobacter within the Firmicutes, and genera
Kluyvera, Pantoea, Edwardsiella and Aeromonas, and Buttiauxella within the Gamma-
Proteobaceteria order Enterobacteriales.
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Conclusions. Our results represent the first systematic survey ofmicrobial communities
mediating turnover of algal biomass under anaerobic conditions, and highlights the
diversity of lineages putatively involved in the degradation process.

Subjects Microbiology
Keywords Algal detritus, Anaerobic degradation, Enrichment

INTRODUCTION
Algae represent a globally distributed group of organisms that are capable of oxygenic
photosynthesis. While prevalent in aquatic marine and freshwater habitats (Cole,
1982), algal taxa are also encountered in terrestrial ecosystems such as soil, rocks, and
ice/snow (Hoffmann, 1989). Collectively, algal species play an important role in global
carbon, nitrogen, sulfur, and phosphorus cycling (Vanni, 2002). Taxonomically, algae
are polyphyletic, and are encountered within multiple eukaryotic phyla such as the
Alveolata (e.g., dinoflagellates), Stramenopiles (e.g., Bacillariophyceae, Chrysophyceae,
Eustigmatophyceae), Viridiplanta (e.g., Chlorophyta), in addition to exclusively algal phyla
such as the Euglenozoa, Cryptomonads, Haptophyta, and Rhodophyta (Amaral-Zettler,
2011). In addition to their complex evolutionary origin, these organisms exhibit a wide
array of morphological diversity, pigments, ecological distribution, cellular composition,
genome size, and cell wall structure.

A major characteristic of many algal taxa is their fast growth rate, enabling them to
form conspicuous seasonal blooms under the appropriate environmental conditions. Such
blooms are often associated with elevated nutrient (e.g., nitrogen and/or phosphorus)
levels in the ecosystem, often resulting from anthropogenic inputs (e.g., sewage, industrial
waste, and fertilizers) (Hallegraeff, 1993), as well as from destratification and nutrients
resuspension (Wetzel, 2001). Classical examples of freshwater algal blooms involvemembers
of the green algae (Chlorophyceae), whose blooms are often encountered in lakes and
other freshwater habitats (Hoshaw &Mccourt, 1988), Chara blooms (commonly called
Muskgrass), which seasonally occur in ponds and lakes and cause a strong and unpleasant
musky odor (Durborow, 2014), as well as Diatoms, most commonly encountered in lakes
(Sommer et al., 2012; Sommer et al., 1986). Fast growth is also a characteristic of many
annual or perennial macroscopic taxa. The classical example of such taxa is the brown
algae or Kelp (class Phaeophyceae), which is believed to be one of the most productive
photosynthetic organisms and tend to attain long lengths at a very fast elongation rate
(∼50–60 cm/day) (Reed, Rassweiler & Arkema, 2008).

Algae provide a large input of organic carbon into aquatic ecosystems such as coastal kelp
forests (Mann, 1988), meromictic and seasonally stratified lakes (Gies et al., 2014; Xia et al.,
2016; Youssef et al., 2015), and coastal areas within marine environments (e.g., the North
Sea (Boon et al., 1998)). When blooming subsides, the algal detritus sinks and provides a
substantial organic carbon source to microbial communities within the ecosystem (Hecky
& Hesslein, 1995). Algal degradation in aquatic habitats commences at or near the water
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surface by the microbial phycosphere: aerobic heterotrophic bacteria that are physically
attached to algal cells (Buchan et al., 2014). However, a significant fraction of algal detritus
reaches the lower strata of these water bodies, providing a considerable autochthonous
contribution to the carbon input in benthic layers within such ecosystems (Ask et al.,
2009; Hecky & Hesslein, 1995). Sinking of algal detritus and the subsequent increase in
carbon input result in the development of anoxic conditions in the lower strata and, hence,
seasonal stratification. The size, intensity, and duration of these bloom-mediated anoxic
zones are expected to be accentuated by future global warming trends (Paerl & Otten,
2013). Surprisingly, while a large body of research has been conducted on elucidating the
microbial community composition of the algal phycosphere in the aerobic surficial marine
(Amin, Parker & Armbrust, 2012; Hasegawa et al., 2007; Sapp, Wichels & Gerdts, 2007), and
freshwater habitats (Bagatini et al., 2014; Cai et al., 2014; Dittami et al., 2016; Eigemann
et al., 2013; Jones et al., 2013; Muylaert et al., 2002), a surprising lack of knowledge exists
regarding the microbial community and patterns of algal turnover under the anoxic
conditions in the lower layers of stratified water bodies.

In addition to the importance of anaerobic degradation of algal biomass to the carbon
cycle in aquatic environments, the process has recently received additional attention as
an integral component in algal biofuels production schemes. Direct conversion of kelp
to methane (Cannell, 1990; Prabandono & Amin, 2015; Ramaraj, Unpaprom & Dussadee,
2016) has been proposed as a promising approach for biogas production (Samson &
Leduy, 1982; Vanegas & Bartlett, 2013; Vergara-Fernandez et al., 2008; Wiley, Campbell &
McKuin, 2011; Yen & Brune, 2007; Yuan et al., 2011). The high fat content of multiple algal
taxa, e.g., Chlorella sp. (Guckert & Cooksey, 1990; Hu et al., 2008), and Chara sp. (Omer,
2013), has prompted research into their large scale production in artificial ponds, and
subsequent extraction of their oil content as biodiesel (Cannell, 1990;Moazami et al., 2012;
Prabandono & Amin, 2015; Ramaraj, Unpaprom & Dussadee, 2016). The economy of the
process is further enhanced by anaerobic digestion of the algal detritus to produce methane
as an additional source (Cannell, 1990; Prabandono & Amin, 2015; Ramaraj, Unpaprom &
Dussadee, 2016) using sludge from anaerobic wastewater treatment plants as the inoculum
source (Bohutskyi et al., 2015). While various aspects of the engineering and performance
have been studied, there is very little documentation of the identity of the microbial
community that is mediating algal detritus turnover under these anaerobic conditions.

Here, we sought to characterize patterns of algal turnover under anaerobic conditions,
and identify members of the microbial community involved in the degradation of
various ecologically and economically relevant algal taxa. The process was investigated
in enrichments derived from three anaerobic habitats that either exhibit seasonal
algal blooming, or highly eutrophic environments that receive a high input of
organic compounds and previously shown to harbor a high level of microbial
diversity. To our knowledge, this is the first study that systematically characterized the
microbial community associated with algal degradation under anaerobic conditions.
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MATERIALS AND METHODS
Algal species (substrates/carbon source)
We evaluated the microbial community mediating algal detritus degradation by setting
enrichments with various types of algal biomass as the only source of carbon. Three
different algal species were examined: (1) Axenic Chlorella vulgaris strain UTEX 2714
(phylum Chlorophyta), representing green algae that are known to bloom during summer
months (June–September) in multiple freshwater bodies within the US. Strain UTEX
2714 was obtained from the University of Texas at Austin Algal Culture collection, and
cultures were maintained on proteose medium plates (composition g l−1: NaNO3, 0.25;
CaCl2.2H2O, 0.025, MgSO4.7H2O, 0.075; K2HPO4, 0.075, KH2PO4, 0.175, NaCl, 0.025;
proteose peptone, 1, agar, 15) at 22 ± 3 ◦C. Fluorescent light was used (3500 lux) on a
16:8 h light to dark cycle. Cultures were harvested by scraping the growth on the surface of
agar plates, and the resulting biomass was used as the carbon source. (2) Chara sp. strain
IWP: Mats of Chara (class Charophyceae) were obtained from a local pond (Innovation
Way Pond in Stillwater, OK, coordinates N36◦6′37.75′′ W97◦6′44.72′′) in August 2015,
and identified using morphological and microscopic analysis as Chara sp. Chara is known
to grow locally in ponds in Oklahoma and peak around June–September (B Henley, pers.
comm., 2016). Samples collected were thoroughly washed and soaked in DI water for
2 h, to remove other associated biomass, before they were centrifuged and the resulting
biomass was used as the carbon source to represent class Charophyceae. (3) Kelp: Due to the
geographical location of the study and brown algae being common occurrences in marine
environments, we were not able to obtain a fresh kelp sample to be used as a substrate.
Alternatively, Ascophyllum nodosum (phylum Phaeophyceae) representing brown algae was
obtained as a whole dried powder from a local provider (Starwest Botanicals R©, Sacramento,
CA, USA) and directly used as the carbon source.

It is worth noting that, with the exception of the axenic Chlorella culture, the Chara
and the kelp samples were not guaranteed axenic and a minimal input of bacteria with the
carbon source in these enrichment bottles could not be ruled out.

Enrichment (inoculum) sources
Grand Lake (GL)
Samples were obtained from Grand Lake O’ the Cherokees (hereafter Grand Lake) to
investigate the microbial community involved in algal turnover. The lake is a large
(188 Km2) man-made lake in Northeastern OK operated by the Grand River Dam
Authority, which keeps continuous records of the lake water geochemistry. During
summer months (starting in June), large areas of the lake become seasonally stratified,
with deeper layers (June–September) becoming completely anoxic. Within these sites,
surface chlorophyl1-a concentration peaks in May–July, followed by algal biomass sinking
to deeper anaerobic layer in September (Fig. S1). Sampling from the hypolimnion of Tree
and Dream sites in GL occurred in September 2015 using a 4.0-L Van Dorn Bottle. Whole
water samples were stored on ice until processed in the laboratory where the lake water
was centrifuged under anaerobic conditions to collect biomass used as inoculum source.

Morrison et al. (2017), PeerJ, DOI 10.7717/peerj.2803 4/35

https://peerj.com
http://dx.doi.org/10.7717/peerj.2803/supp-1
http://dx.doi.org/10.7717/peerj.2803


Wastewater treatment plant (WWT)
While wastewater treatment reactors do not represent an algae rich habitat, the use of
WWT material as an inoculum for biogas production from algal biomass sources has
been gaining considerable attention (Ward, Lewis & Green, 2014). The process is justified
by the high organic content and adaptation to organic matter turnover under anaerobic
conditions, coupled to the ready availability of WWT inocula (Sialve, Bernet & Bernard,
2009). Various aspects of the engineering, kinetics, and the economy of the process, as
well as optimization of the inoculum load and substrate load, and algae pretreatment
methods have been investigated (Hlavínek et al., 2016; Mudhoo, 2012; Nabarlatz et al.,
2013; Ramaraj, Unpaprom & Dussadee, 2016; Samson & Leduy, 1982; Vergara-Fernandez et
al., 2008;Ward, Lewis & Green, 2014), but little research on the identity of microorganisms
mediating such process has been conducted. Samples were obtained from secondary
treatment sludge in the city of Stillwater, OK wastewater treatment plant in September
2015. The sample was collected anaerobically and transferred to the laboratory (5 miles
away), where they were promptly centrifuged under anaerobic conditions and used as
inoculum source.

Zodletone spring (ZDT)
Zodletone spring is an anaerobic surficial spring in southwestern OK (35◦0′9′′N
98◦41′17′′W). Due to the constant ejection of sulfide laden water from the spring
source, the shallow spring is light exposed, yet mostly anoxic (Buhring et al., 2011). The
microbial community in the spring has been extensively investigated (Coveley, Elshahed &
Youssef, 2015; Youssef, Couger & Elshahed, 2010), and the spring harbors a highly diverse
community of phototrophs, chemolithotrophs, and heterotrophs. Samples were collected
from Zodletone spring source in August 2015 in a filled mason jar (to maintain anoxic
conditions), transferred to the laboratory at 4 ◦C and used as inoculum source on the same
day of sampling.

Enrichments setup
Enrichments were prepared in 120 ml serum bottles under anaerobic conditions. Nine
different treatments (three algal substrates × three different inoculum sources) were set
up in triplicates. Serum bottles contained 45 ml of an anoxic solution containing (per
liter): 150 ml of minerals solution I (K2HPO4 3 g l−1), 150 ml of mineral solution II (g l−1:
KH2PO4, 3; (NH4)2SO4, 6; NaCl, 6; MgSO4.7H2O, 0.6, and CaCl2.2H2O, 0.6), 10 ml Balch
vitamins solution (mg l−1: biotin, 2; folic acid, 2; pyridoxine-HCl, 10; thiamine-HCl, 5;
riboflavin, 5; nicotinic acid, 5; calcium pantothenate, 5; vitamin B12, 0.1; p-aminobenzoic
acid, 5; lipoic acid, 5), 1 ml of Wolin’s metal solution (g l−1: EDTA, 0.5; MgSO4.6H2O,
3.0; MnSO4.H20, 0.5; NaCl, 1; CaCl2.2H2O, 0.1; FeSO4.7H2O, 0.1; ZnSO4.7H2O, 0.1;
CuSO4.7H20, 0.01; AlK(SO4)2, 0.01; Na2MoO4.2H20, 0.01; boric acid, 0.01; Na2SeO4,
0.005; NiCl2.6H20, 0.003; CoCl2.6H20, 0.1). The media were amended with L-cysteine
hydrochloride (0.05 g/l final concentration) as a reductant, and resazurin (0.0001% final
concentration) as a redox indicator, boiled under a stream of N2 gas, dispensed in the serum
bottles, autoclaved, cooled, then transferred to an anaerobic chamber (Coy Laboratory
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Products Inc., Ann Arbor, MI, USA) where 5 g of sediment (Zodletone, ZDT), 5 g of
sludge (wastewater treatment plant, WWT), or 5 ml of concentrated lake water (the
pellet obtained after centrifugation of 1.5 L of Grand Lake water (GL)) were added as
the inoculum sources. Algal biomass was added as a substrate (∼0.25 g per bottle). In
addition, substrate unamended controls (i.e., ZDT, WWT, and GL enrichments with no
algal substrates) were included. After enrichment preparation in the anaerobic chamber,
the bottles were stoppered, sealed, taken out of the chamber and the headspace in the
bottles was changed by repeated flushing with 100% N2. Samples were incubated at room
temperature (22 ◦C) in the dark. Enrichments were periodically sampled (at 4, 7, 8, and
10 weeks) for DNA extraction by thoroughly mixing the serum bottle and anoxically
withdrawing 3 ml of the enrichment. At the end of the enrichment process (13 weeks for
GL, 16 weeks for ZDT and WWT), bottles were sacrificed, centrifuged and 3 ml of the
pellet was used for DNA extraction. The rest of the pellet was used for chemical analysis of
the remaining algal detritus.

DNA extraction, amplification, and sequencing
DNA was extracted using the PowerSoil R© DNA Isolation Kit (MO BIO Laboratories,
West Carlsbad, CA, USA) as per the manufacturer’s instruction. DNA from triplicate
treatments was pooled prior to amplification and sequencing. DNA from substrate-
unamended controls was also extracted (hereafter pre-enrichment sample). The extracted
and pooled DNA (n= 30; 3 inoculum sources × 3 algal substrates × 3 time points, plus
3 pre-enrichment samples) was quantified using Qubit fluorometer (Life technologies R©,
Carlsbad, CA, USA). The genes for the V4 hypervariable region of 16S rRNAwere amplified
using the prokaryotic-specific primer pair 515F and 806R (Wang & Qian, 2009) to avoid
amplification of eukaryotic 18S rRNA. Products were sequenced using paired-end Illumina
Miseq platform, as previously described (Caporaso et al., 2012). Both PCR amplification
and Illumina sequencing were conducted using the services of the Genomic Sequencing and
Analysis Facility (GSAF) at the University of Texas at Austin. The sequences are deposited
in the SRA database under accession number SRP083898.

Data analysis
Sequence processing
mothur software (Schloss et al., 2009) was used for most of the sequence processing and
operational taxonomic unit (OTU) assignments. Most of the analyses were conducted on
the cowboy server, a high performance super computer housed at the Oklahoma State High
Performance Computing Center (https://hpcc.okstate.edu/). For quality control purposes
and to eliminate poor quality sequences, an average quality score of 25 was chosen as
the threshold value below which sequences were considered of poor quality and removed
from the dataset. In addition, sequences that contained an ambiguous base (N), sequences
having a homopolymer stretch longer than 8 bases, and sequences longer than 293 bp were
also removed from the datasets.

High-quality reads were aligned in mothur using the Silva alignment database as a
template. Aligned sequences were then filtered to remove columns that corresponded
to ‘.’ or ‘-’ in all sequences. Filtered alignments were then subjected to a pre-clustering
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de-noising step using a pseudo-single linkage algorithmwith the goal of removing sequences
that are likely due to sequencing errors (Huse et al., 2010). Possible chimeric sequences
were identified and removed using chimera.slayer in mothur. The taxonomy of the
remaining sequences was identified according to the Silva taxonomic outline (Release 123,
https://www.arb-silva.de/). The aligned, filtered, de-noised, and chimera-free sequences
were used to generate an uncorrected pair wise distance matrix. Sequences were clustered
into operational taxonomic units (OTUs) at 0.03% sequence divergence cutoff using the
vsearch clustering method employed through mothur. A shared file was created and was
used for subsequent analyses. Most of the above steps were derived from the MiSeq SOP
available from the mothur website (http://www.mothur.org/wiki/MiSeq_SOP).

Criteria used to define lineages contributing to the degradation process
Phyla considered significant to the degradation process were empirically defined as those
phyla that constituted 5% or more of the community at any time during enrichment.
These include phyla that were abundant prior to enrichment and remained abundant
during and after enrichment, phyla that transiently increased in abundance during part
of the enrichment but then decreased in abundance by the end of enrichment, and phyla
that significantly and progressively increased in abundance with enrichment time. Within
these abundant phyla, genera considered significant to the degradation process were also
empirically defined as those whose percentage abundance represented 1% or more of the
total abundance.

Diversity and community structure comparisons
Various alpha diversity indices (Shannon, Chao, Ace, Good’s coverage) were performed
on individual datasets in mothur. When comparing species richness across datasets
(e.g., number of observedOTUs, species richness estimates using Chao andAce estimators),
numbers were reported per sample size to normalize for the differences in the number of
sequences obtained between datasets. Beta diversity based on community structure was
assessed by calculating pairwise Bray–Curtis dissimilarity indices and using the output to
construct non-metric multidimensional scaling (NMDS) plots in mothur.

Statistical analyses
To study the significance of the effect of inoculum source versus algae type on community
structure, we performed an analysis of variance using the function Adonis in the R statistical
package vegan. The effect was visualized using the percentage abundances of significant
phyla/classes (≥5% as defined above) in a constrained correspondence analysis (CCA)
using the function cca in the R statistical package vegan.

Quantitative PCR
We used qPCR to quantify total Bacteria, total Archaea, as well as methanogens and sulfate-
reducing bacteria in the enrichments using a MyiQ thermocycler (Bio-Rad Laboratories,
Hercules, CA) and SYBR GreenERTM qPCR SuperMix for iCycler R© Instrument (Life
Technologies). Primer pair EUB-338F/UNI518R (Fierer et al., 2005) was used to amplify
the 16S rRNA genes from the total bacterial community, primer pair A341F/A519R (Qian
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et al., 2011) was used to amplify 16S rRNA genes from the total archaeal community,
primer pair mlas-ModF/mcrA-R (Angel, Claus & Conrad, 2012) was used to amplify the
methyl-CoenzymeM reductase (mcrA) gene from the total methanogenic community, and
primer pair Dsr2060F/Dsr4R (Balk, Keuskamp & Laanbroek, 2015) was used to amplify
the dissimilatory sulfite reductase (dsrB) gene from the total sulfate reducing community.
The 25-µl PCR reaction mixtures contained 0.3 µM of each forward and reverse primers
(final concentration), 2 µl extracted template DNA, and 12.5 µl SYBR GreenERTM qPCR
SuperMix. The reactions were heated at 95 ◦C for 8.5 min, followed by 40 cycles, with
one cycle consisting of 30 s at 95 ◦C, 45 s at 50 ◦C (for total bacteria, total archaea, and
methanogens) or 55 ◦C (for sulfate reducers), 30 s at 72 ◦C, and 15 s at 85 ◦C for signal
reading. To calculate the total number of cells belonging to total bacteria, total archaea,
methanogens, and sulfate reducers in the enrichments, a standard curve was generated
using DNA from Bacillus subtilis strain 168 (ATCC 23857), Haloferax sulfurifontis strain
M6 (DSM 16227), Methanosarcina hungatei strain JF1 (ATCC 27890), and Desulfovibrio
desulfuricans strain G20 (ATCC BAA-1058), respectively. To account for the multiple
copies of 16S rRNA genes per cell, the number of copies obtained from the standard curve
was divided by an empirical value of 3.5 (average of 1–6 copies of rRNA genes in one
cell). However, since the mcrA and dsrB genes are known to be present as single copies in
methanogens, and sulfate reducers, respectively, no such adjustment of the total number
of cells was required when calculating the total number of cells belonging to methanogens
and sulfate reducers.

Chemical analysis of algal detritus
We studied the change in chemical composition of algal detritus during enrichment by
quantifying the total soluble carbohydrates, total starch, total protein, and total lipid content
of algal biomass pre and post enrichment. Algal detritus was dried overnight at 40 ◦C then
weighed (DWf; final dry weight) and ground to fine material. The ground material was
first used for protein extraction using the method described previously (Rausch, 1981).
Briefly, algal detritus was extracted 2–3 times with 0.5N NaOH at 80–100 ◦C for 10 min
followed by cooling and centrifugation to collect the total protein in the supernatant. Total
protein extracts were frozen at −20 ◦C until assayed using Qubit Protein Assay Kit (Life
technologies). The pellet remaining after protein extraction was used for extraction of
total soluble carbohydrates and starch. The pellets were first washed 2–3 times with 1 ml
acetone to remove pigments. Total soluble carbohydrates were then extracted from the
pellet using 80% ethanol according to the protocol in Maness (2010) and the total ethanol
extract was dried overnight at 40 ◦C followed by dissolving the dried extract in water.
Total starch remaining in the pellet was extracted by boiling with 1.1% HCl for 30 min
followed by centrifugation. Total soluble carbohydrates, as well as total starch extracted
were quantified using the anthrone method (Maness, 2010). The total crude lipids were
extracted from dried algal material with chloroform and quantified with a Nile red assay
modified for microplates using the protocol described previously (Higgins et al., 2014).
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RESULTS
Sequencing output
A total of 1,007,906 sequences were obtained from all enrichments. After implementation
of all quality control criteria described above, 889,230 sequences (88.2%) were retained for
further analysis. The average number of sequences per dataset was 26,946. The calculated
Good’s coverage for the majority of samples at putative species (OTU0.03, 30 out of 32
samples) and family (OTU0.10, 31 out of 32 samples) levels were always above 96 and
98.2% (average 98.4, and 99.5%, respectively), strongly indicating that the communities
have been adequately sampled in all enrichments (Table S1).

Enrichment progress and diversity patterns
Multiple lines of evidence strongly indicate that in all nine treatments, algal detritus
degradation occurred and was coupled to an increase in prokaryotic cell numbers and a
decrease in alpha diversity both implying enrichment of specific taxa. Visual inspection of
all enrichments revealed significant loss of the dried kelp powder, and the algal biomass
(Chlorella and Chara) at the conclusion of the experiment. Final time point analysis
demonstrated that the majority of the starting dry weight of Chara (86.3, 94.5, and
98.0%), Chlorella (96.0, 98.0, and 99.0%), and, to a relatively lower extent, kelp (56.7,
and 33.6, 83.3%) in ZDT, WWT, and GL enrichments, respectively, was metabolized at
the conclusion of the experiment. Analysis of the chemical composition of the remaining
algal detritus in comparison to the starting material showed that the carbohydrate, lipid,
and protein contents of the algal detritus were consumed to varying extents (Table 1).
Quantitative PCR (qPCR) demonstrated a progressive increase in bacterial 16S rRNA
gene copies/ml enrichment in all samples. An increase of 3.5–88.5 fold in total number
of bacterial cells was observed by week 13–16 in all enrichments and 14.6–2,142 fold in
the total number of archaeal cells was observed by week 13–16 in 6 out of 9 enrichments
(Fig. 1). Finally, we followed the change in diversity estimates in the enrichments datasets
as a proxy for enrichment progress. At the end of all enrichments (weeks 13 or 16), the
number of observed OTUs0.03 and OTUs0.1 as well as the estimated species richness (using
both Chao and ACE estimators) decreased compared to the pre-enrichment sample, hence
indicating the selection for few taxa (Table 2).

Microbial community structure analysis
Bray–Curtis dissimilarity indices at OTU0.03 coupled to non-metric multidimensional
scaling (NMDS)were used to compare and visualize differences in themicrobial community
structure between all enrichments at all sampled data points. At first glance, it was apparent
that the enriched microbial communities (week 7-10-16 in cases of WWT and ZDT
microcosms, or week 4-8-13 in case of GL microcosms) within each algae type-enrichment
source combination (n= 9, blue, green, and red shapes in Fig. 2) clustered closely together,
and were distinct from the pre-enrichment microbial community (black shapes in Fig.
2). This observation strongly suggests that the abundant microbial community obtained
during the first few weeks of enrichment (week 4 or 7) persisted throughout the enrichment
andwas responsible for the algal biomass degradation observed at the end of the enrichment
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Table 1 Percentage of various algal components consumed under different enrichment conditions.a

ZDT enrichment WWT enrichment GL enrichment

Algal detritus components Chara Chlorella Kelp Chara Chlorella Kelp Chara Chlorella Kelp

Carbohydrate 87 96.5 52.9 99.7 98 15.7 98.3 99.2 86.2
Protein 72 92.9 60 94 96.9 70 96 97.6 82
Lipid 100 NAb 71 62.5 NAb 70 96 NAb 86
% Biomass lostc 86.3 96 56.7 94.5 98 33.6 98 99 83.3

Notes.
aCarbohydrate, protein, and lipid contents of algal detritus were determined before and after enrichment. Percentages are calculated based on the dry weight at Tf. Original algal
detritus composition was as follows (%Carbohydrate: %Protein: %Lipid): Chara, 88:6.5:5.5; Chlorella, 86.7:13.3:0; Kelp, 67.9:14.1:18.

bLipids in Chlorella biomass were BDL.
cBased on dry weight remaining at the end of enrichment (DWf), and the initial dry weight used for enrichment (DW0) using the equation: % biomass loss=
(DW0 − DWf)/DW0 × 100. Initial dry weight for kelp was equivalent to the weight added to each enrichment bottle since it was in dry powder form. However, initial dry
weight for Chara and Chlorella was determined by incubating an amount equivalent to the wet weight added to each enrichment bottle overnight at 40 ◦C then weighing its dry
weight following moisture loss.

(Table 1). Analysis of the effect and relative contribution of algae type (Chlorella, Chara,
or kelp) versus inoculum source (ZDT, WWT, and GL) on the enriched microbial
communities revealed that kelp selects for a distinct and highly similar microbial
community, regardless of the inoculum source (ZDT, WWT, and GL) (Fig. 2A). On
the other hand, within Chlorella and Chara-derived enrichments, the inoculum source,
rather than the algae type appears to be the more important factor in shaping the microbial
communities (Fig. 2A). This is evident by the presence of three distinct clusters in the
NMDS plot corresponding to the three sources of inoculum (ZDT, WWT, and GL)
(Fig. 2A).

In addition, analysis of variance (using Adonis function) showed that both the algae
type and the source of inoculum were significant in shaping the microbial community
albeit to varying levels (p-value for algae type = 0.028, p-value for inoculum source =
0.001). To decipher the relative contributions of algae type versus inoculum source on
the microbial community composition at the phylum/class level we employed canonical
correspondence analysis (CCA) using the enriched phyla/classes relative abundances. The
results (Fig. 2B) confirmed the above observation, where the algae type appears to have
shaped the microbial community in case of kelp enrichments, while within Chara and
Chlorella enrichments, the source of inoculum played a more important role in shaping
the community (Fig. 2B).

Phylogenetic affiliation of enriched taxa in algal enrichments
In general, a handful of phyla were consistently abundant across all treatments and
were considered significant to the algal degradation process (see the criteria we used for
defining such phyla in ‘Materials and Methods’). These phyla were: Firmicutes (in all
nine enrichments), Bacteroidetes (in six enrichments), Spirochaetes (in five enrichments),
and the Gamma (5 enrichments), Delta (6 enrichments), Alpha, Beta, and Epsilon (one
enrichment) Proteobacteria (Figs. 3–5). However, within this limited number of phyla,
the family/genus level enrichment patterns varied widely, suggesting the involvement of a
wide range of bacterial lineages in the degradation process. Below, we provide a detailed
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Figure 1 Total number of bacterial, archaeal, sulfate-reducing, andmethanogenic cells in the pre-
enrichment sample (�) versus post-enrichment samples at week 4 for GL enrichments or week 7 for
ZDT andWWT enrichment (�), post-enrichment samples at week 8 for GL enrichments or week 10 for
ZDT andWWT enrichment ( ), and post-enrichment samples at week 13 for GL enrichments or week
16 for ZDT andWWT enrichment ( ) as measured by quantitative PCR. The enrichment inoculum
source is shown on the left, while the algae type used is shown on top. Error bars are averages± standard
deviations from three biological replicates. Linear regression analysis was performed to examine the trend
of increase in cell numbers with the weeks of enrichment, and the significance of such trend was tested by
calculating the P-values of the F-statistics obtained, where ‘‘**’’ denotes significant P-value < 0.05, ‘‘*’’
denotes p-value > 0.05 but < 0.1, ‘‘NS’’ denotes non-significant P-value > 0.1, and ‘‘ND’’ refers to cases
where the linear regression analysis was not performed because two or more samples were below the de-
tection level of the qPCR. In the few cases, denoted by a superscript letter a, where the total cell numbers
increased initially then decreased by the last week of enrichment, the linear regression was only carried on
total numbers from the first three weeks of enrichments.

analysis of the enriched families/genera across various enrichments. The detailed microbial
community composition across all datasets is shown in Table S2.

Chara microcosms
In Chara microcosms, Bacteroidetes, Firmicutes, and Delta-Proteobacteria were
consistently abundant (Table 3) and, collectively, constituted the majority (40.2% to
72.7%) of the community at the end of enrichment. Spirochaetes were abundant only in
WWT and ZDT enrichments, while Gamma-Proteobacteria were abundant only in GL and
ZDT enrichments (Figs. 3–5).

Within the Bacteroidetes, the uncultured putative genus VadinBC27 was consistently
enriched (Table 3) regardless of the inoculum source. This uncultured subgroup within
the order Bacteroidales has been previously identified as a major lineage in anaerobic
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Table 2 Number of OTUs0.03 and OTUs0.1 normalized to the total number of sequences, and the estimated species richness (using both Chao
and ACE estimators) normalized to the total number of sequences.

Chara Chlorella Kelp

Source_cutoffa Weeks of
enrichment

OTUs Chao ACE OTUs Chao ACE OTUs Chao ACE

;ZDT_0.03 0 0.193 0.373 0.501 0.193 0.373 0.501 0.193 0.373 0.501
; 7 0.021 0.040 0.056 0.031 0.054 0.067 0.060 0.130 0.255
; 10 0.030 0.051 0.068 0.022 0.043 0.058 0.069 0.148 0.265
; 16 0.028 0.059 0.078 0.025 0.051 0.069 0.046 0.118 0.208
;ZDT_0.1 0 0.051 0.078 0.088 0.051 0.078 0.088 0.051 0.078 0.088
; 7 0.008 0.011 0.010 0.016 0.023 0.028 0.026 0.043 0.058
; 10 0.012 0.017 0.016 0.009 0.013 0.015 0.026 0.042 0.053
; 16 0.011 0.016 0.019 0.009 0.012 0.014 0.019 0.029 0.040
;GL_0.03 0 0.043 0.091 0.140 0.043 0.091 0.140 0.043 0.091 0.140
; 4 0.008 0.019 0.033 0.014 0.025 0.035 ND ND ND
; 7 0.014 0.032 0.044 0.010 0.020 0.024 0.092 0.116 0.123
; 13 0.022 0.055 0.057 0.011 0.018 0.029 0.036 0.063 0.076
;GL_0.1 0 0.020 0.032 0.042 0.020 0.032 0.042 0.020 0.032 0.042
; 4 0.003 0.007 0.009 0.008 0.015 0.022 ND ND ND
; 7 0.006 0.015 0.020 0.005 0.009 0.010 0.051 0.058 0.061
; 13 0.010 0.015 0.014 0.005 0.007 0.008 0.017 0.026 0.029
;WWT_0.03 0 0.048 0.087 0.108 0.048 0.087 0.108 0.048 0.087 0.108
; 7 0.043 0.072 0.092 0.066 0.109 0.140 0.013 0.039 0.055
; 10 0.020 0.036 0.046 0.033 0.052 0.061 0.020 0.043 0.064
; 16 0.030 0.051 0.068 0.021 0.036 0.043 0.012 0.025 0.035
;WWT_0.1 0 0.013 0.022 0.029 0.013 0.022 0.029 0.013 0.022 0.029
; 7 0.018 0.025 0.024 0.030 0.043 0.048 0.006 0.009 0.012
; 10 0.006 0.009 0.009 0.013 0.019 0.019 0.006 0.010 0.014
; 16 0.011 0.015 0.017 0.008 0.010 0.010 0.004 0.007 0.009

Notes.
aSource refers to the inoculum source, while cutoff refers to the percentage divergence cutoff used to assign sequences into operational taxonomic units (OTUs). For each inocu-
lum source, the numbers are shown for OTUs at the putative species level (0.03) and the putative order level (0.1).
ND, Not determined due to the small number of sequences obtained for this dataset.

digestors (Liu et al., 2016; Riviere et al., 2009; Xie et al., 2014; Xu et al., 2012) and was
implicated as an anaerobic fermenter of sludge or other carbon sources. Other enriched
Bacteroidetes members include the genera Mangroviflexus (ZDT microcosms), previously
identified as an important in-situ fermenter of organic matter-rich soil (Ding et al., 2016)
and anaerobic cellulolytic microcosms (Gao, Xu & Ruan, 2014), Paludibacter (WWT and
ZDT microcosms), previously enriched from anaerobic freshwater sediment (Sanchez-
Andrea et al., 2013) and shown to be an anaerobic propionate-producer (Qiu et al.,
2014; Ueki et al., 2006), Bacteroides (WWT and GL microcosms), a well-documented
complex carbohydrate degrader in a wide range of environments (Adamberg et al., 2015;
Dongowski, Lorenz & Anger, 2000; Jiménez, Chaves-Moreno & Van Elsas, 2015), Barnesiella
(GL microcosms), a known fermentative gut microbe (Wang et al., 2015), and WCHB1-69
(ZDT microcosms), a yet-uncultured Bacteroidetes family previously encountered in
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Figure 2 Microbial community structure analysis in the enrichment microcosms (n = 26) as
compared to the pre-enrichment inoculum sources (n = 3). The inoculum sources are denoted by
shapes; ZDT (©), WWT ( ), and GL (�), and the algae types are denoted by color; Chara (blue),
Chlorella (green), Kelp (red), and no algae, i.e., pre-enrichment community, (black). (continued on next
page. . . )
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Figure 2 (. . .continued)
Each enrichment condition (inoculum source× algae type) is represented by 3 sample points correspond-
ing to the weeks during enrichment, except for GL-kelp enrichment where the dataset from week 4 is not
shown due to the small number of sequences obtained with this dataset. (A) Non-metric multidimen-
sional scaling plots based on Bray–Curtis dissimilarity indices at the species level (0.03). For Chara and
Chlorella enrichments, communities grouped by the inoculum source, while Kelp enrichments grouped
by the algae type. (B) Canonical correspondence analysis using the abundant phyla/classes relative abun-
dances to study the effect of algae type and inoculum source on the microbial community composition.
Here, the same pattern is observed at the phylum/class level, where the community structure of Chara and
Chlorella enrichments were similar and grouped by inoculum source, while the microbial community of
Kelp enrichments were quite distinct and grouped together regardless of the inoculum source. This pat-
tern is reflected on the direction of the factors arrows, where the algae type is pointing in the direction
of the Kelp enrichments. The CCA also depicts the abundant phyla/classes that seem to shape the micro-
bial community in the different enrichments; Gamma-Proteobacteria in GL Chara and Chlorella enrich-
ments, Spirochaetes and Firmicutes in ZDT-Chlorella enrichment, Delta-Proteobacteria and Bacteroidetes
in ZDT-Chara enrichments and WWT Chara and Chlorella enrichments, and Epsilon-Proteobacteria and
Firmicutes in Kelp enrichments regardless of the inoculum source. The constrained variables explained
57% of the variance.

organic solvent-contaminated aquifers and anaerobic digestors (Dojka et al., 1998; Xu et
al., 2012) (Table 3 and Figs. 3–5).

Within the Firmicutes, all enriched taxa belonged to the order Clostridiales, a ubiquitous
order of strictly anaerobic, fermentative bacteria (Xia et al., 2015). However, the profile of
enriched families/genera within this order depended on the inoculum source. Members
of Ruminococcaceae were abundant in all microcosms, while members of the families
Clostridiaceae_1 and Family XIII were enriched only in ZDT microcosms, and members
of the Lachnospiraceae and Veillonellaceae were enriched only in GL microcosms
(Table 3 and Figs. 3–5).

Within the Delta-Proteobacteria, the sulfate-reducing genera Desulfovibrio,
Desulfobacter, Desulfobulbous, and Desulfomicrobium were encountered as predominant
members in enrichments from some or all inoculum sources. Enrichment of sulfate
reducers in ZDT and WWT microcosms was accompanied by a significant decrease in the
amount of sulfate in the enrichments (Fig. S2). On the other hand, sulfate concentration
did not decrease in GL microcosms (Fig. S2) in spite of the apparent enrichment of SRBs
(6.9% of the total enriched taxa). Similar results were previously shown for members of
Desulfovibrio and Desulfobulbous in biofilms (Santegoeds et al., 1998), where not all SRBs
detected by culture-independent techniques were found to be sulfidogenically active.

Members of the Spirochaetes were enriched in WWT and ZDT microcosms. The genus
Spirochaeta and the yet uncultured family SHA-4 were identified as the major enriched
Spirochaetes members in both enrichments. Both lineages appear to be widely distributed
in a wide array of freshwater and marine habitats and enrichments (Bozo-Hurtado et al.,
2013; Gu et al., 2004; Leschine, Paster & Canale-Parola, 2006;Wang et al., 2014).

Members of the Gamma-Proteobacteria were enriched in ZDT and GL microcosms.
However, the identity of enriched families/genera differed depending on the inoculum
source, where Kluyvera and unclassified Enterobacteriaceae were enriched in ZDT
microcosms, while Buttiauxella, Pantoea and Aeromonas were enriched in GL microcosms.
All suchmembers are known carbohydrate fermenters previously encountered inmicrobial
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Figure 3 Microbial community composition in ZDT enrichments. Abundant phyla/classes are shown
as area charts for Chara (i), Chlorella (ii), and Kelp (iii) enrichments for each inoculum source. Phyla that
constituted 5% or more of the community at any time during enrichment were considered significant to
the degradation process and are shown in the area charts. These include phyla that were abundant prior
to enrichment and remained abundant during and after enrichment (e.g., Bacteroidetes in Chara and
Chlorella enrichments (i, ii)), and phyla that significantly and progressively increased in abundance with
enrichment time (e.g., Firmicutes in Kelp enrichments (iii)). Bar charts depict the relative abundance of
abundant genera (>1%) in each of the abundant phyla/classes shown in i-ii-iii. These include Proteobacte-
ria (iv), Bacteroidetes (v), Firmicutes (vi), and Spirochaetes (vii). The X-axis denotes the weeks of enrich-
ment (i–iii), or the weeks of enrichment and algae type (iv–vii). ‘‘0’’ denotes the community composition
in the pre-enrichment inoculum source.

Morrison et al. (2017), PeerJ, DOI 10.7717/peerj.2803 15/35

https://peerj.com
http://dx.doi.org/10.7717/peerj.2803


Figure 4 Microbial community composition inWWT enrichments. Abundant phyla/classes are shown
as area charts for Chara (i), Chlorella (ii), and Kelp (iii) enrichments for each inoculum source. Phyla
that constituted 5% or more of the community at any time during enrichment were considered signifi-
cant to the degradation process and are shown in the area charts. These include phyla that were abundant
prior to enrichment and remained abundant during and after enrichment (e.g., Bacteroidetes in Chara
and Chlorella enrichments (i, ii)), phyla that transiently increased in abundance during part of the enrich-
ment but then decreased in abundance by the end of enrichment (e.g., Delta-Proteobacteria in Chara and
Chlorella enrichments (i, ii)), and phyla that significantly and progressively increased in abundance with
enrichment time (e.g., Firmicutes in Kelp enrichments (iii)). Bar charts depict the relative abundance of
abundant genera (>1%) in each of the abundant phyla/classes shown in i-ii-iii. These include Proteobacte-
ria (iv), Firmicutes (v), Bacteroidetes (vi), and Spirochaetes (vii). The X-axis denotes the weeks of enrich-
ment (i–iii), or the weeks of enrichment and algae type (iv–vii). ‘‘0’’ denotes the community composition
in the pre-enrichment inoculum source.
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Figure 5 Microbial community composition in GL enrichments. Abundant phyla/classes are shown as
area charts for Chara (i), Chlorella (ii), and Kelp (iii) enrichments for each inoculum source. Phyla that
constituted 5% or more of the community at any time during enrichment were considered significant to
the degradation process and are shown in the area charts. These include phyla that were abundant prior to
enrichment and remained abundant during and after enrichment (Gamma-Proteobacteria in Chara and
Chlorella enrichments (i, ii)), and phyla that significantly and progressively increased in abundance with
enrichment time (e.g., Firmicutes in Kelp enrichments (iii)). (continued on next page. . . )
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Figure 5 (. . .continued)
Bar charts depict the relative abundance of abundant genera (>1%) in each of the abundant phyla/classes
shown in i-ii-iii. These include Bacteroidetes (iv), Firmicutes (v), Delta and Epsilon-Proteobacteria (vi),
Gamma-Proteobacteria (vii), Alpha and Beta Proteobacteria (viii), and Planctomycetes (ix). The X-axis
denotes the weeks of enrichment (i–iii), or the weeks of enrichment and algae type (iv–ix). ‘‘0’’ denotes the
community composition in the pre-enrichment inoculum source.

consortia degrading plant biomass (Jiménez, Chaves-Moreno & Van Elsas, 2015; Jiménez et
al., 2016), in earthworm gut enrichments (Wust, Horn & Drake, 2011), and in microbial
mats from bicarbonate- and ferrous-iron-rich spring (Hegler et al., 2012).

Chlorella microcosms
Enrichment patterns in Chlorella microcosms were very similar to Chara enrichments;
with the phyla Bacteroidetes, Firmicutes, and Delta-Proteobacteria consistently enriched in
microcosms derived from all three inoculum sources (ZDT, WWT, and GL), Spirochaetes
only enriched in WWT and ZDT microcosms, and Gamma-Proteobacteria enriched in
GL (but not ZDT) enrichments. Similar to Chara enrichments, the taxa VadinBC27,
Mangroviflexus, Paludibacter, Barnesiella, and WCHB1-69 within the Bacteroidetes;
Desulfovibrio, Desulfobacter, and Desulfomicrobium within the Delta Proteobacteria;
Spirochaeta and unclassified SHA-4 within the Spirochaetes were all abundant community
members at the end of enrichment. Within the Firmicutes, the family Lachnospiraceae was
abundant in all enrichments, similar to what was observed in Charamicrocosms. However,
apart from this notable exception, the enriched community of Firmicutes genera/families
differed in Chlorella microcosms when compared to Chara enrichments. Within the ZDT
microcosms on Chlorella, a wide range of Clostridiales-affiliated genera and families were
encountered, with members of the genera Geosporobacter (family Clostridiaceae_1), and
Acidaminobacter (family Clostridiaceae_4), Youngiibacter (family Clostridiaceae_1), and
members of Clostridiales Family XIII constituting ∼34% of total sequences encountered
in ZDT microcosms. Further, In contrast to Chara enrichments where Veillonellaceae was
only restricted to GL microcosms, Chlorella enrichments selected for members of this
family in ZDT and WWT microcosms.

Chlorella enrichments selected for members of the Gamma-Proteobacteria only in
GL microcosms where they constituted ∼54% of the total taxa in these enrichments.
Buttiauxella and Aeromonas were identified as major taxa in GL Chlorella microcosms,
similar to what was observed in Chara enrichments. In addition, members of the genus
Edwardsiella (family Enterobacteriaceae) were identified as a Chlorella enrichment-specific
taxon (Figs. 3–5 and Table 3). Members of the genus Edwardsiella have been repeatedly
isolated from marine and freshwater animals and some species have been linked to
pathogenesis in fish (Sakazaki, 1965). This is consistent with its enrichment in microcosms
from a freshwater environment such as Grand Lake.

Kelp enrichments
While the microbial communities enriched on Chara and Chlorella exhibited marked
similarities regardless of the inoculum source, the community enriched on kelp was
quite distinct: In all kelp enrichments, Firmicutes constituted more than 70% of the
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Table 3 Abundant lineages (>1%) within the abundant/enriched phyla shown in Figs. 3–5.

Phylum/Class Class/Order Family–genus WWT ZDT GL

;Chara enrichments
;Bacteroidetes Bacteroidales Marinilabiaceaea-Mangroviflexus 0.58 4.16 0
; Porphyromonadaceae-Paludibacter 1.47 1 0.1
; Porphyromonadaceae-Bacteroides 2.11 0.05 6.91
; Porphyromonadaceae-Barnesiella 0 0 1.58
; Rikenellacea-VadinBC27 6.1 11.45 2.78
; Sphingobacteriales WCHB1-69-unclassified 0.76 3.73 0.84
; Unclassified Bacteroidetes 14.34 4.03 0
;Firmicutes Clostridiales Clostridiaceae_1-Youngiibacter 0.003 1.36 0
; Family XIII 0.41 1.85 0.1
; Ruminococcaceae_Incertae_Sedis 0.07 0.09 1.61
; Ruminococcaceae-Ruminococcus 0.02 0.03 2.38
; Other Ruminococcaceae 3.62 1.47 0
; Lachnospiraceae_Incertae_Sedis 0.16 0.45 6.87
; Lachnospiraceae-Parasporobacterium-

Sporobacterium
0 0.04 2.51

; Veillonellaceae-uncultured 0 0 3.1
; Unclassified Clostridiales 3.75 3.4 0.07
; Unclassified Firmicutes 0.69 8.02 0
;Spirochaetes Spirochaetales Spirochaetaceae-Spirochaeta 10.67 4.69 0
; SHA-4-unclassified 2.92 2.48 0
; Unclassified 6.91 0.29 0
;Delta Proteobacteria Desulfobacterales Desulfobacteriaceae-Desulfobacter 0.36 1.39 0
; Desulfobulbaceae-Desulfobulbous 0.28 0.69 1.22
; Desulfovibrionales Desulfovibrionacea-Desulfovibrio 5.69 1.42 5.67
; Desulfovibrionaceae-Desulfomicrobium 1.89 5.69 0
;Gamma Proteobacteria Enterobacteriales Enterobacteriaceae-Kluyvera 0 4.15 0.04
; Enterobacteriaceae-unclassified 0 4.2 0
; Enterobacteriaceae-Buttiauxella 0 0 44.1
; Enterobacteriaceae-Pantoea 0 0 11
; Aeromonadales Aeromonadaceae-Aeromonas 0 0.11 1.87
;Chlorella enrichments
;Bacteroidetes Bacteroidales Marinilabiaceaea-Mangroviflexus 0.16 2.27 0
; Porphyromonadaceae-Paludibacter 2.59 0.46 0.81
; Porphyromonadaceae-Barnesiella 0.002 0 1.7
; Rikenellacea-VadinBC27 16.18 9.11 1.95
; Other 1.78 0.2 2.95
; Sphingobacteriales WCHB1-69-unclassified 2.14 0.64 5.18
; Unclassified Bacteroidetes 2.69 1.18 0
;Firmicutes Clostridia/Clostridiales Clostridiaceae_1-Youngiibacter 0.006 8.94 0
; Clostridiaceae_4-Geosporobacter 0 11.44 0

(continued on next page)
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Table 3 (continued)

Phylum/Class Class/Order Family–genus WWT ZDT GL

; Family_XII-Acidaminobacter 0 3.77 0
; Family XIII 0.67 6.32 0.02
; Lachnospiraceae_Incertae_Sedis 0.03 0.06 7.63
; Veillonellaceae-uncultured 1.56 1.69 0.94
; Unclassified Clostridiales 1.78 2.44 0
; Unclassified Firmicutes 0.82 4.87 0
;Spirochaetes Spirochaetales Spirochaetaceae-Spirochaeta 21.65 2.62 0
; SHA-4-unclassified 5.87 2.35 0
; Unclassified 0.3 0.86 0
;Delta Proteobacteria Desulfobacterales Desulfobacteriaceae-Desulfobacter 0.03 7.31 0
; Desulfovibrionales Desulfovibrionacea-Desulfovibrio 2.93 1.18 21.38
; Desulfovibrionaceae-Desulfomicrobium 0.7 6.38 0
;Gamma Proteobacteria Enterobacteriales Enterobacteriaceae-Buttiauxella 0 0 37.75
; Enterobacteriaceae-Edwardsiella 0 0 7.64
; Aeromonadales Aeromonadaceae-Aeromonas 0 0 8.14
;Kelp enrichments
;Epsilon Proteobacteria Campylobacterales Campylobacteraceae-Arcobacter 8.54 0.01 0
; Campylobacteraceae-Sulfurospirillum 2.19 0.05 0.007
;Gamma Proteobacteria Aeromonadales Aeromondaceae-Tolumonas 5.37 0.002 0
; Enterobacterales Enterobacteriaceae-Kluyvera 2.95 0.006 0
; Enterobacteriaceae-unclassified 1.71 0 0
; Pseudomonadales Moraxellaceae-Acinetobacter 2.41 0 0.91
; Other 2 0.992 5.09
;Firmicutes Clostridiales Clostridiaceae-Clostridium 0.49 29.55 77.73
; Lachnospiraceae-Incertae_Sedis 0.02 19.56 0.68
; Lachnospiraceae-Anaerosporobacter 0.004 8.1 0
; Veillonellaceae-unclassified 65.89 0.01 0
; Bacillales Paenibacillaceae-Paenibacillus 0 2.1 0

total enriched taxa regardless of the inoculum source. In ZDT kelp enrichments, four
different Firmicutes taxa were enriched; Clostridium, Anaerosporobacter, Lachnospiraceae-
Incertae_Sedis, and Paenibacillus. Anaerosporobacter, a strictly anaerobic spore former, and
other Lachnospiraceae members were previously isolated from cellulose and xylan-pectin
enrichments of cow feces (Ziemer, 2014), and are frequently encountered within the
human gut microbiota (Gagen et al., 2015; Lau et al., 2016; Martinez et al., 2013; Nava,
Friedrichsen & Stappenbeck, 2011). Members of the genus Paenibacillus are globally
distributed facultative anaerobes (Li et al., 2014), some of which are known to exhibit
superior plant biomass degradation capacities (Eida et al., 2012). On the other hand, in
both GL and WWT kelp microcosms, a single lineage constituted the majority of the
enriched Firmicutes; Genus Clostridium in GL, and Family Veillonellaceae in WWT.
Members of the genus Clostridium exhibit ubiquitious and global distribution in a wide
range of anoxic habitats, while members of the family Veillonellaceae are often encountered
in groundwater samples (Mosher et al., 2012), and rice paddy soil (Li et al., 2011).
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In addition to Firmicutes, ZDT kelp microcosms showed an abundance of the
Spirochaetes genus Treponema (20.2% of the total enriched taxa) previously shown to
contribute to the overall cellulolytic activities in barley straw microcosms (Kudo, Cheng
& Costerton, 1987), and WWT kelp microcosms showed an abundance of members
of Epsilon (genera Arcobacter and Sulfurospirilum) and Gamma (genera Tolumonas,
Kluyvera, and Acinetobacter) Proteobacteria, collectively comprising ∼25% of the total
enriched taxa. Members of these genera were previously implicated in anaerobic plant
biomass degradation (Billings et al., 2015; Caldwell et al., 2011; Cardoso et al., 2012).

DISCUSSION
In this study we investigated the microbial community mediating algal detritus turnover
under anaerobic conditions. We utilized three representative algal species: Chlorella
vulgaris strain UTEX2714 representing the Chlorophyta, Chara sp. strain IWP representing
the Charophyceae, and Ascophyllum nodosum (kelp) representing the brown algae
(Phaeophyceae). We followed the turnover of these algae in enrichments that were set
up using three different sources of inoculum: an anoxic freshwater sulfide- and sulfur-rich
spring (Zodletone spring, OK), a wastewater treatment plant (Municipal wastewater
treatment plant in Stillwater, OK), and a seasonally stratified lake that experience seasonal
algal blooms (Grand Lake O’ the Cherokees, OK).We identifiedmultiplemicrobial lineages
that were significantly enriched in these treatments. Some of these lineages appear to be
substrate-specific (i.e., enriched when using a specific algal species as a substrate source
regardless of the inoculum source utilized, e.g., VadinBC27 that was enriched onChara and
Chlorella regardless of the inoculum source and Spirochaeta that was enriched onChara and
Chlorella in ZDT andWWTmicrocosms), habitat-specific (i.e., enriched only when using a
specific source of inoculum regardless of the algal substrate utilized, e.g., Buttiauxella, that
was enriched in GLmicrocosms regardless of the algal substrate), or treatment-specific (i.e.,
encountered only in a specific algal substrate/inoculum source combination, e.g.,Arcobacter
in WWT microcosms on kelp, Geosporobacter, Acidaminobacter, Anaerosporobacter, and
Treponema in ZDT microcosms on kelp, Youngiibacter in ZDT microcosms on Chlorella,
and Pantoea in GL microcosms on Chara).

Within all nine treatments examined, a high level of diversity was invariably retained
at the conclusion of the incubation process. We reason that this is a reflection of
the complexity of the substrate utilized. Algal detritus harbors multiple complex
macromolecules, e.g., proteins, lipids, nucleic acids, and polysaccharide, that vary
considerably in structure and hence require multiple enzymes and pathways for their
efficient degradation (e.g., pectin and cellulose in algal cell walls require an arsenal
of degradation enzymes (Abbott & Boraston, 2008; Doi & Kosugi, 2004)). Such level of
complexity could potentially select for a wide range of organisms, each contributing
to the degradation process of a specific substrate within the algal biomass. This is in
stark contrast to the selection of one/few microbial lineages in anaerobic incubations
conducted using a single, chemically defined substrate (Viggor et al., 2013; Yagi et al., 2010).
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Our results and subsequent community analysis (Figs. 2–5 and Table 3) indicate
that kelp enriched for a highly similar microbial community that is mostly composed
of members of the order Clostridiales; genus Clostridium and Anaerosporobacter and
family Veillonellaceae, regardless of the inoculum source (ZDT, WWT, and GL). While
only a handful of environments were examined in this study, the consistent selection
for members of a specific lineage regardless of the starting inoculum suggests the
ecological significance of this lineage in kelp detritus turnover in anaerobic habitats.
The reason for this observed pattern of Clostridiales genera/families selection on kelp
could only be speculated upon. A possible contributing factor could be the unique cell wall
structure of kelp (or brown algae); multiple cellulose microfibrils layers embedded in large
interfibrillar matrices that are mostly composed of alginates and fucans (Domozych, 2001;
Youssef et al., 2015). Alginate (Preiss & Ashwell, 1962a; Preiss & Ashwell, 1962b) and fucans
(Descamps et al., 2006; Kusaykin et al., 2016) degradation requires highly specific enzymes
machineries. Organisms with alginate or fucan/fucoidan-degradation capabilities under
aerobic conditions have been previously isolated (Ekborg et al., 2005; Jagtap et al., 2014;
Park et al., 2012; Sakai, Kawai & Kato, 2004; Thomas et al., 2012; Yonemoto et al., 1993).
On the other hand, with the exception of a few studies that used anaerobic batch-fed
mixed inocula to degrade brown algae and produce methane (Moen, Horn & Østgaard,
1997a; Moen, Horn & Østgaard, 1997b; Sutherland & Varela, 2014), there is a scarcity
of information on the identity of the degrading inocula under anaerobic conditions.
In contrast to the number of studies on the anaerobic degradation of other common
polysaccharides, e.g., cellulose and xylans, a single study by Kita et al. (2016) reported
on the identity of a bacterial consortium (formed mainly of a Clostridiaceae bacterium
and a Porphyromonadaceae bacterium (Dysgonomonas capnocytophagoides)) anaerobically
degrading alginate. Based on the study by Kita et al. (2016) and the results we report here, it
is possible that members of the Clostridiales represent one of very few members possessing
alginate and/or fucan-degrading capabilities and that are readily enriched and propagated
under laboratory incubations.

On the other hand, when using Chara or Chlorella as an algal inoculum, the final
microbial community enriched was highly divergent, and the final community structure
was mostly dependent on the inoculum sources (ZDT, WWT, GL), rather than the type of
algal substrate provided (Figs. 2–5, Table 3). While Chlorella and Chara cell walls are quite
distinct, they are both similar in being rich in fibrous cellulose and/or hemicellulose
with amorphous middle layers composed mainly of pectin (homogalacturonic and
rhamnogalacturonic acids polymers) in Charophyta, or sulfated polysaccharides in
Chlorophyceae (Domozych, 2001; Domozych et al., 2014; Youssef et al., 2015). We reason
that the relative similarity of the communities enriched on both types of algae, as
well as the enrichment for multiple, rather than a single group of microbial lineages
(VadinBC27, Spirochaeta, Lachnospiraceae, Buttauxiella, and Pantoea) is a reflection
of the relative ubiquity of microbial lineages capable of the anaerobic degradation of
cellulose, hemicellulose, and pectin in the algal cell walls, hence allowing ready access to
the intracellular substrates within the algal cells.
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Under anaerobic conditions, multiple groups of organisms and metabolic guilds
are often required for the effective and complete degradation of complex organic
molecules (McInerney, Sieber & Gunsalus, 2009; Morris et al., 2013). By examining the
known metabolic capabilities of close relatives of lineages enriched in various treatments,
one could propose a model depicting their putative involvement in the complex algal
detritus degradation processes. In kelp enrichments, complex carbohydrate polymer
degradation to monomers could possibly be mediated by various members of the order
Clostridiales (Clostridium, Anaerosporobacter, Lachnospiraceae incertae sedis) as shown
before (Ziemer, 2014), as well as the fermentative bacteria in the Enterobacteriaceae
(Kluyvera) (Xin & He, 2013). Produced sugar monomers can be further fermented to
various fatty acids (acetate and longer chain fatty acids e.g., butyrate, propionate, etc.)
by the same members of the Clostridiales and Enterobacteriaceae, as well as the Epsilon
Proteobacterium Sulfurospirillum (Stolz et al., 1999). Proteins in the initial substrate could
potentially be degraded by the Epsilon Proteobacterium Arcobacter (Roalkvam et al.,
2015). Additionally, while the majority of sequences obtained were bacterial in origin, the
few archaeal sequences obtained suggest the enrichment of members of Bathyarchaeota
(Table S2). Previous research using genomic sequences of different members of the
Bathyarchaeota suggested their involvement in both complex carbohydrates and detrital
protein degradation as well as acetate production (Lazar et al., 2016), which could explain
their enrichment on kelp. Under anaerobic condition, syntrophic organisms convert the
long chain fatty acids produced from the initial polymer degradation to acetate. Definitive
identification of syntrophic organisms in culture-independent studies is challenging, given
their close phylogenetic affiliation with fermentative lineages (Morris et al., 2013). On
the other hand, saccharolytic clostridia members of the family Lachnospiraceae could
potentially perform the initial breakdown of polymeric substances and the fermentation
of the resulting sugars to acetate, hydrogen, and CO2 (Krumholz & Bryant, 1986). While
other obligate syntrophic organisms, e.g., members of the families Syntrophobacteraceae,
Syntrophaceae, Syntrophomonadaceae, and Syntrophorhabdaceae, were detected in
very low percentage (<0.06% of the total community in any enrichment), their role
could not be ruled out. The produced acetate, hydrogen, and CO2 would eventually
be converted to methane by methanogens. The role of methanogens as the dominant
terminal electron acceptor in kelp enrichment from ZDT and WWT inoculum sources is
suggested by the observed increase in mrcA gene copy number in qPCR analysis (Fig. 1)
and the identification of several sequences affiliated with known methanogens (genera
Methanosarcina, Methanothermococcus, Methanogenium, and Methanomicrobium) in kelp
enrichment fromZDT (Table S2). The lack of sulfate utilization in all kelp enrichments (Fig.
S2) argues against the involvement of the SRBs identified in the culture-independent dataset
(Desulfovibrio,Desulfobacter,Desulfomicrobium, andDesulfobulbous) and detected by qPCR
(Fig. 1) in the process. Similar results were previously shown in biofilms (Santegoeds et al.,
1998), where not all SRBs detected by culture-independent techniques were found to be
sulfidogenically active.

Within Chara and Chlorella enrichments, complex carbohydrate (e.g., cellulose, pectin,
hemicellulose) degradation to sugar monomers could be mediated by members of the
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Bacteroidetes uncultured groups VadinBC27 (in all enrichments from all sources) and
WCHB1-69 (in Chara enrichment from ZDT, and Chlorella enrichment from WWT
and GL), as well as the Spirochaetes (Gao, Xu & Ruan, 2014) (genus Spirochaeta and the
uncultured group SHA-4 enriched on Chara and Chlorella from ZDT and WWT sources).
These lineages have been consistently enriched in anaerobic sludge digestors (Godon et
al., 1997; Lee et al., 2013), and microcosms with hydrocarbon or halogenated solvents
(Dojka et al., 1998; Gu et al., 2004; Xu et al., 2012). Similarly, members of the Clostridiales
(Family Ruminococcaceae (in Chara enrichments from all sources), Family Veillonellaceaea
(in Chara enrichments from GL), Family Lachnospiraceae (in Chara and Chlorella
enrichments from GL), and Family Clostridiaceae genera Yongiibacter, Geosporobacter,
Acidaminobacter (in Chloreela enrichments from ZDT)), as well as Enterobacteriales
(Genera Kluyvera (Chara enrichments from ZDT), Pantoea (Chara enrichments from GL),
Edwardsiella and Aeromonas (Chlorella enrichment from GL), and Buttiauxella (Chara
and Chlorella enrichments from GL)) could potentially mediate complex carbohydrate
degradation (Hegler et al., 2012; Jiménez, Chaves-Moreno & Van Elsas, 2015; Jiménez et
al., 2016; Sakazaki, 1965; Wust, Horn & Drake, 2011; Xin & He, 2013; Ziemer, 2014). The
monomers produced could potentially be converted to long chain volatile fatty acids,
acetate, and H2 by the Clostridiales and Enterobacteriales members above. Alternatively,
long chain volatile fatty acids could be converted to acetate, H2 and CO2 by syntrophs,
or oxidized either completely (to H2 and CO2) or incompletely (to acetate, H2 and CO2)
by sulfate-reducing bacteria (e.g., the complete oxidizers (Desulfobacter in Chara and
Chlorella enrichments from ZDT), or the incomplete oxidizers (Desulfovibrio in all Chara
and Chlorella enrichments from all sources, Desulfomicrobium in Chara and Chlorella
enrichments from ZDT and Chara enrichments from WWT, and Desulfobulbous in Chara
enrichment from GL)) when sulfate is available. The produced acetate, H2 and CO2

could either be metabolized to methane by aceticlastic or hydrogenotrophic methanogenic
lineages observed in the enrichments (Table S2) (e.g., the aceticlastic Methanosarcina
in Chara and Chlorella enrichments from ZDT and WWT, and the hydrogenotrophic
Methanothermococcus in Chlorella early (week 7) enrichments from ZDT), or metabolized
by the aceticlastic autotrophic SRBs in the presence of sulfate. The increase in dsr copy
numbers in Chara and Chlorella enrichments as measured by qPCR, the utilization of
the available substrates in these enrichments (loss of sulfate (Fig. S2)), as well as the
presence of a large and diverse community of SRBs (Table 3 and Table S2) evidenced by the
culture-independent analysis, strongly argue for the co-involvement of sulfate reduction
and methanogenesis as two competing terminal electron accepting processes in these
enrichments. Recently, the methanogenic potential for members of the Bathyarchaeota was
suggested based on genomicmetabolic reconstruction (Evans et al., 2015). It is worth noting
that the Bathyarchaeota phylum was enriched in ZDT Chara and Chlorella microcosms
(Table S2) and could potentially be contributing to methanogenesis in these enrichments.

In conclusion, our work represents the first systematic survey of microbial communities
mediating turnover of algal biomass under anaerobic conditions, and highlights the
diversity of lineages putatively involved in the degradation process. The results presented
here could certainly open the door for future studies that investigate the interactions
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between the abundant genera identified as significant for the degradation process, as well
as for targeted isolation studies for algal detritus degraders.
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