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ABSTRACT: The quality and safety of agricultural products are of paramount
importance in ensuring the health of the food supply chain. Additionally, the
composition and trace elements in agricultural products significantly influence
their quality and nutritional value. Therefore, the need for rapid and accurate
analysis techniques for agricultural product composition is particularly crucial.
In the current landscape of evolving compositional analysis technologies, Laser-
Induced Breakdown Spectroscopy (LIBS) technology is emerging as a
promising analytical tool with broad applications in agricultural product
testing. Its characteristics of being rapid, real-time, and capable of simultaneous
detection of multiple elements provide an efficient and reliable means for
assessing the quality, monitoring safety, and tracing the origin of agricultural
products. This technology is expected to play a significant role in controlling
and managing the agricultural industry chain and can offer consumers safer and
healthier agricultural products. This paper provides an overview of the research status and recent developments of LIBS technology
in agricultural product testing applications in recent years. Based on the current research landscape, challenges and opportunities of
applying LIBS technology in fields such as agricultural product quality and safety assessment, soil analysis, assessment of crop
nutrition, detection of plant diseases, and identification of agricultural product varieties have been evaluated. Moreover,
recommendations for further expanding the application of LIBS technology in the agricultural sector are proposed.

1. INTRODUCTION
The detection of agricultural product composition holds
critical significance in maintaining the healthy operation of
the food supply chain, as variations in element composition
and content are closely related to the quality, safety, and
potential nutritional value of agricultural products. The
presence of heavy metals and chemical substances such as
pesticides in agricultural products may induce complex
metabolic changes, posing significant challenges to the safety
and quality of agricultural products. Research indicates that
heavy metal contamination may lead to adjustments in plant
metabolic pathways, thereby affecting the biosynthetic path-
ways and production of metabolites. For instance, lead
contamination often reduces the content of polyphenolic
compounds and antioxidant substances in crops, while
cadmium pollution may disrupt nitrogen metabolism pathways,
leading to changes in amino acid content. Additionally,
pesticide residues have been shown to significantly impact
the metabolomics of agricultural products. Previous studies
have indicated that pesticide residues may induce an increase
in antioxidant enzyme activity in agricultural products and
affect the synthesis pathways of their antioxidant substances.
These metabolomic changes not only directly affect the quality
and nutritional value of agricultural products but may also have
adverse effects on human health. Duan et al.1 conducted

experiments involving varying concentrations of salt treatment
during the germination and seedling stages of alfalfa. They
assessed seed germination rate, survival rate, plant height, and
root length under different salt stress conditions in order to
investigate the effects of salt stress on the growth of alfalfa
during the germination and seedling stages. Concurrently,
metabolomic analysis was employed to identify key response to
salt stress during the germination and seedling stages of alfalfa.
Chen et al.2 investigated the absorption, transport, and toxic
effects mechanism of carbon quantum dots (C-dots) in maize
and Arabidopsis,2 exploring how these nanomaterials interact
with plant systems. The study confirmed that partial C-dots
could be secreted from the margins and tips of maize leaves
and penetrate the root epidermal cells of Arabidopsis seedlings,
entering the roots and being transported to the aboveground
parts. Additionally, it was found that C-dots could enter the
maize root cap cells in large quantities, primarily distributed in
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the cytoplasm. Sun et al.3 conducted single-strain fermentation
of soybeans and found that the contents of nitrogen in amino
acid form, reducing sugars, and total acids in soybean paste
steadily increased with fermentation time. The times at which
different detected components reached their maximum values
varied but were mainly concentrated between 40 and 60 days.
Furthermore, the content of crude fat showed a significant
decreasing trend in the first 70 days of fermentation.
Research has revealed that certain essential bioelements play

a pivotal role in agricultural products, influencing their growth,
metabolism, and immune regulation functions. For instance, in
plant-based agricultural products, trace elements such as zinc,
copper, and iron act as indispensable cofactors in plant growth.
They participate in processes like photosynthesis, nutrient
absorption, and antioxidant defense. Imbalances in element
content, whether excessive or deficient, can lead to abnormal
agricultural product growth.
To ensure the quality and safety of agricultural products,

various analytical methods have been widely employed,
including infrared spectroscopy, gas chromatography−mass
spectrometry (GC-MS), liquid chromatography−mass spec-
trometry (LC-MS), nuclear magnetic resonance (NMR),
atomic absorption spectroscopy (AAS), high-performance
liquid chromatography (HPLC), immunoassays, etc.,4−7 for
the purpose of compositional analysis. Infrared Spectroscopy
involves measuring a sample’s absorption of infrared radiation
to identify and analyze organic compounds in agricultural
products, such as fats and proteins. However, it exhibits a
comparatively lower sensitivity to nonvolatile and high-boiling-
point compounds. Gas Chromatography−Mass Spectrometry
(GC-MS), which separates compounds through gas chroma-
tography and identifies/quantifies them via mass spectrometry,
making it suitable for detecting pesticide residues and food
additives in agricultural products. Nevertheless, its complexity
and elevated maintenance costs are considered drawbacks.
Liquid Chromatography−Mass Spectrometry (LC-MS) sepa-
rates compounds via liquid chromatography and identifies/
quantifies them through mass spectrometry. It is commonly
used for detecting drug residues in agricultural products.
However, its ability to analyze volatile compounds is somewhat
less robust compared to GC-MS. Nuclear Magnetic Resonance
(NMR) analyzes molecular structure and composition by
measuring nuclear magnetic resonance signals, suitable for
identifying organic molecule structures but has reduced
sensitivity to certain nonorganic substances. Atomic Absorp-
tion Spectroscopy (AAS) quantifies element concentrations in
samples by measuring characteristic absorption spectra of
atomic vapors. However, it cannot simultaneously detect
multiple elements and necessitates changing lamps for each
specific element. High-Performance Liquid Chromatography
(HPLC) separates mixtures via high-pressure liquid phase and
analyzes them using a detector. It is commonly employed for
detecting pigments and organic acids in agricultural products.
Nevertheless, the separation of some polar substances may
pose challenges. Immunoassay utilizes antibody−antigen
interactions for analysis. It is applicable for detecting hormones
and antibiotics in agricultural products. However, its specificity
in complex samples is somewhat lower.
Despite the high accuracy and sensitivity of these methods,

limitations such as lengthy analysis times, cumbersome sample
preparation, and the inability to provide highly precise
quantitative data, as well as expensive equipment costs, still
persist. Table 1 provides a comparison between LIBS and T
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traditional agricultural product compositional analysis techni-
ques. Hence, in the field of agriculture, researchers are actively
exploring novel analytical technologies to enhance detection
efficiency, reduce costs, expedite of the process of agricultural
product compositional analysis, and ensure widespread
practical application in production. The application of these
new technologies will contribute to safeguarding the quality
and safety of agricultural products, offering robust support to
agricultural production.
Laser-Induced Breakdown Spectroscopy (LIBS) is a

technique that employs laser pulses to generate high-
temperature plasma on the surface of agricultural products.
LIBS technology stands out as a swift, on-the-spot, minimally
intrusive, cost-effective, and dependable method suitable for
both qualitative and quantitative analysis of major and trace
elements in solid, liquid, or gas samples. In LIBS technology, a
precisely focused laser pulse is directed onto the surface of the
target sample, causing the ablation of a certain amount of
material and generating plasma in the process. The resulting
spectrum is gathered by plotting intensity against wavelength,
which is derived from light emissions produced by atomic,
ionic, and molecular fragments.
The identified LIBS spectrum contains two types of

information regarding the composition and content of the
sample. The wavelength of the characteristic spectrum aligns
with the type of element present, and the relative strength of
this characteristic spectrum corresponds to the concentration
of the element. Leveraging the instrumental features of LIBS
allows for advanced analysis, overcoming the limitations
associated with traditional chemical analytical techniques.
These advantages include minimal or no sample preparation,
real-time analysis, on-site field applications, and the remote
detection of hazardous materials. The rapid, real-time, and
nondestructive characteristics make LIBS technology an ideal
choice for the analysis of agricultural product composition. By
capturing and analyzing these emitted spectral signals, LIBS
technology can effectively and precisely detect various
elements in agricultural products, encompassing minerals,
nutritional components, and potentially harmful metals.
The trace element content in agricultural products

significantly influences their quality, healthiness, and market
value. Building upon the current state of research, this article
evaluates the challenges and opportunities that LIBS
technology encounters across multiple domains, including
agricultural product quality and safety inspection, soil analysis,
crop nutritional assessment, plant disease detection, and
agricultural product variety identification.
Furthermore, the article presents recommendations for the

continued expansion of LIBS technology’s application within
the agricultural sector.
In chemical analysis, besides the target analyte, samples

often contain other components referred to as matrix
compounds. These compounds may interact with the target
analyte, causing signal interference or background elevation,
thus affecting the accuracy and reliability of the determination.
Therefore, removing matrix compounds from samples is crucial
to ensure precise analysis.
Matrix compounds can have various impacts on Laser-

Induced Breakdown Spectroscopy (LIBS) analysis. First, they
may generate interfering signals within the spectral range of the
target element, leading to spectral overlap and cross-talk,
thereby reducing the detection sensitivity and analytical
accuracy of the target element. Second, the absorption or

scattering of the laser beam by matrix compounds may
diminish the energy available for exciting the target element,
thereby affecting the intensity of its emitted spectral signal.
Additionally, the presence of matrix compounds may increase
the complexity of the spectral background, making it more
difficult to distinguish and identify the signal of the target
element, thus elevating the noise level of the analysis results.
Furthermore, matrix compounds may cause drift in the spectral
baseline, resulting in the displacement of the target element
signal position and affecting the accuracy of quantitative
analysis. Therefore, when conducting LIBS analysis, it is
essential to fully consider and address the influence of matrix
compounds to ensure the accuracy and reliability of the results.
To mitigate the issues caused by matrix effects, suitable

methods are needed to remove matrix compounds from
samples. Common removal methods include physical methods
(such as solvent extraction, chromatographic separation,
crystallization, etc.) and chemical methods (such as extraction,
precipitation, etc.). These methods can be selected and
optimized based on sample properties, matrix compound
characteristics, and analysis method requirements. For
example, solvent extraction separates the target analyte from
the matrix by selecting appropriate solvents and dissolution
conditions. Chromatographic separation utilizes differences in
compound distribution between the stationary and mobile
phases to achieve separation between the target analyte and
matrix. Crystallization separates the target analyte from the
solution by controlling the solution conditions. Extraction
removes the target analyte from the sample by exploiting
differences in partition coefficients between the solvent phase
and water phase.
Researchers have employed various effective means and

methods to minimize the influence of matrix compounds on
LIBS technology in pretreated samples.8−11 First, highly
specific analysis of the sample is achieved by carefully selecting
laser wavelengths to reduce spectral interference from the
matrix. Second, optimization of laser pulse energy and width
maximizes the excitation and ionization efficiency of the target
element, thereby minimizing the influence of the matrix.
Additionally, the adoption of a multielement analysis strategy,
simultaneous measurement of emission spectra of multiple
elements, more accurately distinguishes the signals of the target
element and matrix, further reducing the influence of the
matrix. Furthermore, correction methods such as the internal
standard method and external calibration method have been
developed and applied to correct errors caused by the matrix
by introducing known concentrations of internal standard
substances or using standard reference samples for calibration.
Simultaneously, multiple-point measurements are conducted at
various locations of the sample to assess the uniformity and
variability of the matrix, ensuring the reliability and accuracy of
the analysis results. Finally, reasonable processing and analysis
of the obtained spectral data, including background correction,
spectral fitting, and noise reduction, further reduce interference
caused by the matrix, enhancing the detection sensitivity and
accuracy of the target element.
In summary, by employing pretreatment methods for sample

handling, followed by appropriate selection of laser wave-
lengths, optimization of pulse parameters, multielement
analysis, development of calibration methods, multipoint
measurements, and data processing, researchers have success-
fully overcome the influence of matrix compounds on LIBS
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technology analysis results, providing reliable solutions for
sample analysis.

2. OVERVIEW OF LIBS TECHNOLOGY
2.1. Basic Principles of LIBS Technology. LIBS

technology employs laser-induced breakdown effects for
spectroscopic analysis. It operates by directing laser pulses
onto a sample’s surface to induce transient breakdown and
generate plasma. Subsequently, the emitted spectral lines from
the plasma are analyzed to extract information about the
sample’s chemical element composition. The fundamental
principles of LIBS technology can be summarized as follows.
Initially, high-energy, short-pulsed laser beams are focused

on the sample’s surface, rapidly elevating its temperature and
initiating plasma formation. This plasma zone exhibits elevated
temperatures and electron densities. Within this plasma region,
atoms and molecules within the sample become excited,
leading to the emission of distinctive spectral lines. The
wavelengths and intensities of these spectral signals correspond
to the elements present in the sample and their concentrations.
Consequently, these emitted spectral signals are captured

and recorded using equipment such as spectrometers. The
signals are then translated into digital data, which is
subsequently processed to deduce the elemental composition
of the sample. Based on the recognized spectral features and
intensities of elements, qualitative and quantitative analyses of
sample elements can be performed. By comparing the spectral
signals with data in reference databases, the types of elements
present in the sample can be identified. Furthermore, the
intensity of spectral signals is proportionate to the element’s
concentration, enabling estimation of elemental content.
The strengths of LIBS technology lie in its rapidity, real-time

analysis, and nondestructive nature. It can rapidly analyze
multiple elements within seconds, suitable for various sample
types, encompassing solids, liquids, and gases. With no
prerequisite for sample pretreatment, LIBS technology holds
vast potential across domains including on-site rapid testing,
biomedicine, aerospace, agricultural product inspection, and
environmental monitoring.12−16 For visual representation, refer
to Figure 117 illustrating the principle of LIBS technology.
Despite numerous advantages of LIBS technology, it still

faces significant challenges in trace element analysis. Complex

interactions between intricate samples and sensors, as well as
challenging operating conditions, can lead to pronounced
matrix effects and insufficient detection sensitivity. To address
these issues and bolster detection sensitivity, researchers are
actively exploring a variety of signal enhancement methods.
Techniques like spatial or magnetic confinement LIBS,
nanoparticle-enhanced LIBS, double-pulse or multipulse
LIBS, resonance-enhanced LIBS, and laser-induced fluores-
cence-assisted LIBS,18−21 have been introduced. These
approaches aim to optimize the interaction between the laser
and the sample, enhance the spectral signals generated and
emitted by the plasma, thereby amplifying both LIBS signal
intensity and stability.
Matrix effects and self-absorption phenomena are critical

factors influencing analytical results. Since analytes are typically
not single compounds, analysis detection is inevitably
influenced by interference from unrelated matrices, giving
rise to matrix effects. Matrix effects are primarily caused by the
physical properties and chemical composition of the analytical
sample, and reducing these effects can effectively enhance
spectral line intensity. Factors contributing to physical matrix
effects include vaporization, thermal conductivity, absorption
rate, and water content, while chemical matrix effects are
mainly influenced by the chemical form and stated of matrix
elements. Chemical matrix effects are mainly influenced by the
ionization degree the chemical form and state of matrix
elements, which in turn affect the emission spectra of the
analyzed elements. To minimize interference from matrix
effects on analytical spectral lines, common approaches include
compound separation, sample concentration dilution, and
internal standard correction.
Self-absorption phenomena occur due to the presence of

atoms or ions in different energy levels within a high-density
plasma. Differences in energy levels result in the absorption of
spectra emitted by the ground-state atoms or excited-state
plasma, causing phenomena such as flattened or self-reversed
(self-absorption) spectral lines. Both matrix effects and self-
absorption phenomena can lead to underestimated analytical
results. To avoid these issues, current practices often involve
error correction through methods such as standard calibration
curves, partial least-squares (PLS), discriminant analysis (DA),
and principal component analysis (PCA) within the realm of
chemometrics.22−24

2.2. Analysis Methods of LIBS Technology in
Agricultural Product Inspection. In general, a positive
correlation is observed between the intensities of spectral lines
and the concentrations of elements. Typically, variations in
plant element concentrations can be deduced directly from
spectral line intensities, eliminating the need for further
quantitative analysis. However, when the relative content of
an element is required for analytical purposes, CF-LIBS
(calibration-free LIBS) can be employed, offering the
advantage of not requiring standard samples. Several other
calibration methods are commonly applied for quantitative
LIBS analysis of various samples, including, but not limited to,
agricultural products. Researchers have integrated LIBS
technology with statistical algorithms for spectral signal
analysis. Techniques such as Principal Component Analysis
(PCA), Support Vector Machines (SVM), Random Forest
(RF), Artificial Neural Networks (ANN), Partial Least Squares
(PLS), Linear Discriminant Analysis (LDA), and Decision
Trees (DT),22−25 have been employed in qualitative and
quantitative analysis procedures. These algorithms facilitate the

Figure 1. Schematic diagram of the experimental setup for orthogonal
reheating DP-LIBS.17 (Reprinted in part, with permission from the
publisher, cited from Zheng, P. C.; Li, X. J.; Wang, J. M.; Zheng, S.;
Zhao, H. D. Quantitative analysis of Cu and Pb in Coptidis by
reheated double pulse laser-induced breakdown spectroscopy. Acta
Phys. Sin. 2019, 68 (12), 198−205. Copyright 2019 Acta Physica
Sinica.)
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extraction of relevant information, dimensionality reduction,
and accurate elemental analysis in samples. Table 2 provides a
summary of select application literature within the agricultural
product inspection field utilizing LIBS technology over the past
five years.

3. APPLICATION OF LIBS TECHNOLOGY IN
AGRICULTURAL PRODUCT ANALYSIS
3.1. Application and Research Progress of LIBS

Technology in Agricultural Product Quality and Safety
Testing. The content of trace elements in agricultural
products directly affects their quality, health implications,
and market value. With its high sensitivity and multielement
simultaneous detection capabilities, LIBS technology has
emerged as a powerful tool for assessing agricultural product
quality and ensuring safety. LIBS can be employed to detect
chemical components such as heavy metals, pesticide residues,
and nutritional elements in agricultural products.
In the realm of rapid testing for fruits, vegetables, cereals,

and other agricultural products, LIBS technology offers real-
time and accurate analytical results, contributing to the
assurance of product quality and safety. For instance, Zhao
et al.42 conducted in situ and in vivo three-dimensional
element mapping in cornfields using a portable LIBS system.
Their obtained 3D LIBS mappingdisplayed a clear pattern of
pesticide residue reduction in leaf depth by moving along the
axial direction in steps of 12 μm. This method demonstrated
the practical application potential of LIBS technology in field
environments. By combining LIBS technology with multi-
variate regression models, they successfully detected residues
of organophosphorus pesticides. Fu et al.43 focused on 40
naturally matured rice samples from potentially cadmium-
contaminated areas. They utilized both Laser-Induced Break-
down Spectroscopy (LIBS) technology and graphite furnace
atomic absorption spectroscopy to determine the reference
content of Cd in rice. The results indicate that assessing the
safety of rice through the analysis of LIBS spectra is promising.
Zhang et al.44 employed dual-pulse Laser-Induced Breakdown
Spectroscopy (LIBS) technology for the quantitative analysis
of chromium (Cr) elements in rice from five different regions
(as shown in Figure 2). The results were compared with the
detection results obtained using Inductively Coupled Plasma
Mass Spectrometry (ICP-MS). The findings revealed that the
measurement error of LIBS meets relative error standards,
demonstrating the capability of LIBS for rapid quantitative
analysis of elements. It proves to be an effective method for
detecting the heavy metal element content in rice.
Similarly, LIBS technology has achieved success in detecting

trace elements in various other agricultural products. Sun et
al.,45 for instance, utilized onion as an example to successfully
perform trace element detection in fresh vegetables using LIBS
technology, affirming its advantages in rapid analysis. Luo et
al.46 applied LIBS technology to analyze cadmium elements in
spinach, employing optimized parameters and Partial Least
Squares (PLS) for quantitative analysis. Experimental results
showed that the PLS method outperformed the univariate
calibration model, demonstrating higher predictive perform-
ance and accuracy, with an average relative error of only 2.56%.
Yao et al.47 employed LIBS technology and the Least Squares
method to detect the heavy metal Cd in fresh green leafy
vegetables contaminated by Cd solutions. Liu et al.,48 on the
other hand, targeted the detection of Cu elements in rice,
comparing the effects of univariate and multivariate regression

models on quantitative analysis, achieving an optimal detection
limit of 5 mg/kg.
However, despite the significant progress that LIBS

technology has made in the field of agricultural product
quality and safety testing, it still faces a series of challenges,
whose resolution is crucial for further advancing this
technology. These challenges include complex matrix effects,
the need for standardization, detection of low-concentration
elements, sample heterogeneity, and instrument costs. To
address these obstacles, scientists are persistently enhancing
LIBS instruments and integrating sophisticated data analysis
techniques such as multivariate statistics and machine learning
to augment the precision and dependability of this technology.
Additionally, establishing applicable standards, enhancing
instrument performance, and focusing on the practical
applicability and cost-effectiveness of the technology are also
key factors driving the ongoing development of LIBS
technology in agricultural product analysis.
3.2. Research Progress in Soil Detection Using LIBS

Technology. Soil plays a pivotal role in modern agriculture by
providing essential mineral nutrients for plant growth.
However, toxic elements such as barium, cobalt, cadmium,
chromium, mercury, lead, molybdenum, and antimony can
potentially contaminate soil through various pathways and be
absorbed by plants, posing potential adverse effects on human
health. Chemicals from fertilizers, pesticides, sewage waste,
solid waste, as well as industrial and traffic emissions are major
sources of heavy metals and toxic elements in soil. Considering
factors such as population growth, food security, hazardous
chemicals, environmental degradation, and climate change,
accurate measurement and control of heavy metal elements
and organic pollutants in soil have become significant
challenges in modern agriculture. In addressing this challenge,
LIBS technology is playing an increasingly important role.
During their quantitative analysis of nickel elements in soil,

Li et al.49 found that the characteristic peak of nickel at a
wavelength of 373.68 nm was influenced by the aluminum
spectral line at 373.39 nm in the soil. Consequently, they
conducted comparative measurements between soil spectra on
pure aluminum substrates and compressed soil samples. To

Figure 2. Spectra of Cr I 428.97 nm line rice under different Cr
element concentrations.44 (Zhang, H. Y.; Zhang, X. Q.; Zhang, W.;
Qiu, R. Detection and analysis of Cr element in rice by laser induced
breakdown spectroscopy. J. At. Mol. Phys. 2023, 40 (04), 110−115.)
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eliminate the interference of aluminum elements in the soil
background on nickel elements, they proposed using pure
aluminum as the substrate and subtracting the aluminum
spectral line from the soil background.. Experimental results, as
shown in Figure 3. Similarly, Liu et al.50 employed a

combination of Laser-Induced Breakdown Spectroscopy
(LIBS) technology and Support Vector Machine (SVM) to
study soil classification issues. Ding et al.51 proposed a novel
analysis method combining LIBS technology and Interval
Partial Least Squares (IPLS) for determining the content of Cr,
Cu, Ni and Zn in oil-contaminated soil samples. By segmenting
the spectrum into multiple subintervals and optimizing the
IPLS model, they achieved higher accuracy and faster
computation speed, providing an effective approach for soil
trace element content determination. Zhao et al.52 integrated
Principal Component Analysis with deep learning, successfully
classifying LIBS data from tobacco-planted soil samples with
varying lead contents. In accordance with the conventions of
academic paper composition, it is evident that deep belief
networks have displayed both robustness and superior
classification performance when applied to the analysis of
contaminated soil samples, surpassing the performance of
support vector machines and partial least-squares discriminant
analysis. This collective body of research underscores the
potential of LIBS technology in the analysis of trace elements
in soil, in accordance with the standards of academic paper
writing.
Liu et al.53 combined cavity confinement with traditional

Laser-Induced Breakdown Spectroscopy (LIBS) technique to
establish a univariate calibration model based on peak
integration, as well as multivariate Principal Component
Regression (PCR) and Artificial Neural Network (ANN)
calibration models, for quantitative analysis of the metal Ba
element in soil. The spectral intensities collected under
traditional LIBS and cavity confinement LIBS (CC-LIBS)
methods are compared, as shown in Figure 4. Chatterjee et
al.54 collected soil samples from both thermal emission zones
and remote areas, utilizing Principal Component Analysis
(PCA) to readily distinguish soil elemental spectral lines. Pan
et al.55 investigated the enhancement effect of different ratios
of NaCl powder doping in soil samples on the LIBS spectra of
heavy metal Cd elements. The results indicate that the addition

of NaCl powder to soil samples can significantly enhance the
intensity of characteristic spectral lines for Cd elements.)-
Meanwhile, Liu et al.56 utilized an externally added cavity
constraint combined with Laser-Induced Breakdown Spectros-
copy (LIBS) technology to obtain soil spectral data. Machine
learning was employed for the analysis of heavy metal elements
Ni and Ba content in the soil.
The use of LIBS technology for soil analysis presents several

difficulties and challenges. First, the complexity of soil samples
is a significant issue as they contain various chemical
components such as organic matter, minerals, microorganisms,
and moisture. This complexity makes it challenging to detect
specific elements or compounds in soil due to the presence of
numerous interfering signals. Second, soil samples exhibit
strong light absorption and scattering properties, which can
limit the propagation of laser energy and the acquisition of
spectral signals. This can reduce the sensitivity and detection
limits of LIBS technology, especially for deep-soil analysis,
which becomes more challenging. Additionally, sample
preparation is a challenge as it requires complex procedures
like drying, grinding, and thorough mixing, and inadequate
sample preparation can result in inaccurate analysis results.
Variations in atmospheric conditions, including humidity,
temperature, and air pressure, can also impact LIBS technology
as it is sensitive to atmospheric conditions. Establishing
accurate soil analysis methods requires suitable standard
samples and calibration curves, but the availability and
applicability of standard samples may be limited for different
types and geographical locations of soil. Lastly, processing the
spectral data generated by LIBS involves complex data
processing and analysis to extract useful information from
the intricate spectra, necessitating specialized data science skills
and software tools. Despite these challenges, LIBS technology
still holds potential in soil analysis, especially in real-time or
on-site analysis. Continued research and technological
advancements can help overcome these challenges and
enhance the application value of LIBS technology in soil
testing. Future developments encompass improving instrument
sensitivity and resolution to more accurately detect elements
and compounds even at low concentrations. The application of
multielement analysis is poised to expand, facilitating a

Figure 3. 370−400 nm spectrum line of pure aluminum substrate soil
sample with A1 deducted.49 (Li, H. L.; Wang, H.B.; Kang, S.S.; Fang,
L. D.; Li, X. T. LIBS experimental study of eliminating the
interference of Al element in soil base based on background
subtraction method. Inf ra. Laser Eng. 2021, 50 (01), 257−262.)

Figure 4. Comparison diagram of Ba element spectra under
traditional LIBS and CC-LIBS.53 (Reprinted, in part, with permission
from the publisher, cited from Liu,Y. K.; Hao, X. J.; Yang, Y. W.; Sun,
P. Analysis of Ba Content in Soil Based on Cavity Confinement LIBS
Combined with Multivariate Regression. Laser. Optoelectron. Progress
2022, 59 (5), 36−42. Copyright 2022 Laser & Optoelectronics
Progress.)
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comprehensive understanding of soil sample composition.
Optimizing data processing and analysis algorithms will
heighten the precision of elemental quantification. Real-time
monitoring and on-site applications will contribute to practical
implementations in soil monitoring and its related domains.
Additionally, refining sample preparation methods and

standardizing analysis procedures will be pivotal for future
progress, ensuring data comparability and reliability. The
synergic utilization of diverse analytical techniques could
further amplify data richness and credibility.
3.3. Research Progress in Crop Nutritional Assess-

ment. The robust nutritional status of crops plays a pivotal
role in agricultural production, and LIBS technology has
emerged as a potent tool for rapidly evaluating these
nutritional conditions. By monitoring the elemental composi-
tion within plant leaves, LIBS provides precise recommenda-
tions for nutritional management in agriculture. Additionally, it
facilitates elemental distribution imaging of agricultural
products, thereby offering valuable insights for refining
cultivation and processing procedures.
Within the realm of plant science, the application of ultrafast

lasers, such as femtosecond lasers (fs-LIBS), for three-
dimensional depth profiling and imaging of plant tissues is
advancing rapidly. Carvalho et al.57 harnessed an fs-LIBS
system to quantitatively assess nutritional elements in pressed
leaves from 31 economically significant crops. This encom-
passed macroelements like calcium, magnesium, phosphorus,
as well as trace elements such as copper, iron, manganese, and
zinc. Notably, these investigations spanned diverse plant
samples, each with distinct matrices. On a similar note, Kunz
et al.58 leveraged fs-LIBS technology to analyze elemental
content in plants cultivated under standard environmental
conditions, encompassing barley grass, wheat, soybean, bell
pepper, among others. Their findings underscored the
substantial potential of fs-LIBS in gauging elemental content
within plant tissues and achieving imaging capabilities.
In summation, the integration of LIBS technology in

assessing crop nutrition has yielded robust outcomes. The
employment of fs-LIBS for deep tissue analysis and imaging is
proving to be a promising avenue in the realm of plant science.
This technique not only furnishes accurate insights into the
nutritional elements present in crops but also contributes to
the optimization of cultivation practices and the enhancement
of product quality.
Ding Qiping et al.59 collected comprehensive LIBS full-

spectrum data spanning the wavelength range of 200 to 900
nm for leaves of both Huanglongbing-affected and healthy
navel oranges. After preprocessing the spectral data, they
employed the PCA method to extract the first three principal
components. These components were then fed into various
training classification models. The outcomes of this classi-
fication endeavor demonstrated that the combination of the
PCA method with the MLP classification model yielded the
most accurate results for distinguishing between Huanglongb-
ing-affected and healthy navel orange leaves. The model
achieved an impressive accuracy of 99.43% on the training set
and 98.48% on the prediction set.
Jiang Bo et al.60 delved into the feasibility of utilizing LIBS

technology to swiftly detect the distribution of sodium (Na)
elements in sweet sorghum. They also explored the unique
distribution characteristics of Na+ within sweet sorghum plants
subjected to varying salt stress conditions. Their study

provided valuable insights into the advantageous traits of
hybrid sweet sorghum in ameliorating saline-alkali soil.
Wang Haiping et al.61 devised a novel quantitative analysis

method for metal elements in sorghum roots. They achieved
this by combining Laser-Induced Breakdown Spectroscopy
(LIBS) with the Variable-Dimension Particle Swarm Opti-
mization and Combination Moving Window (VDPSO-CMW)
wavelength selection algorithm. This innovative approach
notably improved the accuracy of quantifying elements such
as Na and Fe, resulting in enhanced RMSECV and RMSEP
values. The findings underscored that LIBS, when coupled
with suitable chemometric algorithm processing, holds the
potential to achieve precise determination of metal elements in
sorghum roots. Ercioglu et al.62 effectively harnessed LIBS
technology to discern various spice plants based on their
chemical compositions. By integrating LIBS with Principal
Component Analysis (PCA), they achieved rapid and accurate
differentiation of culinary herbs, such as laurel, basil, black
pepper, lavender, and ginger. This holds immense significance
for the spice plant industry, as it paves the way for developing
standardized quality control measures for raw materials.
Zivkovic et al.63 highlighted the utility of LIBS in detecting
diverse elements in peppermint tea samples, spanning
aluminum, calcium, copper, manganese, barium, potassium,
and strontium. Their successful application of the calibration
curve method demonstrated precise determination of man-
ganese and barium concentrations, with regression coefficients
(R2) surpassing 0.95.
Not only in the realm of plant science, but LIBS technology

also demonstrates substantial potential in medicinal plant
research. Andrade et al.64 applied LIBS and ICP-OES to the
measurement of essential and toxic metals in some medicinal
herbs. The elements detected and quantified were Ca, Co, Cu,
Cd, Cr, Fe, Mg, Mn, Na, Ni, Pb, and Zn. The analyzed samples
were all herbs belonging to a particular species and constituted
different morphological plant parts. The morphological
differences were correlated with different characteristic
distributions in the 2D score plots acquired using PCA. The
authors reported a strong correlation between LIBS and ICP-
OES results, particularly with respect to the Ca, K, and Mg
content. Table 3 compiles reference literature employing LIBS
technology to detect plant minerals, particularly within the
contexts of medicinal significance and plant science back-
ground.
LIBS technology demonstrates potential advantages in

assessing crop nutrition, but it also presents a series of issues
and challenges. First, there is complexity in sample preparation
due to significant variations in chemical composition across
different parts of crops, demanding meticulous sample
preparation methods for accuracy. Moreover, this complexity
in sample preparation also results in increased analytical
complexity and time costs. Second, plant samples from
agricultural fields exhibit a high degree of heterogeneity,
influenced by factors such as soil, climate, and growth
conditions, which can lead to unstable and inconsistent
analysis results. Furthermore, different growth stages of plants
may cause variations in nutrient content and distribution,
necessitating analyses at different time points, thereby adding
to the complexity of the assessment. LIBS technology is
typically more suited for analyzing metallic elements, while
crop nutrition assessment requires the analysis of nonmetallic
elements such as nitrogen, phosphorus, potassium, and others.
This aspect can potentially introduce higher technical
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difficulties and complexity. In addition, establishing accurate
LIBS analysis methods requires the availability of appropriate
standard samples and calibration curves. However, obtaining
suitable standard samples for crop analysis can be challenging
due to variations in soil and climatic conditions across different
regions. Moreover, the spectral data generated by LIBS
demands intricate data processing and analysis, necessitating
specialized data science skills and software tools. Lastly, the
practical application of LIBS technology in agricultural field
environments may encounter a range of challenges, including
difficulties in accessing plants, environmental condition
changes, and external interferences. These challenges highlight
the need for further research and development to harness the
full potential of LIBS technology for crop nutrition assessment.
Future trends in this field are likely to encompass the

following areas: First, the multielement analysis capability of
LIBS is set to positively impact crop nutrient status assessment.
This technology has the potential to simultaneously detect
various key elements like nitrogen, phosphorus, and potassium,
offering comprehensive nutrient insights. Second, the advance-
ment toward real-time monitoring is expected to lead to more
precise agricultural management. This approach allows for
continuous tracking of changes in nutrient demands within
fields, facilitating optimized fertilization strategies and boosting
crop yield and quality. Furthermore, the adaptability of LIBS
technology across diverse crop types and growing environ-
ments is a notable concern. It should maintain accurate and
dependable performance across various agricultural contexts.
Standardizing data processing and analysis will enhance result
comparability and credibility, fostering collaboration and
knowledge exchange among various research initiatives. Lastly,
the integration of LIBS with other agricultural technologies,
such as remote sensing and geographic information systems,
holds the potential to broaden the scope of crop nutritional
assessment. This integration could further advance the goals of
sustainable agricultural development and resource manage-
ment.
3.4. Advancements in Plant Disease Detection.

Minerals play an indispensable role across virtually all plant
species. Whether found in fruits, vegetables, medicinal herbs,
grasses, or shrubs, these minerals are pivotal for driving plant

growth, tissue development, and functional operations, thereby
sustaining regular metabolic processes. Given the typically
minute concentrations of trace nutrients within plants, robust
technological methods are imperative to detect these subtle
nutrient levels. Plants assimilate these essential minerals either
through organic materials or inorganic fertilizers drawn from
the soil.
Unique mineral nutritional requirements exist for each plant

species, with appropriate mineral levels necessary for optimal
functioning varying accordingly. However, an overabundance
of specific minerals can impede plant growth and potentially
trigger a range of diseases, ultimately culminating in
diminished crop yields. In-depth comprehension of mineral
distribution and movement throughout different plant parts is
essential for unraveling their functions and metabolic path-
ways. The insights derived from plant metabolic pathways offer
not only a deeper grasp of plant physiological processes but
also carry substantial significance for fields like agricultural
crop research and genetic exploration.
LIBS technology plays a significant role in plant science,

especially in mineral analysis. Researchers harness LIBS
technology to conduct high-resolution mapping analysis of
trace elements within plants. Khan et al.75 conducted a study
on Taraxacum officinale, Hyoscyamus niger, Ajuga bracteosa,
Elaeagnus angustifolia, Camellia sinensis, and Berberis lyceum
using LIBS technology in combination with chemometric
methods. In the experiments, silicon (Si), aluminum (Al), iron
(Fe), copper (Cu), calcium (Ca), magnesium (Mg), sodium
(Na), potassium (K), manganese (Mn), phosphorus (P), and
vanadium(V) were found in all medicinal plant samples with
molecular forms containing carbon and nitrogen. They
detected Ca, Mg, Si, and P as the major components in all
plant samples, along with V, Fe, Mn, Al, and Ti as essential
medicinal metals, and other trace elements such as Si, Sr, and
Al. This technique demonstrates its capability not only for
rapid, sensitive, and quantitative analysis of trace elements in
herbal and plant samples but also for the rapid classification of
herbal medicines.
Researchers like Krajcarova76 employed DP-LIBS technol-

ogy to explore fir plant stems. By comparing fluorescence
microscopy and LIBS imaging, and directly correlating
fluorescence intensity with ICP-MS data, they revealed the
distribution and absorption mechanisms of elements within the
samples. Additionally, they utilized LIBS technology to
investigate copper absorption, transport, and toxicity in
broad beans. In a 7-day experiment involving the treatment
of broad bean roots with 10 mM CuSO4, they unveiled that
even at low concentrations, copper exerts a toxic effect on
plants.
When plants lack essential mineral nutrients, a range of

disease symptoms emerges, including yellowing leaves, root
nodules, seed coat disorders, and morphological distortions.
However, many diseases often escape notice as their symptoms
appear underground, remaining hidden from view on the
plant’s surface. These early stage imperfections and diseases are
termed latent defects, and their diagnosis necessitates the
application of advanced analytical methods. Tang et al.71 used
peas as a hydroponic plant model and employed a Laser-
Induced Breakdown Spectroscopy (LIBS) device for in situ
elemental imaging analysis of pea plants. They analyzed the
differential distribution of heavy metals Ni, Cu, Cr, and Pb
within the plant body and investigated the absorption
pathways of these four heavy metals. The results showed

Table 3. Utilizing LIBS for the Analysis of Mineral Elements
in Different Plant Varieties, Including Medicinal Herbs

Plant species Elements References

Salvia miltiorrhiza Al, Ca, Mg, Ti,
Sc, Fe

65

radish, duckweed Y, Yb, Er 66
Rosa rugosa Thunb., Rosa sp. Rosa chinensis
Jacq.

C, H, O, N,
Mg, Ca, Na,
K, CN

67

Taraxacum officinale, Hyoscyamus niger,
Ajuga bracteosa, Elaeagnus angustifolia,
Camellia sinensis, Berberis lyceum

Ca, K, Mg 68

rhododendron leaves Pb 69
soybean and sugar caneleaf Ca, Mg, Mn, P 70
pea seedlings(Embryonic axis, germ, root
segment, Middle, cotyl)

C, Mg, Fe, Na,
K, Ni, Cu, Cr,
Ca, Pb

71

rice stems Cd 72
Lactuca sativa and Trifolium alexandrinum Zn, Mn, Cu,

Ni, Cd, Pb,
Cr

73

Tall fescue (Festuca arundinacea) Fe, Ca, Pb, Mg,
Cd, Zn, Mn

74
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that the elemental imaging device could effectively analyze the
presence of major matrix elements such as C, Mg, Fe, Ca, Na,
and K in the plant body. After heavy metal stress, there was a
significant accumulation of heavy metals within pea plants, and
different heavy metals exhibited distinct distribution trends
within the plants. Nickel ions were predominantly present in
the hypocotyl and embryonic shoot, contrasting with the
distribution of copper ions, which were heavily absorbed and
enriched in the primary root structures. Chromium, a heavy
metal, accumulated significantly in the middle part of pea roots
and in the embryonic shoot and hypocotyl, while lead was
largely enriched in the hypocotyl and embryonic shoot, with
the least content in the root tip (as shown in Figures 5 and 6).

Singh et al.77 investigated the accumulation of lithium (Li) and
its diffusion in plant leaves using Laser-Induced Breakdown
Spectroscopy (LIBS). The research findings indicate that the
diffusion of Li in plant leaves occurs through their veins,
specifically the vascular bundles. Furthermore, the concen-
tration of Li decreases as one moves away from the exposed
areas to lithium chloride (LiCl). These studies furnish valuable
insights into comprehending element content within plants
and its impact on plant health. Furthermore, LIBS technology
exhibits promise in the early diagnosis of plant diseases.
Researchers have harnessed LIBS technology to analyze plant
leaves and detect various diseases, including Huanglongbing
(HLB).
Ranulfi et al.78 employed LIBS technology for citrus leaf

analysis to identify the presence of Huanglongbing. Through
the establishment of models, they successfully differentiated
healthy leaves, HLB-symptomatic leaves, and asymptomatic
HLB leaves. Ouyang et al.79 employed Laser-Induced Break-
down Spectroscopy (LIBS) in conjunction with chemometrics
for the qualitative detection of Huanglongbing (HLB) in citrus
leaves. Experimental results indicate that the LIBS signal
intensities of nutritional elements P(II), Mn(I), Si(I), and
Fe(I) are directly related to the health status of citrus leaves.
Specifically, the characteristic spectral intensities of P(II),
Mn(I), Si(I), and Fe(I) exhibit a sequential decrease in citrus
leaves categorized as healthy, moderately infected with HLB,
and severely infected with HLB. Zhang et al.80 rapidly
discriminated between healthy and Huanglongbing states in
Gan-Nan oranges’ juice using LIBS technology. Leveraging
Principal Component Analysis and neural network models
applied to juice LIBS spectra, they achieved a prompt
assessment of the juice’s health status and whether it was
influenced by Huanglongbing.
Furthermore, researchers have achieved promising results in

a range of studies concerning citrus and tobacco leaves. Rao et
al.81 conducted a study with the aim of distinguishing between
healthy citrus plants and those infected with Huanglongbing
(HLB) using LIBS technology. In their research, they
preprocessed LIBS spectra of citrus fruit peel using smoothing
and multiplicative scatter correction (MSC). Subsequently,
they employed Random Forest (RF) based on Continuous
Wavelet Transform (CWT) and Principal Component
Analysis (PCA) to effectively differentiate between HLB-
infected and healthy samples. Results demonstrated average
accuracy rates exceeding 96% for both the training and
validation sets. This study highlights the potential of
combining LIBS technology with chemometrics for a rapid,
cost-effective, and robust differentiation of HLB-infected and
healthy citrus plants. Ponce et al.82 utilized LIBS technology in
conjunction with Principal Component Analysis (PCA) to
classify different citrus varieties. By integrating a multipulse
laser system with a microscope, they acquired LIBS spectra
from citrus flavedo, encompassing emission lines of elements
like calcium (Ca), sodium (Na), nitrogen (N), hydrogen (H),
and iron (Fe), along with emission lines of molecules CN and
C2. Applying PCA analysis to the LIBS data revealed a high
accuracy (approximately 90%) in distinguishing healthy
samples from those infected with HLB. This study further
substantiated the potential of combining LIBS technology and
chemometrics for diagnosing citrus diseases, offering rapidity,
cost-effectiveness, and a considerable degree of efficacy. Peng
et al.83 concentrated on classifying tobacco leaves afflicted by
Tobacco Mosaic Virus (TMV). Their research unveiled that

Figure 5. Direct LIBS analysis results of heavy metals in Pisum
sativum Linn. The red line is the plant after heavy metal stress. The
black line is the plant without heavy metal stress. (a) Ni; (b) Pb; (c)
Cu; (d) Cr.71 (Tang, Q.; Zhong, M. J.; Yin, P. K. Analysis of elements
under heavy metals stress based on laser-induced breakdown
spectrum. Spectrosc. Spect. Anal. 2023, 43, 1485−1488.).

Figure 6. Element distribution imaging of Pisum sativum Linn under
different heavy metal stresses. (a)Ni, (b) Cu, (c) Cr, (d) Pb.71 (Tang,
Q.; Zhong, M. J.; Yin, P. K. Analysis of elements under heavy metals
stress based on laser-induced breakdown spectrum. Spectrosc. Spect.
Anal. 2023, 43, 1485−1488.)
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the moisture content of fresh leaves significantly impacted
analysis stability, leading to suboptimal classification outcomes.
To enhance the situation, they established a PLS-DA model
using LIBS spectral data from fresh and dried granulated leaf
samples, achieving positive classification outcomes. Concur-
rently, they employed the Support Vector Machine (SVM)
method, which, despite yielding results opposite to the PLS-
DA method, helped mitigate the adverse influence of moisture
content on classification accuracy, ultimately improving the
precision of classification.
These research examples illustrate the significant potential of

LIBS technology in the field of early diagnosis of plant diseases.
It can not only be employed to differentiate between various
health and infection states of plants but also for classifying
different plant varieties. This provides a rapid, cost-effective,
and efficient tool for disease monitoring and management.
LIBS technology holds immense potential in the detection

of plant diseases, but it also comes with a series of challenges.
First, the complexity of plant tissue samples is a significant
hurdle, as different parts of the samples contain various organic
and inorganic components. This complexity introduces
multiple interfering factors into the analysis process, increasing
its complexity. Second, plant tissues exhibit a relatively high
level of light absorption and scattering, which can potentially
lower the sensitivity of LIBS technology, especially in the
detection of deep-seated tissues or damaged areas. Optical
signal attenuation can lead to inaccurate analysis results.
Moreover, the establishment of accurate LIBS analysis
methods requires appropriate standard samples and calibration
curves. However, obtaining suitable standard samples for plant
disease detection can be challenging, as the types and severity
of diseases may vary by region and season. Additionally,
sample preparation can be relatively complex, and real-time
analysis is crucial for certain applications such as plant disease
monitoring in fields or greenhouses. Despite these challenges,
LIBS technology still holds tremendous promise, and by
overcoming these issues, accurate, reliable, and practical plant
disease detection results can be achieved. Future research and
technological advancements are expected to enhance the
application value of LIBS technology in the field of plant
protection. Future developments could encompass the
establishment of comprehensive spectral databases, amalga-
mation of LIBS technology with other spectroscopic
techniques, realization of real-time monitoring, and incorpo-
ration of machine learning and artificial intelligence.
Furthermore, the utilization of mobile devices will facilitate
convenient on-site applications of LIBS for rapid field
detection, aiding farmers in promptly identifying and managing
plant disease problems. Simultaneously, the establishment of
standardized detection methods and procedures to ensure
result comparability and credibility will play a pivotal role in
propelling the wide-ranging utilization of LIBS technology in
the realm of plant science.
3.5. Research Progress in Agricultural Product

Variety Identification. With the growing complexity of
agricultural supply chains and consumers’ escalating demands
for food safety and quality, the accurate differentiation of
agricultural product varieties and the traceability of their
origins have gained paramount importance. In this context,
LIBS technology emerges as a rapid, nondestructive elemental
analysis technique, and its remarkable applications in the
agricultural product sector are evidenced by the studies
presented in Table 4. By scrutinizing the spectral character-

istics of samples, LIBS technology facilitates precise differ-
entiation among diverse agricultural product varieties and their
respective origins. This capability provides robust support for
both agricultural production and effective market management.
Tea, as a vital agricultural product, exhibits significant

compositional differences among different varieties and origins.
In the study by Wang et al.,95 a randomized forest algorithm
(RF) optimized with parameters combined with LIBS
technology achieved high accuracy in classifying Guizhou
green tea. This classification success extended to achieving
100% accuracy across various provinces’ green teas. Fur-
thermore, Yao et al.96 employed an improved adaptive
mutation probability genetic algorithm (IGA) coupled with
LIBS spectra for classification, yielding favorable outcomes.
Additionally, Tao et al.97 introduced the sparrow search
optimization support vector machine (SSA-SVM) algorithm,
successfully enabling tea classification and presenting a novel
approach to tea variety identification. Quality and origin are
closely intertwined in wine, rendering precise grape variety
identification and geographic traceability highly significant.
Tian et al.98 quantitatively detected Fe and Ti elements in wine
using LIBS technology, and accurately classified wines from
distinct regions with 100% accuracy. Olive oil, another
extensively studied agricultural product, demonstrates a strong
link between quality and geographical factors. The Stelios
Couist team pioneered the application of machine learning-
assisted LIBS technology for olive oil classification, yielding
highly accurate classification outcomes.99,100 Furthermore, in
citrus breeding, Magalhaes et al.101 effectively employed LIBS
technology to distinguish different citrus varieties, introducing
a novel research avenue for citrus breeding.
LIBS technology has demonstrated remarkable applications

in the identification of various agricultural product varieties
and the traceability of their origins beyond just the fields of tea
and wine. In the domain of ham origin identification, Guo et
al.102 combined laser-induced breakdown spectroscopy (LIBS)
with machine learning algorithms to identify the origin of ham

Table 4. Relevant Literature on the Application of LIBS
Technology in Agricultural Product Variety Identification
and Origin Tracing

Samples Elements Model References

Tea Mg, Fe, Ca, C DA, RBF,
MLP

84

Panax ginseng Ca RF-SVM, RF-
BPNN

85

Wine Mn, C, N, Al, Ba, Rb, Fe, Na,
B, O, Si, Li, K, P, Ti, Mg,
Cu, Zn, Ca, Si, Pb, H

PCA, RF 86

raw sugar cane K, Ca, Na, O, Mg, H, C, N PCA 87
coffee blends C, CN, C2, N, O LDA 88
Rice K, O, C−N, C, H, Ca, Al, Mn,

Mg, Na, Si, C−C, N
RF, PCA,
PLS-DA,
DT, LDA,
SVM

89

Ginkgo biloba
leaves

Fe, Mg, Ca, Al, CN,
H, K, N, O

PCA, LDA,
SVM

90

Epimedium Si, K, Mn, Ca, C, N, Mg,
H, Fe

KNN, PCA,
LDA, SVM,
RF

91

Rhizoma
Dioscoreae

C, O, H, Mg, Ca, Al, Na,
K, C−N

MSC-IGA-
SVM, KNN

92

Astragalus
mongholicus

K, O, Ti, S, Al, Mg, Ca, P, Cu,
Fe, H, Rb, Mn, Si, Cl, Na

CNN-CBAM,
LDA, SVM

93

Rice C, Mg, Cu, CN, Ca, Na,
H, N, K, O

PCA, SVMR,
PLSR

94
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samples. The research team collected spectral data from 16
ham samples and applied algorithms such as KNN, SVM, and
DNN for classification, while also incorporating PCA
dimensionality reduction to enhance model efficiency.
Experimental results indicated that PCA dimensionality
reduction accelerated the modeling speed of KNN and SVM,
with the PCA-augmented SVM algorithm achieving the highest
classification accuracy. The DNN algorithm outperformed the
rest, attaining an 85.56% classification accuracy, surpassing the
performance of KNN and SVM.
Rao et al.103 conducted research on the identification of

Navel oranges’ origins. They collected plasma plume evolution
morphology images and LIBS spectra of Navel oranges from
various provinces and cities (as shown in Figures 7 and 8), and

assessed the feasibility of origin identification using a
qualitative analysis approach. Furthermore, they utilized
techniques such as Principal Component Analysis (PCA)
and Multilayer Perceptron Neural Networks in conjunction
with data preprocessing. This allowed successful identification
of Navel orange origins in a wide geographic range, including
seven provinces and cities, as well as smaller areas like

Nankang in Ganzhou, Jiangxi. The total accuracy of training
and prediction sets both exceeded 95%.
Hou et al.,104 on the other hand, applied LIBS technology to

the identification of rice seeds. They collected spectra from rice
seeds of ten different regions and extracted characteristic
spectra of elements such as K, Si, Mg, Ca, and Na. By
employing a Backpropagation neural network (BPNN)
algorithm, they established identification models for rice
seeds using full spectra, segmented spectra, and characteristic
spectra. Through spectral identification before and after
preprocessing, they achieved over 96% high accuracy.
Considering these instances, it is evident that LIBS

technology holds vast potential for the identification of
agricultural product varieties and origin tracing. Whether in
the fields of resin herbal medicine, ham origins, Navel oranges,
or rice seeds, LIBS provides reliable technical support for
agricultural production and market management.
LIBS technology has made significant progress in the field of

agricultural product variety identification. Future development
trends include establishing comprehensive spectral databases
that encompass a wide range of agricultural product varieties,
enhancing model accuracy and identification reliability.
Multiparameter fusion is another crucial direction, involving
the integration of LIBS with other spectroscopic techniques or
analytical methods, particularly useful for identifying complex
components in agricultural products. The application of
machine learning and data mining techniques will efficiently
handle extensive spectral data, improving the precision of
variety identification. Employing LIBS technology in portable
devices allows rapid on-field identification of agricultural
product varieties, providing immediate assistance to farmers
and producers, ensuring product quality. Furthermore,
combining variety labeling and traceability helps consumers
understand product origins and variety information, enhancing
market transparency and food safety. Establishing standardized
identification methods and processes will ensure result
consistency and credibility, promoting widespread application
of the technology in agricultural product variety identification.
The application of LIBS technology in the identification of

crop varieties is accompanied by a series of challenges and
difficulties. First, the diversity of agricultural products is a
crucial issue, as different plant species, parts, or growth
environments can lead to significant variations among samples,
increasing the complexity of identification. Consequently, LIBS
technology needs to adapt its analysis approach according to
different types of agricultural products. Second, agricultural
products exhibit significant differences in chemical composi-
tion, including organic compounds, inorganic substances, and
moisture content. These variations may affect the signal
characteristics of LIBS technology, making it challenging to
establish a universal identification method. Third, handling the
vast spectral data generated by LIBS requires complex data
processing and analysis to extract key features related to the
variety information. Additionally, real-time capabilities are
essential for certain applications, prompting the need for
improvements in analysis speed and real-time performance.
Furthermore, the establishment of accurate variety identi-
fication methods necessitates suitable standard samples and
calibration curves. However, obtaining standardized samples
applicable to various agricultural products may pose some
challenges. Finally, the application of LIBS technology in actual
agricultural fields or market environments may face challenges
related to equipment portability, environmental factors, and

Figure 7. Morphological images of plasma plume of navel orange in
10 origins.103 (Reprinted, in part, with permission from the publisher,
cited from Rao, G. F.; Huang, L.; Liu, M. H. Identification of navel
orange origin based on laser-induced breakdown spectrum. Laser.
Optoelectron. Progress 2018, 55, 440−445. Copyright 2018 Laser &
Optoelectronics Progress).

Figure 8. LIBS spectra of navel orange in 10 origins at a wavelength of
200−1100 nm.103 (Reprinted, in part, with permission from the
publisher, cited from Rao, G. F.; Huang, L.; Liu, M. H. Identification
of navel orange origin based on laser-induced breakdown spectrum.
Laser. Optoelectron. Progress 2018, 55, 440−445. Copyright 2018
Laser & Optoelectronics Progress).

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.4c02104
ACS Omega 2024, 9, 24203−24218

24214

https://pubs.acs.org/doi/10.1021/acsomega.4c02104?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02104?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02104?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02104?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02104?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02104?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02104?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02104?fig=fig8&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c02104?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


operational simplicity. Despite these challenges, by overcoming
these issues, LIBS technology holds the potential to achieve
accurate, efficient, and reliable crop variety identification
results. Future research and technological advancements are
expected to enhance the application value of LIBS technology
in the field of agriculture.
In the future, the development of LIBS technology in

agricultural product variety identification will focus on building
spectral databases, multiparameter fusion, machine learning,
portable device applications, variety labeling and traceability,
and the promotion of standardized methods. These directions
will offer more reliable support for agricultural production and
market management.

4. SUMMARY AND OUTLOOK
In the realm of agricultural product quality and safety testing,
despite some advancements, LIBS technology still faces a range
of challenges compared to its widespread applications in other
fields.
In soil analysis, the complexity and diversity of soil types

demand that LIBS technology address variations in sample
matrices to ensure accurate elemental analysis. Furthermore, in
the assessment of crop nutrition, the low-concentration
element analysis capability of LIBS needs further enhancement
to meet the demands of trace element analysis. Simultaneously,
improvements are needed in the rapid detection of large
volumes of samples to align with the requirements of
agricultural production. In the domain of plant disease
detection, LIBS technology encounters challenges in the
identification and detection of different pathogens, particularly
in cases of mixed infections and complex scenarios. To
enhance the accuracy of LIBS, the establishment of more
extensive sample libraries and advancements in data processing
and analysis methods are essential to differentiate various
diseases. Additionally, in the identification of agricultural
product varieties, considerations must be made for the
differences between different plant species and how to leverage
LIBS technology for the swift and precise differentiation of
various agricultural product varieties.
In summary, the application of LIBS technology in

agriculture faces challenges such as sample complexity, low-
concentration element analysis, data processing speed, and the
detection of diverse samples. For the future, interdisciplinary
research efforts must continue to elevate the stability, accuracy,
and user-friendliness of LIBS technology to meet the practical
requirements of agricultural product quality and safety testing.
This will provide a more effective analytical toolset for
agricultural production.
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