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Mathematical model of blood 
glucose dynamics by emulating 
the pathophysiology of glucose 
metabolism in type 2 diabetes 
mellitus
nelida elizabeth López‑palau1,2 & José Manuel olais‑Govea2,3*

Mathematical modelling has established itself as a theoretical tool to understand fundamental 
aspects of a variety of medical‑biological phenomena. the predictive power of mathematical models 
on some chronic conditions has been helpful in its proper prevention, diagnosis, and treatment. 
Such is the case of the modelling of glycaemic dynamics in type 2 diabetes mellitus (T2DM), 
whose physiology‑based mathematical models have captured the metabolic abnormalities of this 
disease. Through a physiology-based pharmacokinetic-pharmacodynamic approach, this work 
addresses a mathematical model whose structure starts from a model of blood glucose dynamics in 
healthy humans. This proposal is capable of emulating the pathophysiology of T2DM metabolism, 
including the effect of gastric emptying and insulin enhancing effect due to incretin hormones. The 
incorporation of these effects lies in the implemented methodology since the mathematical functions 
that represent metabolic rates, with a relevant contribution to hyperglycaemia, are adjusting 
individually to the clinical data of patients with T2DM. Numerically, the resulting model successfully 
simulates a scheduled graded intravenous glucose test and oral glucose tolerance tests at different 
doses. the comparison between simulations and clinical data shows an acceptable description of the 
blood glucose dynamics in T2DM. It opens the possibility of using this model to develop model-based 
controllers for the regulation of blood glucose in T2DM.

For some decades, mathematical models have been used in biological sciences to understand diverse aspects 
of diabetes mellitus (DM)1. For example, DM  progression2,3, diagnostic test  evaluations4,5, long-term micro and 
macrovascular  complications6,7, and blood glucose  dynamics8–10, among others, have been modeled. Particularly, 
mathematical models to emulate blood glucose dynamics in DM have been classified, according to the complexity 
of their description, in two major  groups11. The first group considers the whole-body models developed under a 
pharmacokinetic–pharmacodynamic (PKPD) approach, which is characterized by being structurally simple with 
a limited physiological interpretation. The second group considers the physiological based PKPD (PB-PKPD) 
models, which mathematically describe the physiological interactions between different subsystems of the human 
body. Due to its structural simplicity, most of the models in the literature are  PKPD1. Although these models 
are widely used, they do not include most of the processes responsible for glucose homeostasis. Hence, its use to 
model complex processes in DM, such as the DM pathophysiology, is limited and, it induces a trend toward the 
development of PB-PKPD  models1. These models have focused on emulating the metabolic processes involved 
in glucose homeostasis, and are usually organ-based. Moreover, the PB-PKPD models of blood glucose dynam-
ics in type 1 DM (T1DM) have been useful to synthesize model-based controllers for blood glucose regulation 
in  T1DM12–16. However, type 2 DM (T2DM) affects multiple subsystems of the body and, consequently, the 
mathematical representation of the metabolic abnormalities in T2DM is  challenging17.
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One of the most widely used PB-PKPD models was performed by  Sorensen10. This organ-based compartmen-
tal model emulates the blood glucose dynamics of a healthy human by considering the main glucose metabolic 
rates as mathematical functions. In this model, each mathematical function was individually fitted to a set of 
clinical data of healthy people where the metabolic response of the patients was measured for different stimuli. 
Then, the physiology of the main metabolic rates of a healthy human body was mathematically reproduced. 
Although Sorensen’s model is quite robust, it has some limitations. For instance, the model does not include 
blood glucose and insulin dynamics in the pancreas. Instead, a single function representing the pancreatic insulin 
release rate is connected to the bloodstream. The above does not represent the physiology of the human body. 
In addition, the model does not consider the effect of gastric emptying. Therefore, the blood glucose dynamics 
after oral glucose intake, and the potentiating-insulin effect of the incretin hormones cannot be reproduced.

An extension of the Sorensen’s model, which covers its main limitations, was proposed by Alverhag and 
 Martin9. Thus, the model included two ordinary differential equations (ODE) to quantify, through mass balance, 
the time-variation of the blood glucose and insulin in the pancreas. Additionally, the gastric emptying process, 
and the enhancing effect on insulin due to the incretin hormones were included by considering two new sub-
system attached to the model. Furthermore, Alverhag and Martin hypothesize that a model of the blood glucose 
dynamics in T2DM can be developed by identifying the parameters of the mathematical functions representing 
the metabolic rates related to the pathophysiology of this  condition9. Based on the above, Vahidi et al. used a 
nonlinear optimization approach to identify some parameters of the Sorensen’s model from a single data set 
of an oral glucose tolerance test (OGTT) in T2DM  patients8. Even though in this article, the system response 
acceptably reproduces the OGTT, the set of identified parameters that minimize the error between clinical data 
and the system may not be unique. Therefore, it cannot be assured that the metabolic functions containing the 
identified parameters emulate the pathophysiology of the T2DM individually.

Consequently, this article proposes a PB-PKPD model of the blood glucose dynamics in T2DM, where some 
mathematical functions representing metabolic rates of the body, are individually fit to emulate the pathophysi-
ology of the T2DM. Moreover, the effect of the gastric emptying, and the enhancing effect of insulin due to the 
incretin hormones are included to reproduce the blood glucose dynamics after oral glucose intake. To achieve 
this, the mathematical model of the blood glucose dynamics in a healthy human body, proposed in Alvehag 
and  Martin9, will be described as a set of 28-dimensional ODE. From the ODE set, the mathematical functions 
representing the impaired metabolic rates in T2DM were individually fitted to clinical data of T2DM patients 
by using the least-squares method (LSM). The clinical data were taken from several clinical tests where direct 
measurements of the tissues or organ response to local changes in solutes concentration were made. The resulting 
model was numerically simulated to test its ability to reproduce the blood glucose dynamic in T2DM patients 
for different inputs, and initial conditions. Finally, the error between the simulation, and the clinical data of the 
T2DM patients is quantified by using a statistical function.

This manuscript is organized as follows: “Methodology" shows the methodology, while the results and discus-
sions are set out in “Results and discussion”. Finally, the article ends with some concluding observations on this 
work in “Concluding remarks”. Also, Supplementary information have been included to show the nomenclature 
of all the variables and the numerical values of the parameters contained in the equations used throughout the 
manuscript.

Methodology
The mathematical model in Alverhag y Martin is a nonlinear dynamic system consisting of four clustered 
 subsystems9. The subsystems are compartmental representations of the human body, where each compartment 
represents an organ or tissue where an important process of mass exchange is carried out. The compartments 
are interconnected through the blood flow. Then, by means of a mass balance in the compartments, each of the 
subsystems quantifies the concentration of one solute (i.e., glucose, insulin, glucagon, or incretins). A detailed 
explanation of the system and its nomenclature can be found the Supplementary information.

The system is a set of 28 ODEs composed of nonlinear continuous functions. Therefore, it follows that the 
solution of the system (x(t)) exists in a domain D as long as the initial conditions are in D . As a methodological 
approach in this work, the solution of the system is represented from a state-space theory as the vector:

where x(t) = (x1(t), x2(t), . . . , x28(t)) ∈ D ⊂ R
28 is semidefined positive, which means that it belongs to the set 

R
28
+  . Using the state definition in Eq. (1), the system is defined as:

where the vector field F(x(t);π , η) :→ R
28 determines the time evolution of x(t) starting at initial condition ( x0 ) 

in the initial time ( t0) , and π ∈ � ⊂ R
46 contains the parameters in the functions representing hemodynamical 

processes, while η ∈H⊂ R
67 contains the parameters in the functions representing the metabolic rates of the 

system. The parameter values of the system in Eq. (2) can be found in the Supplementary information.

Model simulation and initialization. The mathematical model in Eq. (2) successfully simulates the blood 
glucose dynamics of a healthy human body after intravenous glucose infusion and oral glucose  intake9. For the 
above, an input to the system is considered containing: (i) a continuous intravenous glucose infusion rate ( rIVG ), 

(1)

x = [GBV , GBI , GH , GL, GK ,GPV , GPI , GG , GPN ,

IB, IH , IL, IK , IPV , IPI , IG , IPN , Ŵ
N , ω, ωG ,

MI
HGP , M

I
HGU , F2, P, I , Q, Gs , rOGA]

(2)ẋ(t) = F(x(t);π , η), x(t0) = x0 ∈ D
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which is introduced to the system as an insulin rate in mg·(dL·min)−1 , and (ii) an oral glucose intake ( OGC0 ), 
which is introduced to the system in mg and it is connected to the gastric emptying process (see the Supple-
mentary information). The output of the system (y) is considered as x6 = GPV and x14 = IPV , whose meaning 
concerns to glucose and insulin vascular concentration in peripheral tissues, respectively. The time evolution of 
y is used to compare the model simulation with clinical data where the glucose and insulin concentrations are 
taken from a blood sample of the patient’s forearm during a test. For all the simulations, the model in Eq. (2) was 
numerically solved by using a variable step in the function ode45 (Dormand-Prince) of  MATLAB18. The simula-
tion time was defined as the time length of the clinical trial.

For model initialization, the basal condition xB and x0 were computed from the solute concentrations in the 
fasting state of the patients. The condition xB is determined as the mean fasting glucose and insulin concen-
tration from the blood samples collected over several days, this is xB6  and xB14 , respectively. The condition x0 is 
determined as the fasting glucose and insulin concentrations from a blood sample at time zero of the clinical 
test; this is x6(0) and x14(0) , respectively. Mathematically, the fasting state has a physiological correspondence 
with the steady-state of the system ( x∗ ) in Eq. (2), this is:

then, since interstitial, arterial, and venous concentrations are the same at the steady-state, the peripheral vascular 
data for xB and x0 are computed from the arterial or venous data. The remaining 26 components of xB and x0 are 
obtained from the solution of the Eq. (3).

Metabolic rates of the model. The subsystems described in the Supplementary information are coupled 
by the functions representing the metabolic rates of the glucose, insulin, glucagon, and incretins. These meta-
bolic rates are mathematically modeled as constant or linear functions of the mass accumulation in the compart-
ments; or multiplicative functions of the metabolic basal rate. Specifically, the metabolic rates in the glucose, and 
glucagon subsystems are multiplicative functions with the following general form:

where rB represents the basal value of the metabolic rate r, and each M is the isolated effect of the normalized 
concentration of glucose ( MG ), insulin ( MI ), and glucagon ( MŴ ) of the normalized metabolic rate ( rN = r/rB ). 
The above implies that MG = MI = MŴ = 1 when the glucose, insulin, and glucagon are basal, therefore r = rB . 
To represent the characteristic sigmoidal non-linearities of biological data correlations, excepting the isolated 
effects that are states of the system in Eq. (2) (i.e., MI

HGP and MI
HGU ), all the isolated effects are hyperbolic tangent 

functions of some normalized component of the state, this is:

where xNi = xi/x
B
i  for i ∈ {1, 2, . . . 28} , and ηj1 , ηj2 , . . . , ηj4 ∈ H with j1, j2 . . . j4 ∈ N ≤ 67 are dimensionless 

parameters. A list containing the nominal values of the η parameters can be found in the Supplementary infor-
mation. Using these values, the system in Eq. (2) simulates the blood glucose dynamics after an intravenous 
glucose infusion or an oral glucose intake in a healthy human  body9. For the mathematical modelling of the 
blood glucose dynamics of T2DM, the pathophysiology of T2DM must be emulated by modifying the value of 
the parameters of the functions representing the metabolic rates responsible of the characteristic hyperglycaemia. 
The above will be described in “Curve fitting”.

Curve fitting. For decades, different studies have identified the metabolic problems associated with the pro-
gression of T2DM in healthy  humans19,20. It has been found that these problems are related to the metabolism of 
fats, and  carbohydrates19,20. The metabolism of this latter is the object of study in this work.

Mainly, the pathophysiology of the T2DM is characterized  by19: (i) insulin resistance, defined as an impaired 
effect of insulin on glucose uptake by peripheral tissues, (ii) excessive hepatic glucose production, due to acceler-
ated gluconeogenesis, and (iii) β-cell dysfunction, represented by an impaired pancreatic insulin release. Then, 
the mathematical functions of the system in Eq. (2) modelling the aforementioned metabolic rates are: the effect 
of insulin in peripheral glucose uptake (i.e., MI

PGU ), the effect of glucose, insulin, and glucagon on the hepatic 
glucose production (i.e., MG

HGP , MI∞
HGP and MŴ0

HGP , respectively), and the pancreatic insulin release (i.e., rPIR ). 
Since a small variation in the parameters of the after-mentioned metabolic rates results in a variation of the solute 
concentrations in the model, in the following sections, the terminology of the sensitivity analysis from Khalil 
will be  adopted21. Therefore, the above metabolic rates will be called sensitive metabolic rates.

In what it follows, the sensitive metabolic rates were selected to fit the clinical data of T2DM patients. Explic-
itly, the fitting of rPIR is supported by several clinical tests where a decrease of the first phase of pancreatic insulin 
release in patients with T2DM is  exhibited22–24. The above is consistent with the early proposal to induce a partial 
impairment on insulin release from the labil compartment, in order to decrease the first phase of insulin release 
in T2DM  patients25. Due to the above, the functions representing the first phase of insulin release (X and P∞ ), 
and the time-variation of the amount of labile insulin ready to be released, were studied by a sensitivity analysis 
as in  Khalil21 to select the parameters that show a major contribution to the sensitivity on solution x(t; η,π0) . 
The selected parameters were identified from the clinical data of T2DM patients. The rest of the parameters 
remained unaltered.

Static and dynamic fitting approach. To solve the parameter fitting problem, two things are required: 

(3)F(x∗;π; η) = 0

(4)r = MGMIMŴrB

(5)M(xNi ) = ηj1 + ηj2 tanh(ηj3(x
N
i + ηj4 ))
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1. A set of clinical data in T2DM patients.
2. A mathematical method to fit such data to the function representing the sensitive metabolic rates.

The set of clinical data used for the isolated effects fitting was obtained from selected clinical tests of T2DM 
patients. The conditions of each one of the selected articles are consistent with those originally considered for 
mathematical modeling in Ref.10. These conditions are compiled in Table 1. In the selected articles, the clinical 
data was taken from a set np of individual with no other significant medical history than T2DM. Nevertheless, 
for curves fitting, we used the reported mean value of the tissue/organ response to local changes in the solute 
concentration of the np subjects. Originally, to mathematically model the metabolic rate rPIR , Grodsky obtained 
data from a graded glucose step-response with the isolated perfused pancreas in  rats25. Since it is impossible to 
obtain this data from humans, the selected parameters of this metabolic rate were identified using clinical data 
from an input–output approach of the system, in Eq. (2). The data were taken from an OGTT in DeFronzo et al.26, 
where the plasma glucose and insulin response to oral intake were measured in nine T2DM subjects after the 
consumption of 1 g/kg-body weight of oral glucose.

The mathematical method used to fit the functions to clinical data is the least squares (LSM). In general, the 
LSM lies that the following relation is  fulfilled27:

where z, and ȳ are vectors containing n observations, and θ ∈ R
p×1 is a vector of p unknown parameters of the 

sensitive metabolic rate. To estimate θ the n values of g are computed for all z. Then, θ̂ is the estimation of the 
vector of parameters corresponding to θ that minimizes the residual sum of squares of an objective function Q(θ) 
over some feasible the vector of parameters θ ≥ 0 ⊂ � . The isolated effects of the sensitive metabolic rates were 
fitted to clinical data by a static approach of the LSM. After that, a dynamical approach of the LMS was used to 
identify the parameters of the rPIR function. In what follows, both approaches will be described.

In the static approach, the unknown parameters from the Eq. (5) are grouped as θ = [ηj1 , ηj2 , ηj3 , ηj4 ]
T . The 

vector θ̂ is estimated with an iterative process using the following objective function:

where yk is clinical data of the mean of the normalized metabolic rate in T2DM patients respect its basal value 
in Ref.9, and zk is the clinical data of the mean of the normalized solute concentration taken from the forearm. 
The minimization of the objective function in Eq. (7) was numerically solved with the function lsqcurvefit of the 
optimization toolbox of  MATLAB18. The iterative algorithm used to find θ̂ was ‘trust-region reflective’ proposed 
in  Li28. After fitting, ( zk,yk ) are graphically compared with the fitted isolated effects functions. Then, the values 
of the parameters in θ were replaced by the values in θ̂.

In the dynamical approach the selected parameters from rPIR were grouped as θ = [ηl1 , ηl2 , ηl3 , ηl4 , ηl5 , ηl6 ]
T 

with l1, l2, . . . l6 ∈ N ≤ 67 . The vector θ̂ was estimated with an iterative process using the following objective 
function:

where y1k , and y2k are the clinical data obtained from the mean of glucose and insulin concentrations, respec-
tively, taken at the zk time, the weights w1 and w2 are the mean of the basal glucose, and insulin concentrations, 
respectively; and f1 = x6(zk , θ) , f2 = x14(zk , θ) were obtained from the model simulation. The above clinical data 

(6)ȳ = g(z, θ)

(7)Q(θ) =

n
∑

k=1

(

yk −M(zk , θ)
)2

(8)Q(θ) =

n
∑

k=1

(

(

y1k − f1(zk , θ)

w1

)2

+

(

y2k − f2(zk , θ)

w2

)2
)1/2

Table 1.  Conditions of the clinical test and its interpretation in the mathematical model. The clinical data 
from the studies that fulfill the criteria in the table were used to fit the isolated effects of the sensitive metabolic 
rates of the model.

Rate Conditions

M
I
PGU

The glucose concentration was maintained in its basal state by a glucose clamp (i.e., MG
PGU

= 1 ). The above allows to observe the 
isolated effect of insulin in the peripheral glucose uptake (i.e., MI

PGU
 ) by knowing the normalized value of the peripheral glucose 

uptake (i.e., rN
PGU

= rPGU /r
B
PGU

)

M
G
HGP

Somatostatin was administered to block the endogenous release of insulin, and glucagon. Exogenous insulin, and glucagon 
replacements were introduced to the patients to maintain them in their basal state (i.e., MŴ

HGP
= 1, x21 = x

∗
21 ). The above allows 

to observe the isolated effect of glucose on the hepatic glucose production (i.e., MG
HGP

 ) by knowing the normalized value of hepatic 
glucose production (i.e., rN

HGP
= rHGP/r

B
HGP

)

M
I∞
HGP

Glucose concentration was maintained at basal state by means of a glucose clamp. The above allows to observe the isolated effect of 
insulin in the hepatic glucose production after a stabilization time (i.e., MI∞

HGP
)

M
Ŵ0

HGP

Somatostatin was administered to block the endogenous release of insulin, and glucagon. Exogenous insulin, and glucose replace-
ments were introduced to the patients to maintain them in their basal state by means of a glucose clamp (i.e., MG

HGP
= 1, x21 = x

∗
21 

). The above allows to observe the isolated effect of glucagon on the hepatic glucose production (i.e., MŴ0

HGP
 ) by knowing the 

normalized value of hepatic glucose production (i.e., rN
HGP

= rHGP/r
B
HGP

)



5

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12697  | https://doi.org/10.1038/s41598-020-69629-0

www.nature.com/scientificreports/

was taken from DeFronzo et al.26. The LSM problem in Eq. (8) was numerically solved using the function fmincon 
of the optimization toolbox of  MATLAB18 with the iterative algorithm ‘interior-point’. After the identification of 
the parameters of rPIR , the values in θ (from the static, and dynamical approach) were replaced by θ̂ in order to 
emulate the pathophysiology of T2DM. Hereinafter, the resulting model is called T2DM model.

Comparison of the T2DM model with clinical data. The T2DM model was numerically simulated for 
comparison with a clinical test in T2DM where the blood glucose dynamics is observed after different stimuli. 
Considering that the route of glucose entry into the body plays an essential role overall glucose  homeostasis26, 
the T2DM model was simulated for the following test: (i) a programmed graded intravenous glucose infusion 
test (PGIGI) to account for the rapid response of the intravenous infusions, and (ii) an OGTT considering a dose 
of 50 g of glucose (50 g-OGTT), and a dose of 75 g of glucose (75 g-OGTT) to account for blood glucose changes 
due to the gastric emptying process, and the effects of the incretin.

The clinical data used to compare the DMT2 model with a PGIGI test was obtained from Carperntier et al.29. 
In this test, the glucose was administered intravenously in a total of 7 subjects with DMT2 (i.e., np = 7 ). Math-
ematically, this is that the glucose was supplied through rIVG while OGC0 = 0 . The duration of the test was 
270 min distributed as follows: a basal sampling period was considered were rIVG = 0 from 0 to 30 min, after 
this, the steps of intravenous glucose infusion were introduced as rIVG = 1, 2, 3, 4, 6 , and 8 mg (dL min)−1 for 
a period of 40 min each one. The conditions for model simulation were GB

PV = GPV (0) = 157.5 mg dL−1 , and 
IBPV = IPV (0) = 13.02 mU L−1.

The clinical data used to compare the DMT2 model with an OGTT was obtained from Firth et al.30, and 
Mari et al.31. In these test, 50 and 75 g of oral glucose was consumed by a total of 13 and 46 subjects with DMT2, 
respectively (i.e., np = 13 or np = 46 ). Mathematically, this is that the glucose was supplied through OGC0 while 
rIVG = 0 . For the OGTT, the duration of the simulation was 180 min. The conditions for model simulation 
were OGC0 =50,000 mg, GB

PV = GPV (0) = 185 mg dL−1 , and IBPV = IPV (0) = 14 mU L −1 , for the 50 g-OGTT. 
Further, the conditions for model simulation were OGC0 =75,000 mg, GB

PV = GPV (0) = 176 mg dL−1 , and 
IBPV = IPV (0) = 11.2 mU L −1 , for the 75 g-OGTT.

The difference between the clinical data, and the model simulation was quantified with the following statisti-
cal expression:

where Se =
∑n

s=1(x6(ts)− G(ts))
2 , and G is the glucose concentration taken from the T2DM patients at the time 

ts . All the clinical tests were different from those used for parameter fitting.

Declarations. The source of clinical data was obtained from publicly available sources, namely, recognized 
research journals and properly cited through the manuscript. No person was directly involved in this study as a 
source of clinical data.

Results and discussion
The clinical data that fulfill the conditions provided in Table 1 were taken from the references grouped in Table 2. 
The parameter set θ̂ for each isolated effect of the sensitive metabolic rate can be seen in Table 3. Furthermore, 
in Fig. 1 it can be found a graphic representation of the curves that fit the isolated effects functions of the sensi-
tive metabolic rates to the clinical data of the Table 1. As can be seen, the curves in Fig. 1 do not necessarily 
pass through the point (xNi ,MN (xi)) = (1, 1) . This is because the isolated effects of the metabolic rates were 
normalized with respect to the basal value of the metabolic rates in Alverhag and  Martin9, which correspond to 
a mathematical model of the blood glucose dynamics in a healthy human body. The above is justified by the fact 
that not all isolated effects of glucose, insulin, or glucagon on a metabolic rate are observed altered in T2DM 
patients. Since the metabolic rates are expressed as multiplier factors of the basal metabolic rate, the isolated 
effects that have not been observed altered in patients with T2DM will continue to be multiplier factors of the 
basal metabolic rate ( rB ) of a healthy human body.

As can be seen in Fig. 1a the curve corresponding to MI
PGU goes close to the point ( xN15 , M

I
PGU (x

N
15)) = (1, 1) . 

The above means that the insulin-stimulated peripheral glucose uptake in a T2DM patient does not differ much 
from the one in a healthy human when the fasting hyperglycaemia, and basal insulin concentration are main-
tained in the T2DM patient. This characteristic of the T2DM has been previously reported in several  articles32–35. 
In contrast, as can be seen in Fig. 1b, for xN4 = 1 , the value of MG

HGP is higher than one. Considering basal hyper-
glycaemia, it means that the hepatic glucose production is higher in T2DM patients compared to that observed 
in healthy humans. The above has been previously reported by various articles where the effect of glucose on the 
hepatic glucose production rate was verified for healthy control subjects, and T2DM patients. Hawkins et al.36 
have associated this increase with accelerated gluconeogenesis since glycolysis is normal for healthy subjects and 
diabetic subjects. Besides, Mevorach et al.37 report that this inefficient suppression is due to a deficient inhibition 
of glucose-6-phosphatase activity and/or lack of inhibition of glucose-6-phosphate formation.

The characteristic hepatic insulin resistance of the T2DM is evident in Fig. 1b,c. This can be observed in the 
behavior of the curves for high values of the solute concentration, where the hepatic glucose production can 
not be suppressed entirely despite significant increment of the normalized glucose and insulin concentration 
in the liver. The above is consistent with clinical evidence where the blood glucose has an impaired ability to 
inhibit the hepatic glucose production at basal insulin and glucagon concentrations in  T2DM19,36,37; and the 
insulin concentration is ineffective to suppress the hepatic glucose production at basal glucose and glucagon 

(9)σ =

√

1

n− 1
Se
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concentrations in  T2DM26,38–40. Finally, the role of glucagon in hepatic glucose production in T2DM patients 
can be seen in Fig. 1d. In this graphical representation, the behavior of the function MŴ0

HGP is consistent with the 
clinical data of patients with  T2DM41,42. Then, it follows that by fitting the isolated effect functions to the clinical 
data, it is possible to individually emulate the pathophysiology of the T2DM.

After isolated effects fitting, a parameter set containing the parameters of rPIR that shows a greater contribu-
tion to the sensitivity on the solution x(t; η,π0) was selected. From the sensitive analysis, the selected set of 
parameters was θ̂ = [η36, η39, η40, η42, η44, η45]T . The values of θ̂ that minimize the objective function in Eq. (8) 
can be seen in Table 4.

Once the nominal values of the parameters are replaced by those in θ̂ of Tables 3, and 4, the system simulates 
the response to a 70 g-OGTT. The results of the simulation, and its comparison with clinical data from DeFronzo 
et al.26 can be seen in Fig. 2. As can be seen there, is an acceptable approximation of the simulation curve to the 
clinical data. Moreover, during almost all the simulation time, the model output remains within the bars of the 
standard error. It should be noted that even when y1k , and y2k have different orders of magnitude, the emulation 
of both blood glucose and insulin was successfully achieved. This is mainly due to the addition of weight func-
tions of weights in the objective function of the Eq. (8).

As noted in “Methodology", since there is no clinical data of the individual response of rPIR measured against 
different stimuli, the dynamic approach used to fit rPIR is based on nonlinear optimization. As a result, the set of 
values obtained minimizes the objective function of the Eq. (8), nevertheless, it cannot be assured that the patho-
physiology of the pancreatic insulin secretion in T2DM is individually emulated. However, due to the individual 
fitting of the isolated effects, the number of parameters to be identified by a dynamic approach is minimal. A 
proposal to avoid the above is to replace the pancreatic insulin subsystem with a model of the pancreas whose 
pathophysiology could be described by a set of clinical data of patients with DMT2.

After the metabolic rates fitting the resulting model (i.e., T2DM model) was simulated and compared with 
clinical data. In Fig. 3, it can be seen the T2DM model response for the PGIGI test, and the clinical data from Car-
pentier et al.29. As can be seen, the simulation of the T2DM model is not significantly different from the reported 
clinical data. Moreover, the absolute of the maximum difference between simulation, and the clinical data is 9.4 

Table 2.  References of the clinical studies. The table shows the set of references containing the clinical data 
used to fit the isolated effects of the sensitive metabolic rates. Column np indicates the number of patients 
analyzed in each reported clinical study according to the reference in the central column of the table. The 
proposed parametric adjustment results from taking the means of each set of np patients.

Rate References np

M
I
PGU

DeFronzo et al.26 9

Vaag et al.32 12

Kelly and  Mandarino33 15

Capaldo et al.34 6

Kalant et al.35 11

M
G
HGP

Hawkins et al.36 10

Mevorach et al.37 9

Nielsen et al.47 9

Del Prato et al.48 9

M
I∞
HGP

Staehr et al.49 10

Groop et al.38 9

Campbell et al.39 14

Baron et al.41 10

DeFronzo et al.26 9

Revers et al.40 10

DeFronzo et al.50 38

M
Ŵ0

HGP

Matsuda et al.42 8

Baron et al.41 10

Table 3.  Vector of fitted parameters from the static approach. The table shows the parameter values that 
minimize the residual sum of squares of the objective function for the different isolated effects.

M(zk , θ̂ ) θ̂

M
I
PGU

(xN15, θ̂ ) [7.9869, 7.2537, 0.4852,−5.2518]

M
G
HGP

(xN4 , θ̂ ) [1.0720,−1.0064, 0.8712,−1.4930]

M
I∞
HGP

(xN12, θ̂ ) [0.3240,−0.2020, 0.7625,−3.6977]

M
Ŵ0
HGP

(xN18, θ̂ ) [0, 1.495, 0.6773,−0.0469]
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Figure 1.  Isolated effects fitting to clinical data. In these plots the solid line represents the isolated effects 
functions (a) MI

PGU
 , (b) MG

HGP
 , (c) MI∞

HGP
 , and (d) MŴ0

HGP
 fitted to the clinical data from T2DM patients. Each 

symbol represents the mean measured value of the tissue/organ response to a local change on the solute 
concentration, from np subjects. For these metabolic rates, the fitting approach was static.

Table 4.  Vector of identified parameters from the dynamical approach. The table shows the parameter values 
that minimize the residual sum of squares of the objective function for the sensitive metabolic rate rPIR.

f (zk , θ̂ ) θ̂ = [η36, η39, η40, η42, η44, η45]
T

x6(t, θ̂ )
[3.2717, 2.8504, 0.9330, 0.0867, 7.6707, 0.0565]

x14(t, θ̂ )
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mg dL−1 . This is consistent with the obtained statistical value σ = 5.37 mg dL−1 for this test. It follows that the 
T2DM model can reproduce the step response of the blood glucose due to an intravenous glucose infusion input.

Figure 4 shows the T2DM model response of the OGTT for different doses. Similarly to the observed clinical 
data, the model response x6 rises to a maximum peak approximately at 80 min after the stimulus of 50 g and 75 g. 
The statistical value σ for the 50 and 75 g-OGTT is 16.84 mg dL−1 , and 13 mg dL−1 , respectively. As can be seen, 
after oral glucose intake, the response of the model for the OGTT test is relatively slow, showing a maximum 
peak at approximately 80 min after glucose stimulation. Compared with the results of the PGIGI, the increase in 
glycaemia in the OGTT is slower. This is because of the digestion process, after an oral glucose intake, induces a 
delay proportional to the glucose appearance rate in the gut. Furthermore, as can be seen in Figs. 2, 3 and 4 the 
basal blood glucose is slightly elevated compared to the concentration of a healthy subject.

According to the World Health Organization guidance for diagnostic tests of DM, a fasting glucose concen-
tration ≥126 mg dL−1 is characteristic of  DM43. Moreover, the patients with this impaired blood glucose should 
undergo by a formal 75 g-OGTT for DM  diagnosis43. A representation of this test can be seen in Fig. 4 where 
after two-hour postload glucose the dotted curve had shown a glucose concentration ≥140 mg dL−1 . This is a 
characteristic behavior of DMT2 that contrasts with that of a healthy subject, where the normal homeostatic 
glucose process results in a concentration of less than 140 mg dL−1 after 2 h of the glucose intake.

Figure 2.  Graphical result of rPIR fitting to the clinical data. In these plots the solid line represents the variation 
of the (a) glucose or (b) insulin concentration in the peripheral compartment of the T2DM model. The symbols 
represent the mean±SEM value of the solute from the np subjects. These data were taken from DeFronzo et al. 
where a 70 g-OGTT was  performed26. For the simulation it was considered a consumption of 70 g of glucose 
at time equal to zero. The rPIR parameters are those whom minimized the objective function from the dynamic 
fitting approach.

Figure 3.  Simulation of a PGIGI test. In this plot the solid line represents the simulation of the blood glucose 
in the peripheral compartment of the T2DM model. The symbols represent the mean±SEM value of solute from 
the np subjects. These data were taken from Carpentier et al. where a PGIGI test was  performed29.
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Based on the values of the σ function, it can be concluded that the model emulates with acceptable precision 
what is reported in the clinical data for PGIGI, and OGTT. However, this model considers only the carbohydrate 
metabolism but not fat, and protein metabolism. Therefore, the effect of free fatty acids, and the physiology 
related to amino acids level on blood glucose dynamics are not included. Besides, the model does not consider the 
counter-regulatory effect of growth hormones, adrenaline, or cortisol. Nevertheless, the above can be considered 
later in the model by adding other subsystems for the free fatty acids dynamics, and other metabolic functions 
to consider the effect of the missing hormones.

concluding remarks
The main contribution of this article was derivating a model for T2DM, including physiological features to emu-
late blood glucose dynamics. The modelling departs from a PB-PKPD modelling approach, and the individual 
fitting of the sensitive metabolic rates allows us to capture the pathophysiology of the metabolic rates in T2DM. 
This methodological procedure enables us to successfully emulate the blood glucose dynamics of T2DM after a 
continuous intravenous glucose infusion an oral glucose intake. As convincing numerical evidence of the above, 
Figs. 3 and 4 show to what extent the T2DM model predicts the clinical data.

The individual fitting of the sensitive metabolic rates to clinical data ensures that the pathophysiology of 
T2DM is preserved, such that diverse scenarios might be predicted. For instance, this model can be used to 
determine appropriate oral therapy for blood glucose regulation by connecting a PKPD model of a hypogly-
caemic drug (e.g., sulfonylureas, biguanides, thiazolidinediones, among others). Such is the case of metformin 
therapy, where the target metabolic rates were modified by adding a multiplicative factor in rHGP , rPGU , and rGGU
44. Similarly, the mathematical model we present lights up some complementarity to other research approaches. 
For example, the recent finding in improved glucose metabolism due to continued treatment with deuterium-
depleted water (DDW) content in patients with  T2DM45 could be emulated with an organ-based model. Again, it 
is feasible to consider a multiplicative factor to the metabolic rate rPGU to reproduce the alteration on peripheral 
glucose disposal, as indicated in some clinical  researches46. Furthermore, this model can be used to develop a 
feedback model-based controllers for blood glucose regulation in T2DM patients. This idea triggers the possibility 
to achieve the normoglycaemia by means of single or combined therapy of oral hypoglycaemic agents with an 
exogenous insulin input connected to rIVI . Finally, as a consequence of its mathematical structure, it is possible 
to consider structured or unstructured uncertainties in the described physiological-based model. Therefore, we 
can employ robust control techniques such as H∞ theory.
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