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Abstract

Summary: LexExp is an open-source, data-centric lexicon expansion system that generates spelling variants of lex-
ical expressions in a lexicon using a phrase embedding model, lexical similarity-based natural language processing
methods and a set of tunable threshold decay functions. The system is customizable, can be optimized for recall or
precision and can generate variants for multi-word expressions.

Availability and implementation: Code available at: https://bitbucket.org/asarker/lexexp; data and resources avail-

able at: https://sarkerlab.org/lexexp.
Contact: abeed@dbmi.emory.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Lexicon- or dictionary-based biomedical concept detection
approaches require the manual curation of relevant lexical expres-
sions, generally by domain experts (Demner-Fushman and Elhadad,
2016; Ghiassi and Lee, 2018; Rebholz-Schuhmann et al., 2013;
Shivade et al., 2014). To aid the tedious process of lexicon creation,
automated lexicon expansion methods have received considerable re-
search attention, leading to resources such as the UMLS SPECIALIST
system (McCray et al., 1993), which is utilized in MetaMap (Aronson
and Lang, 2010) and ¢TAKES (Savova et al., 2010). Such systems per-
form well for formal biomedical texts, but not noisy texts from sour-
ces such as social media and electronic health records. Due to the
presence of non-standard expressions, misspellings and abbreviations,
it is not possible to capture all possible concept variants in noisy texts
using manual or traditional lexicon expansion approaches. The num-
ber of lexical variants of a given concept that may occur, although fi-
nite, cannot be predetermined. Biomedical concepts, such as
symptoms and medications, are specifically likely to be misspelled
compared to non-biomedical concepts (Soualmia et al., 2012; Zhou
et al., 2015). Despite advances in machine learning based sequence
labeling approaches, which typically outperform lexicon-based
approaches and can detect inexact concept expressions, the latter are
frequently used in biomedical research. This is non-exclusively be-
cause machine learning methods require manually annotated datasets,
which may be time-consuming and expensive to create, and training
and executing state-of-the-art machine learning approaches may re-
quire technical expertise and high-performance computers, which
may not be available. In this article, we describe an unsupervised lexi-
con expansion system (LexExp), which automatically generates many
lexical variants of expressions encoded in a lexicon.
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2 Materials and Methods

LexExp builds on recent studies, including our own, which utilize
the semantic similarities captured by word2vec-type dense-vector
models (Mikolov et al., 2013) to automatically identify similar terms
and variants (Percha et al., 2018; Sarker and Gonzalez-Hernandez,
2018; Viani et al., 2019). LexExp employs customizable threshold
decay functions (constant, linear, cosine, exponential), combined
with dense-vector and lexical similarities, to generate many variants
of lexicon entries. Similarity thresholding for determining lexical
matches is popular (Fischer, 1982); most approaches apply static
thresholding while some recent studies have attempted to employ
dynamic thresholding for misspelling correction or generation
(Sarker and Gonzalez-Hernandez, 2018; Savary, 2002). However,
there is no existing tool that enables the use of customizable thresh-
olding options for these tasks. The objective of LexExp is to gener-
ate lexical variants of multi-word expressions using customized
thresholding, not lexically dissimilar semantic variants (e.g.
synonyms).

Given a lexicon entry, LexExp first generates word 7-grams
(n=1 and 2) from the entry (for one-word expressions, only unig-
rams are generated). For each n-gram within the entry, a dense
embedding model is used to retrieve 7 most semantically similar
words/phrases using cosine similarity, if the #-gram is present in the
model. Next, all the words/phrases whose semantic similarities with
the n-grams are higher than a threshold are included as candidate
variants. For each candidate, its Levenshtein ratio is computed
against the original 7-gram and a separate threshold for lexical simi-
larity (#) is applied. All candidates below the threshold are removed
from the list of possible variants. The same process is applied recur-
sively on each remaining candidate until no new variants with
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Fig. 1. (top) Workflow of the LexExp system. Expressions from the lexicon are first tokenized into #-grams. The dense-vector model is then used to generate semantically simi-
lar expressions, which are filtered to keep only k& most semantically similar expressions for each source token. These expressions are then passed to the lexical similarity filter,
which employs one of the threshold decay functions described in the article to remove too lexically dissimilar expressions. Finally, the generated variants are combined to pro-
duce all combinations of multi-word expressions and repetitions are removed. Such repetitions occur often and typically when a variant of an 7-gram token has a different 7 in
the variant. For example, “panic attack” is often expressed as one word, “panicattack”, on social media (perhaps as a hashtag), which is generated as a semantic variant during
the expansion process. The variant combination generator then combines the single-word expression with tokens in multi-word expressions leading to the generation of var-
iants such as “panicattack attack”. The repetition filter then attempts to identify such repetitions and remove them. (bottom) The four threshold determination functions that
can be used in LexExp. Static—no change in threshold; linear—threshold decreases in a linear fashion with length; cosine—gradient of threshold decay increases with length

and exponential—gradient of threshold decay decreases with length. For all these curves, 72 =2, n= 3, initial threshold (¢;) = 0.95 and threshold lower bound (#;) =

similarity above ¢ are found. While we used an embedding model
described in our past work (Sarker and Gonzalez, 2017), any can be
used for identifying semantically similar terms in LexExp.

2.1 Lexical similarity thresholding functions
LexExp provides the user with four functions that can be used to
vary t based on the character lengths of the input n-grams.
Typically, longer terms/phrases have true variants that are lexically
more distant from the original entry. So, adjusting ¢ based on the
length of an expression may lead to better precision and/or recall.
Note that recall and precision are both ill-defined in this context: re-
call—because there is no known bound for the total number of var-
iants; precision—because the set of true variants depends on the
research task. Given an expression, p, the four functions are:

Static: t = ¢;

Linear decay:

t= max(ti —

Cosine decay:

t = min <max <cos <w> , t,>, t,)
mX2n

Exponential decay:

t= min((leﬂ(p) x2 x m x elFlen®) <1n0>) t,>

where m and 7 are constants, ¢; is the initial threshold and # is the
lower bound for ¢. Figure 1 illustrates how these thresholding meth-
ods vary for expressions of length 1-30 characters. These threshold-
ing functions are carefully designed to provide the user with
flexibility to vary them as per the needs of a task.

m x (len(p) — n)
100.0 ’tl>

2.2 Multi-word variants

A key functionality of LexExp is its ability to generate variants for
multi-word expressions. Capturing variants of multi-word expres-
sions comprehensively is particularly challenging via manual anno-
tation since the number of possible word combinations can be very
high. Also, phrase embedding models cannot capture the semantics

0.30

of long multi-word expressions due to the sparsity of their
occurrences.

LexExp uses two functions for generating multi-word variants.
The first is a unigram variant generation function that generates var-
iants for each word based on a specific value of ¢, and then generates
all combinations of the original expression based on the variants
identified, keeping the ordering of the variants unchanged.
Examples of variants generated by this function are shown below:

Original expression: eyes were excruciatingly sensitive and sore.

Sample variants:

eyes were excrusiatingly sensistive and sore;
eyes were excruciatingly sensitve and sore;
eyes were excrusiatingly sensitive and sore;

B

eyes were excrusiatingly sensetive and sore.

The second is a bigram generation function, which first tokenizes
the expressions into bigrams, then generates variants of the bigrams.
These variants maybe uni- or multi-grams (e.g. stomach ache: stom-
achache, mild stomach ache). After the variants are generated, they
are tokenized to unigrams and then all combinations of all unigrams
are generated as described before. Recombining the bigrams follow-
ing the generation of the variants can be complicated in some cases,
as a term and its partial variant may both be present in a combin-
ation (see Figure 1 caption). LexExp attempts to resolve these using
a simple forward and backward pass through the list of words,
removing all words identical to or substrings of the next/previous
one.

3 Conclusion

We ran LexExp on multiple lexicons, including lexicons for
COVID-19 symptoms from Twitter (Sarker ef al., 2020), adverse
drug reactions (Sarker and Gonzalez, 2015), a subset of the con-
sumer health vocabulary (Zeng and Tse, 2006) and psychosis symp-
toms from electronic health records (Viani et al., 2019). We also
compared tweet retrieval numbers for COVID-19 symptom-men-
tioning tweets using the abovementioned lexicon with and without
variants, and observed an increase of 16.6%. Further details about
these experiments are provided in Supplementary Material. As a
lexicon expansion system, the purpose of LexExp is not to obtain
perfect accuracy—in fact, accuracy is not well-defined for this
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generation task. The objective, instead, is to automatically generate
large sets of possible variants that can be readily used by human
experts for information retrieval and extraction.
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