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Abstract: Fluorinated graphene contains F atoms with high levels of chemical activity, and the
application of fluorinated graphene in energetic materials may greatly contribute to the progress of
combustion reactions. However, there is a lack of research on the thermal properties of fluorinated
graphene and its application on nitrate esters. In this paper, theoretical calculations and experiments
were used to study the thermal properties of fluorinated graphene and its application on nitrate
esters. The anaerobicity and poor thermal stability of fluorinated graphene were proved by ab initio
molecular dynamics (AIMD) calculations and TG-DSC experiments. The ester weakening effect of
fluorinated graphene on nitroglycerin was determined via wavefunction analysis, with the greater
the fluorination degree, the stronger the ester weakening effect. The existence of fluorinated graphene
can significantly increase the heat dissipation of the composites, which was concluded by TG-DSC
experiments and TG-DSC-MS-FTIR. The research in this article provides an important reference for
the application of fluorinated graphene in energetic materials.

Keywords: two dimensional materials; energetic materials; fluorinated graphene; nitrate esters;
thermal decomposition

1. Introduction

Fluorinated graphene (FG) has been known to be a typical derivative of graphene
since it was first prepared in 2010 [1,2]. It has been used in many fields for its exceptional
properties, such as its tunable bandgap [3], adjustable magnetic properties [4] and peculiar
surface properties [5]. In the field of energetic materials (EM), many researchers are
interested in the application of fluorinated graphene in energetic materials because of the F
atoms with high chemical activity contained in fluorinated graphene.

Aluminum (Al) and Boron (B) are often added to solid propellant [6,7] as high-energy
powder additives due to their high energy density [8,9], but they show some problems,
namely easy agglomeration and the reduction of combustion efficiency during the combus-
tion process, respectively. Some progress has been made in promoting the combustion of
high-energy powder after adding fluorinated graphene [10–14]. Jiang Yue et al. [11] pre-
pared the aluminum-based composite containing FG and, following molecular dynamics
simulations and experiments, proved that FG can significantly improve the combustion
performance of aluminum powder due to the existence of the dissociation product-CFx.
Wang Jian et al. [14] prepared KNO3/B coated with FG. They not only proved that the
existence of FG can promote the combustion of boron powder, but also revealed the mecha-
nism for promoting combustion, which involves FG eliminating the inert B2O3 shell at a
low temperature.
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High-energy explosives can significantly increase the energy level of solid propel-
lants [15–18]. Some progress has been made in the field of high-energy explosives after
adding fluorinated graphene [19,20]. Tang Pengfei et al. [19] proved, through a quantitative
calculation, that a higher degree of fluorination will lead to a lower adsorption energy
between CL-20 and FG, and also proved, by testing laser-induced ignition performance,
that the laser ignition delay time increased with an increase in the fluorine contents. Zhu
Baozhong et al. [20] prepared an ammonium perchlorate (AP)-based composite containing
FG and illustrated that FG can reduce the reaction temperature of AP and change the
decomposition process of AP.

In this article, in order to understand the characteristics of FG and its influence on
the thermal decomposition of nitrate esters, theoretical calculations and experiments were
used to study both the thermal stability and thermal oxidation of FG and the effects of FG
on the thermal decomposition of absorbent powder (the main ingredient is nitrate esters).

2. Method
2.1. Computational Details

In this paper, CP2K 8.2 [21] was mainly used for structure optimization and the calcula-
tion of ab initio molecular dynamics (AIMD). Based on the structure obtained by CP2K 8.2,
and after freezing all atoms, H atoms were used to saturate the boundary for optimization
and energy calculation in ORCA 5.0.1 [22,23] in order to obtain the wavefunction for further
wavefunction analysis.

In CP2K 8.2, PBE-D3 functionals [24–26] combined with DZVP-MOLOPT-SR-GTH
basis set [27,28] were used for structure optimization to obtain the structures of graphene,
whole-fluorinated graphene and half-fluorinated graphene (Figure 1). They were also
used to optimize the stable structure of nitroglycerin (NG) on the surface of graphene,
whole-fluorinated graphene and half-fluorinated graphene (Figure 2).
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In order to explore thermal stability, PBE-D3/DZVP-MOLOPT-SR-GTH was used
to obtain the 4000 fs AIMD trajectories (step-size is 1 fs) of graphene, whole-fluorinated
graphene and half-fluorinated graphene under the CSVR (canonical sampling through
velocity rescaling) thermostat and micro-canonical ensemble (NVE). In order to explore
the thermal oxidation stability, GFN1-xTB [29] was used to optimize the stable surface
model of oxygen molecules on the surface of graphene, whole-fluorinated graphene and
half-fluorinated graphene. Then, GFN1-xTB was also used to obtain the 1000 fs AIMD
trajectories (step-size is 0.1 fs) of these stable surface models under the CSVR thermostat
and micro-canonical ensemble (NVE).

In ORCA 5.0.1, the RIJCOSX technique [30] and the auxiliary basis def2/J [31] were
enabled to accelerate all calculations. B3LYP functionals [32] combined with D3BJ disper-
sion correction [26,33] and the def2-SV(P) basis set [34] was used to optimize the saturation
boundary model for nitroglycerin and obtain the wavefunction, wB97M-V functionals [35]
combined with the DFT-NL dispersion correction [36,37]. The def2-TZVP basis set [34]
was used to calculate the binding energy of the saturation boundary model of nitroglyc-
erin, and the counterpoise correction was simultaneously adapted to solve the basis set
superposition error (BSSE) [22,38]. The Multiwfn 3.8 program [39] was used for energy
decomposition analysis based on forcefield (EDA-FF) [40] and wavefunction analysis, and
molecular structures and isosurface maps were created in the VMD 1.9.3 program [41]
based on Multiwfn output files.

2.2. Experiment
2.2.1. Materials

Few-layer graphene: its diameter was 0.5–5 µm with a purity of around 99.8wt%. The
thickness was 0.8–1.2 nm.

Fluorinated graphene: its diameter was 0.4–5 µm with a purity of 98% The molar ratio
of F/C is 29.68–36.63%.

Absorbent powder: this was prepared by mixing uniform and via cooling with cen-
trifugation. 55.5% nitrocellulose, 30.9% nitroglycerin, 12.6% glycerol triacetate and 2%
1.3-Dimethyl-1,3-diphenylurea were its main components.

The composites of absorbent powder and graphene or fluorinated graphene were
obtained by mechanical stirring. After being stirred and standing at room temperature for
24 h, the graphene (fluorinated graphene) and powder are mixed in the mass ratio of 2:3.

2.2.2. Instrument

A simultaneous thermal analyzer NETZSCH STA 449 F3 (Selb, Germany) with a
platinum furnace was used for TG-DSC analysis. The heating rate was 5 ◦C/min and the
atmosphere was N2 or O2.

The coupling device NETZSCH STA 449 F3-QMS 403-FTIR (Nicolet iS20, Thermo
Fisher Scientific, MA, USA) with a Al2O3 furnace was used for TG-DSC-MS-FTIR analysis.
The heating rate was 5 ◦C/min and the atmosphere was N2.

Thermo Fisher Scientific Nexsa (MA, USA) was used for the testing of X-ray photoelec-
tron spectroscopy (XPS), and the charge correction was carried out with C1s = 284.80 eV as
energy standard.

3. Results and Discussion
3.1. The Properties of Fluorinated Graphene Sample

Figure 3 is the SEM image of fluorinated graphene, and, as can be seen from Figure 3,
the surface morphology of fluorinated graphene is relatively uniform. The XPS testing
illustrates that the fluorinated graphene sample contains C, F and O, and the atomic
concentrations are 68.2%, 21.2% and 10.6%. Figure 4 shows the XPS spectra of C1s, O1s
and F1s for the fluorinated graphene sample. Commonly, the binding energy of covalent
C-F bond is around 290–291 eV, the semi-ionic C-F bond is around 287–288 eV, and the
CF2 and CF3 groups is around 291–293 eV in the XPS C1s spectrum [42,43]. Therefore,
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the several peaks in the C1s XPS spectrum correspond to C-C at 284.8 eV, C-O at 286.2 eV,
C=O at 288.6 eV, semi-ionic C-F at 287.5 eV, covalent C-F at 290.0 eV, CF2 at 291.7 eV, CF3
at 293.8 eV, respectively. This matches the results of the O1s XPS spectrum and F1s XPS
spectrum in Figure 4. Moreover, the content of C-F bonds, CF2 groups and CF3 groups in
the fluorine graphene sample are 70.5%, 26.2% and 3.3%, respectively.
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3.2. Thermal Stability and Thermal Oxidation

After fluorinating, π-π packing was destroyed and the layer spacing increased in
graphene. Usually, the change in structure will cause a change in thermal stability and
thermal oxidation stability. In terms of the application of fluorinated graphene in energetic
materials, it is very important to understand the thermal stability and thermal oxidation of
FG, but there are few studies on the thermal properties of FG. In this section, the thermal
stability and thermal oxidation of graphene and FG are studied via theoretical calculations
and experiments.
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3.2.1. The Difference in Thermal Stability between Graphene and Fluorinated Graphene

Figure 5 shows the root mean square deviation (RMSD) of AIMD trajectories for
graphene, whole-fluorinated graphene and half-fluorinated graphene at 500 K and 1000 K
compared with the ground state (0 fs). The larger the RMSD value, the greater the deforma-
tion degree [44]. According to Figure 5, all RMSD curves show regular periodic fluctuations.
First of all, comparing RMSD curves of the same substance at 500 K and 1000 K, it can be
found that the higher the simulation temperature, the greater the geometric fluctuation
due to the thermal motion. Secondly, in terms of the maximum values of the RMSD curves
for graphene, fluorinated graphene and half-fluorinated graphene, it can be found that
half-fluorinated graphene shows the strongest fluctuation and has the worst thermal stabil-
ity, while graphene and fluorinated graphene have weaker fluctuations and have better
thermal stability. Finally, according to the previous discussion, perfect systems (graphene,
whole-fluorinated graphene) all show better thermal stability, while imperfect systems
(half-fluorinated graphene) show worse thermal stability. Fluorinated graphene produced
by current preparation methods [45–47] is similar to the imperfect system. Therefore, we
speculated that, when compared with graphene, fluorinated graphene has a worse thermal
stability in the daily experiment. In the subsequent TG-DSC experiments, our speculation
was proved.
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graphene at 500 K and 1000 K compared with the ground state (0 fs). (a) RMSD of AIMD trajectories
at 500 K. (b) RMSD of AIMD trajectories at 1000 K.

In order to verify our speculation regarding thermal stability, which arose as result of
theoretical calculations, the TG-DSC curves of graphene and fluorinated graphene under
N2 at 25–600 ◦C were studied, and the results are shown in Figure 6. According to Figure 6,
graphene does not decompose up to 600 ◦C, and fluorinated graphene begins to decompose
at around 436.6 ◦C. Therefore, the thermal stability of fluorinated graphene is worse than
that of graphene. This agrees with the discussion relating to thermal stability predicted
by the theoretical calculation in Figure 5. In addition, according to Figure 6b, fluorinated
graphene decomposes in a short time and emits a large amount of heat, which increases its
potential application in the field of energetic materials.
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Figure 7 shows the XPS result for the fluorinated graphene residue after the TG-DSC
experiment. It shows that the main elements in the fluorinated graphene residue are the
C element and the O element. There is no obvious peak for the F element in the total
spectrum, which indicates that the F elements in the fluorinated graphene sample were
completely released as gas during TG-DSC experiment.
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3.2.2. The Difference in Thermal Oxidation between Graphene and Fluorinated Graphene

In order to explore the thermal oxidation of fluorinated graphene, we obtained the
AIMD trajectories of oxygen molecules near the graphene, whole-fluorinated graphene
and half-fluorinated graphene at 2000 K with a CSVR thermostat. The 0 fs, 300 fs and
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900 fs models were selected, whose front and top viewed at 0 fs, 300 fs and 900 fs are
shown in Figure 8. According to Figure 8a, oxygen molecules will gradually approach
the graphene surface and interact with graphene at 2000 K, which is equivalent to the
oxidation process of graphene. According to Figure 8b,c, at 2000 K, oxygen molecules will
gradually move away from half-fluorinated graphene and whole-fluorinated graphene
over time. This is caused by the large number of electronegative F atoms on their surface.
In addition, the more F atoms there are, the farther away the oxygen molecules will be.
According to the calculation of AIMD, a clear conclusion can be obtained, and it is that
graphene is “aerobic”, whereas half-fluorinated graphene and whole-fluorinated graphene
are “anaerobic”. Moreover, the higher the fluorine content, the higher the degree to which
the material is “anaerobic”. This has great significance for understanding the thermal
oxidation mechanism of fluorinated graphene.
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In order to further understand the thermal oxidation properties of fluorinated graphene,
the TG-DSC curves of graphene and fluorinated graphene under O2 at 25–750 ◦C were
studied, and the results are shown in Figure 9. Figure 9a shows the properties of graphene
oxidation. With regard to the TG curve in Figure 9a, the graphene showed a significant
mass change in the oxygen atmosphere (the mass begins to decrease significantly at about
400 ◦C, and the final mass remains about 15%) compared to the nitrogen atmosphere,
which was caused by the interaction between oxygen and graphene and can be proved by
the previous AIMD results in Figure 8a. The DSC curve in Figure 9a has two exothermic
peaks, and the peak temperatures are 637.4 ◦C and 670.7 ◦C, respectively. In short, the
oxidation of graphene is a direct interaction between graphene and oxygen. Figure 9b
shows the properties of fluorinated graphene oxidation. For the TG curve in Figure 9b,
the fluorinated graphene thoroughly decomposed in the oxygen atmosphere (the final
mass remains about 1.5%) when compared to the nitrogen atmosphere. The DSC curve
in Figure 9b has one exothermic peak at 584.4 ◦C. Considering the previous discussion
on the thermal stability of fluorinated graphene and the AIMD results in Figure 8b,c, the
thermal oxidation characteristics of fluorinated graphene can be summarized as follows:
fluorinated graphene will firstly undergo its own thermal decomposition under the action
of heat, and then the thermal decomposition products will further interact with oxygen
molecules to achieve the oxidation of fluorinated graphene. This is obviously different
from the oxidation properties of graphene.
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3.3. Theoretical Analysis of the Influence of Graphene or Fluorinated Graphene on Nitroglycerin
3.3.1. The Calculation and Analysis of Binding Energy

The results relating to the binding energy of these structures (NG around the surface of
graphene, whole-fluorinated graphene and half-fluorinated graphene) at wB97M-V/def2-
TZVP in combination with counterpoise correction can be seen in Table 1.

Table 1. The binding energy at wB97M-V/def2-TZVP combined with counterpoise correction.

Graphene + NG Half-Fluorinated
Graphene + NG

Whole-Fluorinated
Graphene + NG

Binding energy −93.73 −59.09 −70.54

According to Table 1, the binding energy between NG and series graphene will
decrease after graphene is fluorinated, and the lower the fluorine content, the greater the
decrease in binding energy. In order to further understand the nature of the binding energy,
we conducted energy decomposition analysis based on the AMBER forcefield [48]. The
results are shown in Table 2.

Table 2. The results of the energy decomposition analysis based on the AMBER forcefield.

Graphene + NG Half-Fluorinated
Graphene + NG

Whole-Fluorinated
Graphene + NG

Electrostatic −1.31 −7.07 −8.56
Dispersion −162.12 −95.85 −112.09
Repulsion 69.67 35.41 38.43

Total −93.77 −67.52 −82.22

First of all, according to Table 2, the difference between the binding energy calculated
based on the AMBER forcefield and the binding energy in Table 1 is only about 10 kJ,
indicating that the result of energy decomposition based on the AMBER forcefield is
credible. Secondly, the dispersion interaction is dominant in “graphene + NG”. This is
caused by the π-π stacking between graphene and NG, in addition to the van der Waals
interaction, and can be verified by the discussion in Section 3.3.2 below. Finally, in “half-
fluorinated graphene + NG” and “whole-fluorinated graphene + NG”, the contribution
of electrostatic interaction is much higher than in the case of “graphene + NG”, and the
higher the F atoms content, the greater the contribution of electrostatic interaction, which is
due to F atoms with extremely high electronegativity.
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3.3.2. Interaction Analysis

In Figure 10, we plotted the interaction region indicator (IRI) [49] maps for these
structures (graphene + NG, half-fluorinated graphene + NG, whole-fluorinated graphene
+ NG) in order to graphically reveal their interaction regions. According to Figure 10a,
it is clear that there is a wide isosurface sandwiched between graphene and NG, which
reveals a strong π-π stacking feature. On the contrary, in the Figure 10b or Figure 10c, the
isosurface between the fluorinated graphene and NG exhibits intermittent characteristics
and only shows the characteristics of van der Waals interaction.
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Figure 11 shows the area where π-π stacking occurs in the localized molecular orbital
(LMO) [50] of graphene + NG. By plotting the isosurface of the localized orbital locator
(LOL) [51] of some π-LMOs, it visualizes the interaction between the π orbital of graphene
and the π orbital of the nitrate ester group in NG.
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3.3.3. The Influence of Fluorinated Graphene on Nitrated Nitrate Group

In this section, the strength of the nitrate groups in NG which belong to different struc-
tures (graphene + NG, half-fluorinated graphene + NG and whole-fluorinated graphene
+ NG) are discussed. The electron density difference between graphene (half-fluorinated
graphene and whole-fluorinated graphene) and NG are used to explain the difference
in strength.

Commonly, the integration of the electron localization function (ELF) [52] in overlap
spaces (ELF-OS) can be used to describe the strength of the bond [53], with a larger ELF-OS
value meaning a greater bond strength. Table 3 shows the ELF-OS value of O-NO2 in NG
which belong to different structures. The positions of O-NO2 are shown in Figure 2.
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Table 3. ELF-OS value of O-NO2 in different NG.

NG Graphene + NG Half-Fluorinated
Graphene + NG

Whole-Fluorinated
Graphene + NG

Left O-NO2 1.05 0.95 0.99 0.97
Middle O-NO2 0.98 0.98 0.99 0.98
Right O-NO2 1.03 0.95 0.98 0.97

In Table 3, the values of a single NG are regarded as reference. Through the compa-
ration, the following conclusions can be drawn: First of all, the introduction of graphene,
half-fluorinated graphene and whole-fluorinated graphene will slightly change the bond
strength of middle O-NO2, but it will weaken the bond strength of left O-NO2 and right
O-NO2 in NG, which is defined as the ester weakening effect. Secondly, comparing the
magnitude of this effect, graphene shows the strongest ester weakening effect, and half-
fluorinated graphene shows the weakest ester weakening effect. Finally, comparing the
ester weakening effect of half-fluorinated graphene and whole-fluorinated graphene, it can
be explained that the greater the fluorination degree, the stronger the ester weakening effect.
In order to further explain the mechanism of the ester weakening effect, electron density
difference maps were analyzed. Figure 12 shows the electron density difference maps.
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In Figure 12, the isovalue is 0.0007, the lime indicates the main area where the elec-
tron density increases, and the cyan indicates the main area where the electron density
decreases. It can be seen from Figure 12 that the graphene (half-fluorinated graphene,
whole-fluorinated graphene) is where the electron density increases, the O, N atoms of left
O-NO2 and right O-NO2 in NG is where the electron density decreases and the middle area
of NG exhibits polarized characteristics. However, it is worth noting that Figure 12a shows
extensive electron exchange (the main reason for this is π-π stacking), whereas Figure 12b,c
show weak electron exchange. The electron density difference maps explain that electron
exchange changes the bond strength of left O-NO2 and right O-NO2, and the wider the
electron exchange, the greater the decrease in bond strength.

In Section 3.3, the effects of graphene and fluorinated graphene on NG are studied via
theoretical calculations, and an important conclusion is that the F content in fluorinated
graphene results in significant differences in the effect of NG.

3.4. The Thermal Decomposition of the Composites

In this section, the thermal decomposition of the composites (graphene + absorbent
powder, fluorinated graphene + absorbent powder) is researched for the purpose of un-
derstanding the effect of fluorinated graphene on the thermal decomposition of nitrates.
TG-DSC and TG-DSC-FTIR-MS are used to achieve this.

Figure 13 presents the results of TG-DSC for composites. First of all, in the Figure 13a,
the TG curve for absorbent powder shows two-stage mass loss: 41.72% and 47.32%, respec-
tively. The DSC curve for absorbent powder first shows endotherm with a heat release of
−30.82 J/g, which corresponds to the melting of nitrocellulose in the absorbent powder,
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and it then exhibits exotherm with a heat release of 807 J/g with an exothermic peak
temperature of 198.6 ◦C, which corresponds to the decomposition of energetic substances.
Secondly, in Figure 13b, the TG curve for the graphene and absorbent powder composite
also shows two-stage mass loss: 26.77% and 36.55%, respectively. This is mainly caused
by the introduction of graphene with a better thermal stability. The DSC curve for the
graphene and absorbent powder composite also shows endotherm with a heat release of
−12.08 J/g at first, and it then shows exotherm with a heat release of 535.7 J/g and an
exothermic peak temperature of 198.1 ◦C. The main reason of the reduction of the heat
release is the introduction of graphene, which reduces the ratio of nitrocellulose and the
energy level of the composites. Finally, in Figure 13c, the TG curve for the fluorinated
graphene and absorbent powder composite shows three-stage mass loss: 9.45%, 15.57%
and 52.57%, respectively. The DSC curve for the fluorinated graphene and absorbent
powder composite shows two endothermic peaks, with the heat release being 78.08 J/g and
897.5 J/g, respectively, and the exothermic peak temperatures being 199.3 ◦C and 643.5 ◦C.
It does not show an obvious endothermic peak, which may be caused by the exotherm
of the initial decomposition of fluorinated graphene. It is worth noting that the DSC
curve in Figure 13c shows two-stage exotherm (199.3 ◦C, 643.5 ◦C). Considering Figure 13a
(198.6 ◦C) and Figure 6b (459.6 ◦C), the first exotherm is related to the decomposition of the
absorbent powder under the influence of fluorinated graphene, and the second exotherm is
connected to the further reaction of the small molecules from the absorbent powder with
the fluorinated graphene. Fluorinated graphene does not affect the decomposition of the
powder (the initial exothermic peak temperature is 199.3 ◦C), but it does greatly increase
the heat release of the composites.
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(b) Graphene + absorbent powder. (c) Fluorinated graphene + absorbent powder.

Figure 14 is the results of TG-DSC-MS-FTIR for composites. In Figure 14a,b, the MS
images only show a significant change at around 200 ◦C, so a FTIR image at 200 ◦C is given
in the lower right of Figure 14a,b respectively. However, for Figure 14c, the MS image also
shows changes at around 650 ◦C besides a significant change at around 200 ◦C, so FTIR
images at 200 ◦C and 650 ◦C are given in the lower right of Figure 14c. Firstly, the exothermic
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peak temperature of the TG-DSC curve in Figure 14 coincides with the peak temperature of
the TG-DSC in Figure 13. Secondly, Figure 14a,b show that the composites have the same
decomposition products and that these are mainly NxOy (x, y = 1, 2), CO and CO2. Finally,
Figure 14c shows two-stage mass loss, which is the same as in the discussion of Figure 13.
The products of the first stage are similar to the products in Figure 14a,b. The vibration
peak of the C-F bonds often shows at least two peaks located at 1050–1220 cm−1 [43,54]. In
Figure 14c, the FTIR image shows peaks at 1000–1300 cm−1 when the temperature is 650 ◦C,
and this corresponds to the vibration of C-F bonds produced during the decomposition of
the composite (fluorinated graphene + absorbent powder). According to the MS and FTIR
images in Figure 14c, the main products during the second stage decomposition are CO2
and fluorine-containing substances [55].
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4. Conclusions

In this paper, both the thermal stability and thermal oxidation of fluorinated graphene
and the effect of fluorinated graphene on the thermal decomposition of nitrate esters were
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studied via theoretical calculations and experiments, and the following four conclusions
were obtained.

(1) The thermal stability of fluorinated graphene is poor compared with graphene in
daily experiments.

(2) Fluorinated graphene is anaerobic, and the degree of anaerobicity increases as the
degree of fluorination increases.

(3) Fluorinated graphene influences the nitrate group in nitrate esters, and the deeper the
fluorination degree, the greater this influence is.

(4) Fluorinated graphene greatly increases the heat released during the decomposition of
the composites when it is added to the absorbent powder.

In the future, new preparation methods for FG-EM composites and theoretical cal-
culations will greatly promote the application of fluorinated graphene in the field of
energetic materials.
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