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G R A P H I C A L A B S T R A C T
� Compared to T7 RNAP, VSW-3 RNAP
reduces dsRNA byproducts.

� mRNA by VSW-3 RNAP exhibits higher
levels of protein expression than that by
T7 RNAP.

� VSW-3 RNAP does not need modified
nucleotides for mRNA production.
A B S T R A C T

In vitro preparation of mRNA is a key step for mRNA therapeutics. The widely used T7 RNA polymerase (RNAP) was shown to have many by-products during in vitro
transcription (IVT) process, among which double-stranded RNA (dsRNA) is the major by-product to activate the intracellular immune response. Here, we describe the
use of a new VSW-3 RNAP that reduced dsRNA production during IVT and the resulting mRNA exhibited low inflammatory stimulation in cells. Compared to T7 RNAP
transcripts, these mRNA exhibited superior protein expression levels, with an average of 14-fold increase in Hela cells and 5-fold increase in mice. In addition, we
found that VSW-3 RNAP did not require modified nucleotides to improve protein production of IVT products. Our data suggest that VSW-3 RNAP could be a useful tool
for mRNA therapeutics.
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1. Introduction

mRNA therapeutics has been developed for decades with a number of
ongoing clinical trials (Beck et al., 2021). Recently, mRNA vaccines were
developed to mitigate SARS-CoV-2 pandemic (Corbett et al., 2020;
Jackson et al., 2020; Laczko et al., 2020). The design and production of
clinical-scale vaccines in a short period of time has proved utility of
mRNA therapeutics, which refers to the delivery of mRNA into cells and
the expression of functional proteins for therapeutic purpose (Pardi et al.,
2020; Sahin et al., 2014; Xu et al., 2020). At present, in vitro transcription
(IVT) is the method to obtain large-scale mRNA, and T7 RNA polymerase
(RNAP) is mostly used for IVT (Borkotoky and Murali, 2018; Sahin et al.,
2014). When the unpurified mRNA is introduced into cells or animals,
the presence of double-stranded RNA (dsRNA) as by-product of IVT ac-
tivates cytoplasmic sensors including RIG-I and MDA5 (Luo et al., 2011;
Mu et al., 2018; Pichlmair et al., 2009). These reactions limit the per-
formance of transfected mRNA through translation suppression and RNA
degradation (Chitrakar et al., 2021; Sahin et al., 2014). Although RNA
Fig. 1. Expression of GFP and Flu mRNA in HEK239T and Hela cells. (A) Green
points after transfection. (B) Flow cytometry was applied to detect the green fluoresc
and median fluorescence intensity was determined. (C) Twenty hours after transfect
were determined by flow cytometry. (D) Twenty hours after transfection of GFP mRN
was calculated. (E) The Flu mRNA produced by VSW-3 or T7 RNAP were transfected
different time points. (F) Flu mRNA transcribed by VSW-3 or T7 RNAP were transfect
after transfection of mRNA. Data are shown as mean � SD. n referred to the numbers
used. **p < 0.01, ***p < 0.001.
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purification methods including HPLC and Ribonuclease III digestion
work well in small-scale preparations, these methods are not straight-
forward to scale-up for mass-production (Kariko et al., 2011; Weissman
et al., 2013). The cellulose-based method is easy to scale up, but a large
portion of mRNA could be lost during this process (Baiersdorfer et al.,
2019; Pardi et al., 2020). Therefore, reducing the formation of dsRNA
during transcription process is suitable to large-scale preparation of
mRNA.

Recently, a new RNAP from the Pseudomonas fluorescens (P. fluo-
rescens) bacteriophage VSW-3 was characterized (Zhang et al., 2017).
The promoter of this VSW-3 RNAP was identified, and RNA can be effi-
ciently produced by this RNAP at room temperature (25 �C) (Xia et al.,
2020). Here, we describe that this VSW-3 RNAP significantly reduced the
production of dsRNA without the need of incorporation of modified
nucleotides during IVT, and the resulting mRNA achieved a higher
expression level and lower innate immune response in cells and rodents
than mRNA by T7 RNAP.
fluorescence signals were detected by fluorescence microscopy at various time
ence signals of HEK293T cells at various time points after transfection of mRNA,
ion of GFP mRNA into HEK293T and Hela cells, the ratios of GFP-positive cells
A into HEK293T (n ¼ 14) and Hela (n ¼ 10) cells, the MFI of GFP-positive cells
into HEK293T cells, and relative light unit (RLU) of luciferase was determined at
ed into HEK239T (n ¼ 8) and Hela (n ¼ 5) cells. The RLU were detected at 20 h
of batches of mRNA transcripts prepared by VSW-3 or T7 RNAP. Paired t-test was
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2. Results

2.1. The mRNA produced by VSW-3 RNAP has higher expression in cells
than those by T7 RNAP

We found that GFP mRNA produced by IVT using VSW-3 RNAP had a
higher expression level than that using T7 RNAP (Fig. 1A and B). The
flow cytometry analysis and fluorescencemicroscopy showed that VSW-3
RNAP's transcription product had higher expression than that of T7
RNAP in the time course from 1 to 24 h in HEK293T cells (Fig. 1A and B).
The VSW-3 group had more GFP-positive cells and higher median fluo-
rescence intensity (MFI) than T7 group in both HEK293T cells and Hela
cells (Fig. 1C and D). Strikingly, the expression level of GFP mRNA
transcribed by VSW-3 was about 3 and 8 folds higher than that of T7
group in HEK293T cells and Hela cells, respectively (Fig. 1D). We
observed similar trend of GFP expression in several other cell lines
including N2A and RAW264.7 (data not shown). The firefly luciferase
(Flu) mRNA had similar performance in HEK293T and Hela cells as GFP
mRNA by VSW-3 or T7 RNAP (Fig. 1E and F).
2.2. The mRNA produced by VSW-3 RNAP has better expression in vivo
than those by T7 RNAP

To compare mRNA transcribed by VSW-3 and T7 RNAP in vivo, we
encapsulated each Flu mRNA in lipid nanoparticles (LNP). LNP encap-
sulated each mRNA showed similar particle size (VSW-3 LNP: Z-
average ¼ 66.7 nm, the polydispersity index (PDI) ¼ 0.145; T7 LNP: Z-
average ¼ 63.0 nm, PDI ¼ 0.129) and encapsulation rate (VSW-3
LNP:94.0%; T7 LNP:97.5%) (Fig. 2A and B). We determined expression
of Flu in vivo 6 h after LNP injection into mice. The expression level of Flu
mRNA in VSW-3 group was 5 folds higher than that in T7 group (Fig. 2C
and D).
Fig. 2. The expression levels of Flu mRNA produced by VSW-3 or T7 RNAP in mi
Flu mRNA-LNP particles in VSW-3 group and T7 group. (C) Flu mRNA-LNP prepared b
injected with normal saline. Six hours after injection, the mice were anesthetized for i
The Luciferase intensity of the VSW-3 and the T7 group were compared. Data are sh
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2.3. VSW-3 RNAP's mRNA products induce lower inflammation than
those by T7 RNAP due to less dsRNA byproducts

We compared GFPmRNA obtained by these two RNAP using different
transcription buffers (the transcription buffer corresponding to VSW-3,
named as VSW-3 buffer and the New England Biolabs RNAPol Reaction
Buffer, #B9012S, named as NEB T7 buffer). Compared with NEB T7
buffer, VSW-3 buffer has higher MgCl2 content (16 mM vs 6 mM). In
HEK293T cells, the mRNA transcribed by VSW-3 RNAP has a higher
expression level using both buffers than T7 using respective ones during
IVT (Fig. 3A).

After HEK293T cells were transfected with each mRNA for 20 h, the
expression levels of dsRNA related recognition receptors RIG-I andMDA5
were 87 and 48 folds higher in T7 group than those in the VSW-3 group,
and IFN-β was more than 300 folds higher in T7 group (Fig. 3B, Sup-
plementary Table 1). Therefore, we reasoned that dsRNA could be the
reason for the difference in protein expression by transfected mRNA
between these two groups. We used dot blot assay that applied J2
monoclonal antibody to recognize dsRNA. We found that GFP, Flu and
coagulation factor IX (F9) mRNA transcribed by T7 RNAP contained
more dsRNA than those by VSW-3 RNAP (Fig. 3C, Fig. S1A). After pu-
rification by HPLC, the dsRNA in GFP mRNA by T7 RNAP was substan-
tially decreased (Fig. 3D. Fig. S1B). The T7 RNAP produced, HPLC
purified GFP mRNA generate comparable MFI of GFP as that by VSW-3
RNAP (Fig. 3E).
2.4. Effects of modified nucleotides on protein production

Incorporation of modified nucleotides into mRNA by T7 RNAP has
been shown to reduce the activation of immune responses (Kariko et al.,
2005; Richner et al., 2017). We investigated the effects of modified nu-
cleotides on mRNA by VSW-3 RNAP. Three widely used modified
ce. (A) Schematic diagram of Flu mRNA-LNP preparation. (B) Size distribution of
y VSW-3 or T7 were injected into mice via tail vein. Animals in mock group were
maging, and regions of interest (ROI) were determined by amiview software. (D)
own as mean � SD. Unpaired t-test was used. **p < 0.01, n ¼ 5.



Fig. 3. The dsRNA byproducts in mRNA produced by the VSW-3 or T7 RNAP. (A) The IVT buffer of VSW-3 and NEB (#M0251S) were used to produce GFP mRNA
which was transfected into HEK293T cells, and the MFI of GFP-positive cells was determined by flow cytometry. (B) Twenty hours after transfection, the expression
levels of RIG-I, MDA5, and IFN-β in HEK293T cells were determined by qPCR. The negative control group was transfection agent treated only. (C) Dot blot analysis of
dsRNA of GFP, Flu and F9 mRNA produced by VSW-3 or T7 RNAP. (D) Dot blot analysis of dsRNA in GFP mRNA with or without HPLC purification. For the dot blot
analysis, 0.1 μg of RNA was loaded for each mRNA. (E) The expression of GFP mRNA with or without HPLC purification in HEK293T cells were determined by flow
cytometry. n ¼ 3 for A, B and n ¼ 4 for E, n refers to the numbers of batches of mRNA transcripts prepared by VSW-3 or T7 RNAP. Data are shown as mean � SD.
Paired t-test was used. *p < 0.05, **p < 0.01, ***p < 0.001.
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nucleotides, 5-methylcytidine (5mC), 5-methoxyuridine (5moU), and
pseudouridine (Ψ) were incorporated them into the transcription process
in proportions of 1/4, 2/4, 3/4, and 4/4. The purity of GFP mRNA
products synthesized by T7 RNAP was improved by incorporation of
5moU and Ψ in T7 group (Fig. S1C). We performed dot blot assay for
these mRNAs. In T7 group, the imprinting after incorporation of 5moU
but not 5mC or Ψ substantially decreased, and no imprinting was
observed in the VSW-3 group with or without modified nucleotides
(Fig. 4A). These GFP mRNAs were transfected into Hela cells and
analyzed by flow cytometry. As the proportion of modified nucleotides
increased in transcribed mRNA, the 5mU or Ψ modification could in-
crease GFP expression in Hela cells of T7 RNAP group (Fig. 4B–E). Ψ
modification has shown to increase mRNA production by reducing acti-
vation of RNA-dependent protein kinase (Anderson et al., 2010).
Compared with unmodified nucleotides, the MFI of all of these modified
GFP mRNA in VSW-3 group decreased (Fig. 4E). The similar results of
were observed in HEK293T cells and using Flu mRNA (Figs. S1D–F).
Recently, a thermostable T7 RNAP mutant named TsT7 (Hi-T7 RNA
polymerase) was engineered, and this T7 mutant reduced dsRNA
byproducts in IVT (Wu et al., 2020). We compared Flu mRNA transcribed
by TsT7 and VSW-3 RNAP. Flu mRNA by VSW-3 RNAP exhibited near 2
folds higher protein production than that by TsT7 RNAP in HEK293T
cells (Fig. S2A). Dot blot assay indicated that the dsRNA in Flu mRNA by
VSW-3 RNAP was less than that by HsT7 RNAP (Figs. S2B–C).
4

3. Discussion

In this study, we demonstrate that IVT using VSW-3 RNAP yields
mRNA products with fewer dsRNA by-products than T7 RNAP, thereby
causing higher protein expression and lower immunogenicity in cells
than mRNA produced by T7 RNAP.

IVT-derived dsRNA can be removed by HPLC purification or cellulose
column (Baiersdorfer et al., 2019; Kariko et al., 2011). During these
processes, a large portion of the transcript is lost (Pardi et al., 2020).
Moreover, in HPLC purification process, toxic reagents such as acetoni-
trile are used. The transcription products of VSW-3 have low level of
dsRNA by-products. It might save the step of removing dsRNA.

Incorporation of modified nucleotides in IVT reduces immunoge-
nicity of transcripts and improves mRNA translation capacity (Andries
et al., 2015). However, incorporation of modified nucleotides reduced
the expression of mRNA produced by VSW-3 RNAP (Fig. 4E, Figs. 1E–F).
Using modified nucleotides in IVT could be a double-edged sword (Lu
et al., 2020; Vaidyanathan et al., 2018). Incorporation of modified nu-
cleotides in mRNA can assist to avoid activating innate immunity but
interfere with the mRNA translation process to a certain extent (Thess
et al., 2015). Because T7 RNAP's by-products activate a strong immune
response, the consequence of compromising translation may be masked
by effects of modified nucleotides on evading immunity (Kormann et al.,
2011; Vaidyanathan et al., 2018). While modified nucleotides could not



Fig. 4. Incorporation of modified nucleotides for mRNA by VSW-3 or T7 RNAP. (A) Dot-blot analysis of dsRNA signals in GFP mRNA synthesized by T7 or VSW-3
RNAP with modified nucleotides of different proportions (1/4, 2/4, 3/4, 4/4 indicated proportion of modified nucleotides used in IVT). GFP mRNA purchased from
Trilink (L-7601) and unmodified GFP mRNA generated by T7 RNAP were served as controls. For the dot blot analysis, 0.1 μg of RNA was loaded for each mRNA. (B–E)
The expression of mRNA with various modifications produced by T7 or VSW-3 RNAP in Hela cells was determined by flow cytometry. Flow cytometry charts were
shown in B–C. The percentages of GFP-positive cells and MFI were shown in D-E. Data are shown as mean � SD, n ¼ 3. One-way ANOVA and Dunnett's multiple
comparisons test were used. *p < 0.05, **p < 0.01, ***p < 0.001.
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further reduce the immunogenicity of mRNA produced by VSW-3 RNAP,
the effect of suppression translation by modified nucleotides stands out
(Fig. 4 and Fig. S2).

In conclusion, mRNA produced by VSW-3 RNAP has less dsRNA and
higher ability of protein expression than those by T7 RNAP. VSW-3 RNAP
could be a convenient tool for both research and mRNA therapeutics.

4. Materials and methods

4.1. IVT mRNA synthesis

The transcription template was amplified by PCR from the plasmid
encoding GFP, Flu and F9 (Supplementary Tables 1-2). T7 RNA poly-
merase (#M0251S), Hi-T7 RNA polymerase (#M0658S) and VSW-3 RNA
polymerase were used for in vitro transcription to obtain the corre-
sponding mRNA. DNase I was used to remove the DNA template, and the
resulting mRNA was purified by Monarch RNA Cleanup Kit (New En-
gland Biolab). The mRNA was enzymatically capped (Vaccinia Capping
System, New England Biolab), and the poly A tail was added using E. coli
Poly(A) enzyme (New England Biolab). The HPLC purification was per-
formed as previously described (Kariko et al., 2011). For synthesis of GFP
mRNA bearing modified nucleosides, the transcription reaction was
carried out with the replacement of rNTPs with the corresponding pro-
portion of modified nucleotide. Each nucleotide including their modified
ones were present at final concentration of 4 mM in IVT.

4.2. Cell transfection

Human embryonic kidney 293T cells (HEK293T) and Hela were ob-
tained from ATCC. HEK293T cells were cultured in DMEM (Gibco) sup-
plemented with L-glutamine and 10% fetal bovine serum. Hela cells were
cultured in DMEM/F12 medium supplemented with 10% fetal bovine
serum. The cells were tested using PCR to confirm free of mycoplasma
contamination.

HEK293T or Hela cells were cultured in 24-well plates and transfected
by lipofectamine 2000 (Thermo Fisher Scientific) (1.5 μL lipofectamine
2000 and 500 ng mRNA). Flow cytometry was performed at 20 h after
transfection to determined GFP expression. The activity of Firefly lucif-
erase was determined by Luciferase Assay Systems E1500 (Promega).

4.3. Formulation of lipid nanoparticles

The ionizable lipid c12-200, cholesterol, C14-PEG 2000, DOPE (1,2-
allyl-sn-glycerol-3-phosphoethanolamine) were mixed at molecular ratio
of 35:46.5:2.5:16. The lipid mixture and mRNA were formulated into
LNP by microfluidic control. The particle sizes, mRNA concentration, and
encapsulation efficiency were determined as previously described (Yin
et al., 2016).

4.4. Animal experiments

All animal studies were approved by the Animal Care and Ethical
Committee at Wuhan University. The prepared mRNA encapsulated in
LNP was injected into 7–8 weeks old mice through the tail vein (1 mg/
kg). D-luciferin potassium salt solution was intraperitoneally injected 6 h
later LNP treatment (Ramaswamy et al., 2017). The mice were imaged
after anesthesia and region of interest (ROI) were counted, and the ROI
were determined by amiview software.
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