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Abstract

The cardiomyopathies are a group of heart muscle diseases which can be inherited (familial). Identifying potential disease-
related proteins is important to understand mechanisms of cardiomyopathies. Experimental identification of
cardiomyophthies is costly and labour-intensive. In contrast, bioinformatics approach has a competitive advantage over
experimental method. Based on ‘‘guilt by association’’ analysis, we prioritized candidate proteins involving in human
cardiomyopathies. We first built weighted human cardiomyopathy-specific protein-protein interaction networks for three
subtypes of cardiomyopathies using the known disease proteins from Online Mendelian Inheritance in Man as seeds. We
then developed a method in prioritizing disease candidate proteins to rank candidate proteins in the network based on
‘‘guilt by association’’ analysis. It was found that most candidate proteins with high scores shared disease-related pathways
with disease seed proteins. These top ranked candidate proteins were related with the corresponding disease subtypes, and
were potential disease-related proteins. Cross-validation and comparison with other methods indicated that our approach
could be used for the identification of potentially novel disease proteins, which may provide insights into cardiomyopathy-
related mechanisms in a more comprehensive and integrated way.
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Introduction

The cardiomyopathies are the myocardial disorders in which

the heart muscle (or myocardium) is structurally and functionally

abnormal, but there are not coronary artery disease, hypertension,

valvular disease and congenital heart disease [1]. The cardiomy-

opathies can be classified into five subtypes: (i) hypertrophic

cardiomyopathy (HCM), in which a portion of the myocardium is

hypertrophied (thickened), and the heart has to work hard to

pump blood [2]; (ii) arrhythmogenic right ventricular cardiomy-

opathy (ARVC), characterized by a predominant right ventricular

replacement of the myocardium by partial or total adipose or

fibroadipose tissue and ventricular arrhythmias [3]; (iii) dilated

cardiomyopathy (DCM), in which the heart becomes larger

(dilated), and is unable to pump blood efficiently [4]; (iv) restrictive

cardiomyopathy (RCM), a rare form, in which the heart involves

impaired diastolic filling with blood [5]; and (v) unclassified [6,7].

Most cardiomyopathies are autosomal dominantly inherited. X-

linked, autosomal recessive, and mitochondrial inheritance have

also been reported [8]. Some environmental factors have been

shown to cause cardiomyopathies, such as dietary salt exacerbates

[9], abuse of alcohol, cocaine or antidepressant medications [10].

Since cardiomyopathies are major causes of morbidity and

mortality and proteins are impacted by most disease-related

mutations and conduct functions finally, the identification of

disease-related proteins is very important for understanding

mechanisms of cardiomyopathies development.

Genome-wide linkage and association studies have identified

chromosomal regions which contain hundreds of candidate genes

associated with these genetic diseases [11]. It still remains a big

challenge to identify the potential proteins associated with genetic

diseases using experimental methods with up-to-date technologies.

Thus, computational predictions or candidate prioritizations of

candidate proteins become attractive and draw much attention to

researchers since they are cheap and effortless [12]. In recent

years, identifying candidate genes of complex diseases was mainly

based on biochemical networks such as metabolic networks [13],

transcriptional regulatory networks [14], and protein-protein

interaction (PPI) networks (PPINs) [15], which can be obtained

at a large scale via high-throughput screening [16]. Several

algorithms have been developed to utilize PPINs for mining or
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prioritizing potential disease candidate genes to understand

genetic diseases [17–28] since the candidate genes related to

specific (or similar) disease phenotypes tend to be located in a

‘‘local neighborhood’’ in the PPIN [29–31]. For example, Chen

et al. developed a computational method to rank candidate genes

for Alzheimer Disease (AD) based on an initial list of AD-related

genes and public human PPI data [32]. DADA was built up as a

suite to prioritize disease candidate genes accounting for the

degree distribution of known disease and candidate genes, using a

PPI network [33]. ToppGene and ToppNet were online candidate

gene prioritization tools with high reliability based on functional

similarity or network analysis in PPIN [23]. These algorithms take

a set of seed proteins (genes known to be associated with the

disease of interest), candidate proteins (genes in linkage intervals

for the disease, genomic regions that has been associated with the

disease, of interest or neighbors of seed proteins in PPINs), and a

human PPIN as input. They use PPIs to infer the relationship

between seed and candidate proteins, followed by ranking the

candidate proteins according to the inferred relationships. Since

the proteins with direct interactions tend to have the same or

similar functions [34], called ‘‘guilt by association’’ [35], disease-

related PPIN and functional similarities of protein pairs can be

used to predict disease-related proteins more accurately.

In this study, we proposed a method in prioritizing disease

candidate proteins to rank each protein in the network based on

‘‘guilt by association’’ analysis. At first, we obtained the seed

proteins of DCM, HCM and ARVC from Online Mendelian

Inheritance in Man (OMIM, http://www.ncbi.nlm.nih.gov/

omim) [36] (other two subtypes, RCM and unclassified, were

neglected since their disease genes in OMIM were very rare). We

then built cardiomyopathy (DCM, HCM or ARVC)-specific

PPINs composed of seed proteins and their direct neighbors

(candidate proteins) from human PPI data in the STRING

database [37]. Secondly, we combined the functional similarity of

Gene Ontology (GO, http://www.geneontology.org/) [38] with

protein interaction confidence to weigh each interacting protein

pair in cardiomyopathy-specific PPINs. Subsequently, we mea-

sured the disease relevance score for each protein by adding

interaction confidence and functional similarity of its neighbors

and subtracting the likely effect of its interacting proteins. Finally,

we took the proteins ranked at top of each candidate list in

descending order of disease relevance score as potential disease-

related proteins followed by leave-one-out cross-validation

(LOOCV) and comparison with Chen’s protein ranking method,

DADA, ToppGene and ToppNet.

Materials and Methods

We presented a method in prioritizing disease candidate

proteins to rank candidate cardiomyopathies proteins based on

‘‘guilt by association’’ analysis (Figure 1). Pathway enrichment

analysis was then conducted to examine the relevance between the

proteins at the top of each ranked list and cardiomyopathies. At

last, the proposed method was compared with other methods to

test its performance.

Screening of Seed Proteins of Cardiomyopathies
The disease-related genes of three subtypes of cardiomyopathy

were obtained from OMIM. As a result, 33 DCM, 24 HCM, and

9 ARVC genes were selected as seed genes, respectively. These

genes were further converted into their corresponding standard

symbols by using the HUGO Gene Nomenclature Committee

(HGNC) database (http://www.genenames.org) [39] (Table 1)

and seed proteins were generated as referred to the proteins

corresponding to these seed genes.

Construction of Weighted Cardiomyopathy-specific
PPINs

The method of the nearest-neighbor expansion was applied to

obtain the direct neighbors of seed proteins of DCM, HCM and

ARVC from human PPI data in the STRING database [37]

(version 8.3). To be more comprehensive, all the interaction

relationships of seed proteins were kept as original ones from

STRING. DCM, HCM and ARVC-specific PPINs were built. As

a result, 5624, 3869, 2173 nodes and 14569, 8972, 3003 edges

were generated, respectively. Direct neighbors of seed proteins in

these cardiomyopathy-specific PPINs were considered as the

candidate proteins of three cardiomyopathy subtypes.

Two weights were used to measure each protein interaction (i.e.

each edge of the network). The first weight is the confidence score

P from STRING [40], and the second one is the functional

similarity G by combining functional enrichment analysis of GO.

The functional similarity G was computed by employing an R

package GOSim [41], which ranged from 0 to 1 according to GO

annotations. Finally, the edge-weighted cardiomyopathy (DCM,

HCM or ARVC)-specific PPINs were constructed.

Calculation of Disease Relevance Score Based on ‘‘Guilt
by Association’’ Analysis

We presented a method in prioritizing disease candidate

proteins to measure the relevance of each candidate protein to a

disease in each cardiomyopathy-specific PPIN. In this method, the

relevance between a protein and seed proteins in its neighborhood

was estimated by ‘‘guilt by association’’ effects of seed proteins to

candidate proteins, i.e. connectivity, interaction confidences and

functional similarities of each protein in cardiomyopathy-specific

PPINs. Briefly, the disease relevance score of one protein was

measured by adding interaction confidence and functional

similarity of its neighbors and by subtracting the effect of

promiscuous connections between this protein and its interacting

proteins. A disease relevance score Si for each protein i in each

cardiomyopathy-specific PPIN was calculated as follows:

Si~ exp
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: ln

P
j[N ið Þ
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where i and j represent two proteins; kp and kg are empirical

constants (kp~7 and kg~1 were set up after screening them from

all combinations of kp and kg from 1 to 10, respectively. LOOCV

was used to identify constants and to reduce overfit bias); N ið Þ is

the set of proteins interacting with i in the cardiomyopathy-specific

PPIN; P i,jð Þ is the interaction confidence score of protein pair i

and j; G i,jð Þ is the functional similarity value of protein pair i and j;

and C i,jð Þ is 1 if protein j belongs to the cardiomyopathy-specific

PPIN (or 0 otherwise). The score Si ranks higher in the situations

where there are more interacting proteins, higher confidence

interactions and functional similarities with seed proteins among

its neighbors.

Each candidate protein in the network was ranked by

descending order of Si, and the performance of these prioritiza-

tions was assessed.

Prioritizing Disease Candidate Proteins
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Pathway Analysis of Top Ranked Candidate Proteins
To further examine the functional relevance between the

candidate proteins that were ranked at the top of each ranked list

and cardiomyopathies, KEGG pathway enrichment analysis was

applied for top 50 candidate proteins using the Functional

Annotation Tool in DAVID Bioinformatics Resources 6.7

(http://david.abcc.ncifcrf.gov/) [42,43]. P value less than 0.05

was considered as significance.

Assessment of the Developed Method Prioritizing
Disease Candidate Proteins

LOOCV was applied to assess the developed method. For all

seed proteins, one protein was removed as a test protein at each

time, and was added to candidate proteins. Cardiomyopathy-

specific PPINs were then reconstructed using the newly generated

sets of seed proteins and their direct neighbors. All the candidate

proteins were ranked by the developed method to determine the

rank of the test protein. This procedure was repeated until all the

seed proteins were used up as test proteins. In the end, the result

generated by our method was compared with those of Chen’s

protein ranking method, DADA, ToppGene and ToppNet using

the same seed and candidate proteins as our method did.

To compare these methods, receiver operating characteristic

(ROC) curves were plotted by sensitivity and specificity values of

prioritizations. Sensitivity refers to the percentage of the removed

seed proteins which were ranked over a particular threshold.

Specificity refers to the proportion of non-test proteins which were

ranked below the threshold [44]. The area under curve (AUC) is a

standard measure of performances of these methods.

At last, we analyzed the top 50 candidate proteins obtained by

our method and compared them to ones obtained from Chen’s

protein ranking method, which had the best performance among

the methods used to compare with our method, to further assess

the performance of our method by literature review from the

PubMed database.

Results

Prioritizations of Cardiomyopathies’ Candidate Proteins
Based on ‘‘Guilt by Association’’ Analysis

We used our developed method to calculate disease relevance

scores of all candidate proteins and rank them in each of

cardiomyopathy-specific PPINs. To examine the effectiveness of

our disease relevance scores in ranking disease proteins, scores of

seed proteins were also calculated, and compared with those of

candidate proteins. It was found that scores of all seed proteins

were larger than those of candidate proteins. We then focused on

the relevance between candidate proteins ranked at the top of the

ranked list and the corresponding disease. Top 50 DCM candidate

proteins were identified and listed in Table 2.

In these candidate proteins, 9 out of 50 have been reported to

be DCM-related proteins (as shown in Table 2) in literature using

the PubMed database. For example, TMPP could be a promising

drug for prevention and treatment of DCM since it reduces

expression of ACTA1 and CALM1 in the DCM heart [45].

TMOD1 was shown to be over-expressed and associated with

DCM in juvenile mice [46]. CAV3 was found to be mutated in

two patients with DCM [47,48]. Protein levels of CKM activity

were found to decrease in DCM patients [49]. Histopathological

analysis of the mutant mice with disruption of the gene

ZMPSTE24 revealed DCM [50]. Statistically elevated frequency

of HLA-DR4 allele was found in patients with DCM compared

with ones in controls [51,52]. DYSF generally resulted in mild

cardiac abnormalities to severe DCM [53]. The rest of our

potential disease proteins (41) were not directly associated to DCM

in literature review. However, 7 of them may be related to the

processes associated with DCM since these candidate proteins

Figure 1. The workflow of our method in prioritizing disease candidate proteins. First, cardiomyopathy (DCM, HCM or ARVC)-specific
PPINs were constructed, which were composed of seed proteins and their direct neighbors (candidate proteins) from human PPIN. Secondly, two
weights (interaction confidence scores and functional similarities) were used to measure each protein interaction. The disease relevance score of each
protein was measured by using these weights. Finally, the proteins ranked at top of each candidate list in descending order of disease relevance score
were taken as potential disease-related proteins.
doi:10.1371/journal.pone.0071191.g001

Prioritizing Disease Candidate Proteins
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were directly associated to other types of cardiomyopathies, such

as HCM (e.g. MYL2 and MYL3 [54,55]). Four proteins (GJA1,

TPM2, GJA5 and C1QBP) were related with cardiac arrhythmias,

cardiac dysfunction and cardiac cell damage, and might also be

responsible for DCM [56–58]. More experiments are needed to

study their associations with DCM.

For HCM-specific PPIN and ARVC-specific PPIN, top 50

candidate proteins were identified and their relevance with

cardiomyopathies was listed in Table S1 and S2, respectively. It

demonstrated that the most of top 50 candidate proteins identified

in our method were associated with cardiomyopathies (Table 2,

Table S1, and S2).

We searched cardiomyopathy seed proteins and top 50

candidate proteins in their corresponding disease pathways in

KEGG. Four candidate proteins were found in DCM pathway

(Figure 2), one of which (DAG1) have been validated to be a

DCM-related protein in an investigation of glycosylation pathways

in biopsied heart tissue due to autosomal recessive mutations

[59,60].

Although MYL2 and MYL3 have not been validated to be

directly associated to DCM, their relationships with other

cardiomyopathies have been mentioned in literature. They encode

sarcomere proteins that cause adult-onset cardiomyopathies when

mutated [54,55], and may cause DCM eventually.

ACTG1 was shown to link to the seed gene DMD and

sarcomere, two important factors of DCM in the DCM pathway

[61,62]. There is no evidence about the relationship between

ACTG1 and cardiomyopathies and more studies are needed.

Moreover, five and seven candidate proteins in HCM and

ARVC pathways were found, respectively. One from each

pathway has been validated to be disease proteins, respectively

(Figure S1 and S2). These results demonstrated that our method in

prioritizing disease candidate proteins could provide a new

alternative for researchers to predict novel disease proteins, i.e.

the top ranked candidate proteins without literature review.

Pathway Analysis of the Top Ranked Candidate Proteins
KEGG pathway enrichment analysis (p,0.05) was performed

for the top 50 candidate proteins to illustrate the relationships

between disease pathways of three subtypes of cardiomyopathies

and other pathways (Figure 3, Figure S3, and S4). It was shown

that DCM disease pathway was related to both HCM and ARVC

pathways. DCM-related pathways that DCM seed genes enriched

in were in the inner space (Figure 3).

We surveyed relationships between the DCM pathway and

other pathways using literature from the PubMed database. It was

found that reduced focal adhesion kinase-S910 phosphorylation

might contribute to sarcomere disorganization in DCM [63],

suggesting direct regulation of focal adhesion to DCM. STC1,

which was up-regulated in DCM, effectively blocked down-

regulation of endothelial tight junction proteins at both mRNA

and protein levels [64]. Moreover, deregulation of proteins of

carbohydrate metabolism, the actin cytoskeleton, and extracellular

matrix remodeling were observed in DCM patients [65]. The

association between Escherichia coli infection and DCM was

established in a patient who was diagnosed as DCM after the onset

of hemolytic uremic syndrome caused by pathogenic Escherichia

coli infection [66]. In addition, leukocyte transendothelial migra-

tion was found to be pivotal to the inflammatory response [67],

which could lead to direct injury or severe host disease, such as

DCM [68].

Assessment of the Developed Method
To assess the performance of our method, we compared our

method with Chen’s protein ranking method, DADA, ToppGene

and ToppNet using LOOCV. ROC curves were then plotted to

demonstrate performances of these methods for DCM. It was

found that our method reached a higher AUC score (0.963) than

Chen’s protein ranking method (0.956), DADA (0.854), Topp-

Gene (0.884) and ToppNet (0.741), indicating that our method

was more sensitive and specific in ranking the test proteins. The

performances of these five methods were also compared for HCM

and ARVC, and similar results were obtained (Table 3), except

that DADA was better only for HCM. These results demonstrated

that our method had a better overall performance.

To further test the performance of our method, top 50

candidate proteins from our method were compared with those

from Chen’s protein ranking method by literature review. The

result for DCM was shown in Figure 4. We found 36 proteins in

both protein sets, in which 8 were confirmed to be DCM-related

Table 1. Official symbols of seed genes of DCM, HCM and
ARVC.

DCM HCM ARVC

Seed genes/ NEXN (Q0ZGT2*) NEXN (Q0ZGT2) RYR2 (Q92736)

proteins LMNA (P02545) TNNT2 (P45379) TMEM43 (Q9BTV4)

TNNT2 (P45379) TTN (Q8WZ42) RPSA (P08865)

PSEN2 (P49810) CAV3 (P56539) DSP (P15924)

ACTN2 (P35609) MYL3 (P08590) PKP2 (Q99959)

TTN (Q8WZ42) TNNC1 (P63316) TGFB3 (P10600)

DES (P17661) MYOZ2 (Q9NPC6) JUP (P14923)

SCN5A (Q14524) SLC25A4 (P12235) DSC2 (Q02487)

TNNC1 (P63316) MYO6 (Q9UM54) DSG2 (Q14126)

SDHA (P31040) PLN (P26678)

SGCD (Q92629) PRKAG2 (Q9UGJ0)

DSP (P15924) VCL (P18206)

PLN (P26678) COX15 (Q7KZN9)

EYA4 (O95677) CSRP3 (P50461)

GATAD1 (Q8WUU5) MYBPC3 (Q14896)

FKTN (O75072) MYL2 (P10916)

VCL (P18206) MYH6 (P13533

LDB3 (O75112) MYH7 (P12883)

RBM20 (Q5T481) ACTC1 (P68032)

BAG3 (O95817) TPM1 (P09493)

CSRP3 (P50461) CALR3 (Q96L12)

MYBPC3 (Q14896) TNNI3 (P19429)

ABCC9 (O60706) MYLK2 (Q9H1R3)

TMPO (P42166) JPH2 (Q9BR39)

MYH6 (P13533)

MYH7 (P12883)

PSEN1 (P49768)

ACTC1 (P68032)

TPM1 (P09493)

TCAP (O15273)

DSG2 (Q14126)

TNNI3 (P19429)

DMD (P11532)

*Accession number of the corresponding protein.
doi:10.1371/journal.pone.0071191.t001

Prioritizing Disease Candidate Proteins

PLOS ONE | www.plosone.org 4 August 2013 | Volume 8 | Issue 8 | e71191



Table 2. Top 50 candidate proteins from DCM-specific PPIN.

Protein* Accession number Rank Disease relevance score Relevance Literature

MYL2 P10916 1 107629670.500 cardiomyopathy [54,55]

MYL3 P08590 2 73161485.690 cardiomyopathy [54,55]

TNNI1 P19237 3 52203517.710

MYH14 Q7Z406 4 45310956.140

NEB P20929 5 44470968.060

TNNI2 P48788 6 29830367.350

GJA1 P17302 7 24199871.590 cardiac arrhythmias [56]

ACTA1 P68133 8 23568069.020 DCM [45]

MYL1 P05976 9 19532022.970

TNNC2 P02585 10 18200557.600

TPM2 P07951 11 17743459.410 cardiac dysfunction [57]

VIM P08670 12 15069691.590

TNNT3 P45378 13 12691030.660

TNNT1 P13805 14 10598443.490

GJA5 P36382 15 9497687.715 cardiac arrhythmias [56]

SP4 Q02446 16 7947705.183

MYL4 P12829 17 7586555.815

TPM3 P06753 18 7337310.387

TMOD1 P28289 19 7014582.495 DCM [46]

MYOT Q9UBF9 20 6610783.862

TPM4 P67936 21 6600584.576

MYH3 P11055 22 6368705.641

MYBPC1 Q00872 23 6317707.232

MYBPC2 Q14324 24 4820328.071

CAV3 P56539 25 3746694.232 DCM [47,48]

MYOD1 P15172 26 2449472.494 cardiomyopathy [78]

CALM1 P62158 27 2291170.029 DCM [45]

ACTB P60709 28 2039574.700

MYOG P15173 29 1304602.403

DNAH8 Q96JB1 30 1247401.222

CKM P06732 31 1139350.347 DCM [49]

CAPN3 P20807 32 1108281.072

PRKAG2 Q9UGJ0 33 1068188.085 cardiomyopathy [79]

ZMPSTE24 O75844 34 1050441.814 DCM [50]

AMY1A P04745 35 1028615.159

AMY1B P04745 36 983506.614

HRAS P01112 37 931783.319 cardiomyopathy [80]

HLA-DR4 P13760 38 926276.147 DCM [51,52]

DNM2 P50570 39 896713.915

NKX2-5 P52952 40 791481.623 cardiomyopathy [81]

FXN Q16595 41 591821.092 cardiomyopathy [82]

DYSF O75923 42 591430.047 DCM [53]

AMY2A P04746 43 547354.552

ACTG1 P63261 44 532313.791

C1QBP Q07021 45 491410.248 cardiac cell damage [58]

CALD1 Q05682 46 485082.005

AMY2B P19961 47 476690.079

DAG1 Q14118 48 475398.858 DCM [59,60]

AMY1C P04745 49 455785.472

PRKCA P17252 50 442473.436

*Proteins are represented in their corresponding gene symbols.
doi:10.1371/journal.pone.0071191.t002
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Figure 2. DCM pathway. DCM seed proteins are colored in cyan. Red nodes are proteins which were verified to be DCM-related proteins, and
yellow nodes represent proteins which are potential DCM-related proteins.
doi:10.1371/journal.pone.0071191.g002

Figure 3. DCM pathway and its relevant pathways. DCM pathway is colored in yellow. Purple nodes are DCM-related pathways, and green
nodes are other pathways. Black edges connect pathways which are directly connected to the DCM pathway.
doi:10.1371/journal.pone.0071191.g003
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(Table 2). Among the remaining proteins, 8 in our potential

protein list (Table 2) and 5 in Chen’s protein ranking list [69–73]

were found to be related to the processes associated with DCM.

Results for HCM and ARVC were shown in Figure S5 and S6.

In general, top 50 candidate proteins from our method contained

more cardiomyopathy-related proteins than those from Chen’s

protein ranking method.

Crosstalk of Three Subtypes of Cardiomyopathies
To illustrate relationship among three subtypes of cardiomyop-

athies, we compared seed proteins of DCM, HCM and ARVC.

Thirteen seed proteins were found in both DCM and HCM,

suggesting that there might be similar mechanisms in these

Table 3. AUC for three subtypes of cardiomyopathies
obtained using five different methods.

Our developed
method

Chen’s protein
ranking method DADA ToppGene ToppNet

DCM 0.963 0.956 0.854 0.884 0.741

HCM 0.919 0.916 0.979 0.911 0.716

ARVC 0.995 0.934 0.770 0.946 0.756

doi:10.1371/journal.pone.0071191.t003

Figure 4. The number of proteins related with DCM. 50 potential disease proteins identified either by our developed method (the top left
circle), or by Chen’s protein ranking method (the top right circle), and the number of proteins which have been confirmed to be related with DCM in
literature were plotted.
doi:10.1371/journal.pone.0071191.g004

Prioritizing Disease Candidate Proteins
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diseases [74]. For example, most of these proteins comprised the

sarcomeric proteins (Figure 2 and Figure S1). However, there were

no common seed genes identified to be shared between ARVC

and DCM or HCM.

To further explore relationship among three subtypes of

cardiomyopathies, we compared the top 50 candidate proteins

of each cardiomyopathy. Only 2 proteins were found in the

protein lists of all the three cardiomyopathies and 29 proteins were

found in those of both DCM and HCM. Since all the pathways of

these subtypes of cardiomyopathies involve integrins, dystroglycan

complex and sarcomere (Figure 2, Figure S1, and S2), which are

important in cardiac myocyte and cardiac muscle contraction

[75,76], it suggested that there was a crosstalk of these three

subtypes of cardiomyopathies, especially between DCM and

HCM.

Investigation of disease pathways and their related pathways

(Figure 3, Figure S3, and S4) showed that these three subtypes of

cardiomyopathies were also closely related. Four pathways were

found to share among the three diseases: Tight junction, Focal

adhesion, Regulation of actin cytoskeleton and Leukocyte

transendothelial migration. These results further implied a cross-

talk of three subtypes of cardiomyopathies.

Discussion

In our study, OMIM was applied to obtain seed proteins of

three subtypes of cardiomyopathies, DCM, HCM and ARVC.

With these seed proteins, we built cardiomyopathy (DCM, HCM

or ARVC)-specific PPINs through the nearest-neighbor expansion

method and weighted each protein pair in the network. We then

developed a method to prioritize disease candidate proteins by

calculating disease relevance score and ranking each protein in the

network. As a result, it was shown that proteins ranked at the top

of candidate proteins were potential cardiomyopathy-related

proteins, which opened a new door for the further research of

cardiomyopathy pathogenesis. By analyzing top 50 candidate

proteins, it was found that most of them and cardiomyopathy seed

proteins shared common disease-related KEGG pathways. The

performance of our method was evaluated based on the following

criteria: 1). literature review. By the literature review from the

PubMed database, it was found that top 50 candidate proteins

were closely correlated with cardiomyopathies; 2). KEGG

pathway enrichment analysis. Our results revealed that the most

of seed and top 50 candidate proteins were enriched in disease-

related functional classes and pathways; 3). leave-one-out cross-

validation. In this validation, candidate proteins were ranked by

using our method in prioritizing disease candidate proteins, Chen’s

method, DADA, ToppGene and ToppNet. It was found that the

overall performance of our method was better than all the others.

The reliability and precision of our method were improved

based on the following factors. Firstly, we measured the relevance

of each protein with disease based on ‘‘guilt by association’’

analysis by adding interaction confidence and functional similarity

of its neighbors and subtracting the effect of promiscuously

connections between the protein and its interacting proteins.

Secondly, the relationships of comprehensive human disease

protein interaction were obtained using protein interaction data

from the STRING database. Thirdly, the establishment of

cardiomyopathy-specific PPINs using disease-related seed proteins

enhanced specific connections between disease proteins and their

interacting proteins, reduced promiscuous connections, and had

higher fidelity interaction confidence. Finally, identified top 50

candidate proteins in weighted cardiomyopathy-specific PPINs by

using our method in prioritizing disease candidate proteins were

more strongly associated with cardiomyopathies, and the crosstalk

of three subtypes of cardiomyopathies could be obtained through

common proteins in three ranked lists. As a result, we obtained

more proteins which were closely associated with cardiomyopa-

thies in literature and some new proteins with the unknown roles

involving in cardiomyopathies ranked at the top of candidate

proteins. Further investigation is required to prove their disease

relevance.

To further examine the performance of our method in

prioritizing disease candidate proteins, we compared it with

GeneMANIA [77] and ToppGenet in ToppGene. GeneMANIA

and ToppGenet prioritize neighboring proteins of seeds in their

background networks, which were different from our method. It

was shown that our method obtained a higher AUC score than

other two methods (Table 4) for each subtype of cardiomyopa-

thies. It is worth noting that better AUC scores were obtained

using ToppGenet with distance 3 or 4 from seeds, which implied

that proteins not in the direct neighborhood of seed proteins might

also be disease-related. Besides, since our method depends on PPI,

disease proteins with unknown PPI failed to be identified or

ranked. We will develop a more comprehensive approach taking

proteins not in the direct neighborhood of seed proteins and other

information, such as expression, into account in the future to

predict disease associated proteins.

In conclusion, the method in prioritizing disease candidate

proteins based on ‘‘guilt by association’’ analysis has proven its

ability to more precisely identify potential disease-related proteins.

This study not only provided a new methodology for studying

Table 4. AUC for three subtypes of cardiomyopathies obtained using GeneMANIA and ToppGenet.

Our developed
method GeneMANIA ToppGenet

Distance to seeds

1 2 3 4

DCM 0.963 0.466 Network based 0.373 0.660 0.728 0.725

Functional annotation based 0.485 0.724 0.774 0.809

HCM 0.919 0.588 Network based 0.291 0.670 0.767 0.776

Functional annotation based 0.369 0.834 0.905 0.904

ARVC 0.995 0.569 Network based 0.519 0.630 0.665 0.669

Functional annotation based 0.801 0.873 0.894 0.894

doi:10.1371/journal.pone.0071191.t004
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human cardiomyopathy disease, but also shed light on process and

mechanisms of human cardiomyopathy and other complex

diseases.

Full names of all gene/protein symbols used in the main text are

listed below:

ACTA1: actin, alpha 1, skeletal muscle

CALM1: calmodulin 1

TMOD1: tropomodulin 1

CAV3: caveolin 3

CKM: creatine kinase, muscle

ZMPSTE24: zinc metallopeptidase STE24

HLA-DR4: major histocompatibility complex, class II, DR beta 1

DYSF: dysferlin, limb girdle muscular dystrophy 2B

MYL2: myosin, light chain 2, regulatory, cardiac, slow

MYL3: myosin, light chain 3, alkali; ventricular, skeletal, slow

DAG1: dystroglycan 1

ACTG1: actin, gamma 1

DMD: dystrophin

STC1: stanniocalcin 1

Supporting Information

Figure S1 HCM pathway. HCM seed proteins are colored in

cyan. Red nodes are proteins which were verified to be HCM-

related proteins, and yellow nodes represent proteins which are

potential HCM-related proteins.

(DOC)

Figure S2 ARVC pathway. ARVC seed proteins are colored

in cyan. Red nodes are proteins which were verified to be ARVC-

related proteins, and yellow nodes represent proteins which are

potential ARVC-related proteins.

(DOC)

Figure S3 HCM pathway and its relevant pathways. The

HCM pathway is colored in yellow. Purple nodes are HCM-

related pathways, and green nodes are other pathways. Black

edges connect pathways which are directly connected to the HCM

pathway.

(DOC)

Figure S4 ARVC pathway and its relevant pathways.
The ARVC pathway is colored in yellow. Green nodes are other

pathways. Black edges connect pathways which are directly

connected to the ARVC pathway.

(DOC)

Figure S5 The number of proteins related with HCM. 50

potential disease proteins identified either by our developed

method (the top left circle) or by Chen’s protein ranking method

(the top right circle), and the number of proteins that have been

confirmed to be related with HCM in literature were plotted.

(DOC)

Figure S6 The number of proteins related with ARVC.
50 potential disease proteins identified either by our developed

method (the top left circle) or by Chen’s protein ranking method

(the top right circle), and the number of proteins which have been

confirmed to be related with ARVC in literature were plotted.

(DOC)

Table S1 Top 50 candidate proteins from HCM-specific
PPIN.

(DOC)

Table S2 Top 50 candidate proteins from ARVC-
specific PPIN.

(DOC)
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