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Abstract

The Tumor Inflammation Signature (TIS) is an investigational use only (IUO) 18-gene signature that measures a
pre-existing but suppressed adaptive immune response within tumors. The TIS has been shown to enrich for
patients who respond to the anti-PD1 agent pembrolizumab. To explore this immune phenotype within and
across tumor types, we applied the TIS algorithm to over 9000 tumor gene expression profiles downloaded from
The Cancer Genome Atlas (TCGA). As expected based on prior evidence, tumors with known clinical sensitivity to
anti-programmed cell death protein 1 (PD-1) blockade had higher average TIS scores. Furthermore, TIS scores were
more variable within than between tumor types, and within each tumor type a subset of patients with elevated
scores was identifiable although with different prevalence associated with each tumor type, the latter consistent
with the observed clinical responsiveness to anti PD-1 blockade. Notably, TIS scores only minimally correlated with
mutation load in most tumors and ranking tumors by median TIS score showed differing association to clinical
sensitivity to PD-1/PD-1 ligand 1 (PD-L1) blockade than ranking of the same tumors by mutation load. The
expression patterns of the TIS algorithm genes were conserved across tumor types yet appeared to be minimally
prognostic in most cancers, consistent with the TIS score serving as a pan-cancer measurement of the inflamed
tumor phenotype. Characterization of the prevalence and variability of TIS will lead to increased understanding of
the immune status of untreated tumors and may lead to improved indication selection for testing immunotherapy
agents.
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Background
Recognition of the importance of the tumor immune
microenvironment in suppressing antitumor immunity
has led to significant advances in tumor immunotherapy.
Treatments are now available that overcome tumor cells’
ability to evade immune detection and harness the
“non-self”-directed specificity of the immune system to
attack tumors across multiple cancer types. In addition,
immunotherapies, unlike cytotoxic or targeted therapies,
have the advantage of triggering a memory immune

response that clinically manifests in specific, systemic,
and durable antitumor effect.
Among the most promising therapeutic approaches to

re-activating anti-tumor immunity is the pharmaco-
logical manipulation of physiologic immune checkpoints.
Immune checkpoints refer to inhibitory pathways in the
immune system crucial for maintaining self-tolerance
and minimizing the possibility of chronic autoimmune
inflammation. Exploitation of immune checkpoint
pathways is a major mechanism by which tumors escape
immune surveillance, and immune checkpoint blockade
is the basis for the clinical anti-tumor activity of most
of the currently approved immuno-oncology agents
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targeting CTLA-4 (ipilumimab) and programmed cell
death protein 1 (PD-1) (nivolumab, pembrolizumab,) or
PD-1 ligand 1 (PD-L1) (atezolizumab, durvalumab, and
avelumab) [1].
Despite this progress, only a minority of patients with

advanced/metastatic cancer respond to immune check-
point inhibitors, thus exposing the remaining patients to
potentially ineffective, toxic, and costly treatments. There-
fore, biomarkers predicting response are needed to guide
treatment decisions in the clinic and to enable clinical tri-
als to succeed in populations where response is rare.
In this regard, increased PD-L1 expression (as mea-

sured by immunohistochemistry [IHC]) on the surface
of tumor cells and/or immune cells, despite representing
today the only form of approved companion diagnostics
for immunotherapies targeting the PD-1 axis, has been
shown to be only inconsistently associated with these
agents’ clinical benefit [1]. This may be due to limitations
intrinsic to the analyte measured (i.e., significant cellular,
spatial, and temporal heterogeneity) and the platform used
(i.e., subjective interpretation) [2]. In addition, the
drug-centric approach of independently developing a
PD-L1 IHC assay for each anti-PD-1/PD-L1 agent has
resulted in a lack of “gold standard” assay, complicating
testing and decision making in the clinic.
Additional predictive biomarkers have been investi-

gated for use in immuno-oncology. For example,
abundance and location of tumor infiltrating lympho-
cytes has been proposed as biomarker [3]. The most
advanced assay in use to date is the Immunoscore, an
immunohistochemistry based assay which quantitates
abundance and phenotype of T cells [4]. The Immuno-
score has been shown to be highly prognostic in colorec-
tal cancer (CRC) [5], but its utility as a predictive
marker remains uncharacterized.
More recently, clinical trial data have demonstrated

the utility of measuring microsatellite instability (MSI)
status and/or DNA mismatch repair deficiency (dMMR)
as predictive markers for response to PD-1 blockade
independently from tumor cell of origin, resulting in the
first FDA pan-cancer approval of a therapeutic in oncol-
ogy (pembrolizumab) [6]. The association of response to
PD-1 blockade in dMMR tumors was first observed in a
single patient with MSI-hi CRC in the nivolumab trial
MDX1106–03 [7]. This initial result was then extended
to show that patients with dMMR tumors experiences
27% ORR in CRC and 43% ORR in non-CRC after
receiving pembrolizumab, demonstrating the predict-
ive power of biomarker [8]. Recently, pembrolizumab
has received FDA approval in all indications where a
tumor has dMMR, although the companion diagnostic
remains undefined. Unfortunately, dMMR occurs in
approximately 5% of CRC and endometrial tumors,
and is much less frequent in other indications.

Another approach to characterizing potential neoanti-
gen load that can be applied to a wider spectrum of
tumors is measurement of total tumor mutation burden
(TMB). The earliest successes of checkpoint inhibitors
were in melanomas and non-small cell lung cancers, two
tumors that can have high mutation burden due to
mutagen exposure (UV light and tobacco smoke). The
correlation of TMB and response to checkpoint inhibi-
tors was first demonstrated in lung cancer, which has a
broad range of nonsynonymous mutations within the
tumor [9]. Since then, it has been demonstrated that
tumor types with higher median mutation burden tend
to be more response to checkpoint inhibitors than
tumors that harbor few mutations [10]. Today, a number
of platforms to detect TMB are being developed for
routine clinical application, most prominently the
FoundationOne assay, which reports on mutation status
of 324 genes [11].
Because of the complexity of tumor-immune interac-

tions, efforts to capture this complexity via a single
analyte such as PD-L1 expression as measured by IHC,
or tumor mutation load as a surrogate of potential
tumor antigenicity, yields limited and incomplete infor-
mation about the complex and dynamic nature of the
tumor-immune microenvironment.
More recently, gene expression in the tumor micro-

environment, using RNA isolated from formalin-fixed
paraffin-embedded (FFPE) pretreatment samples from
patients undergoing anti-PD-1/PD-L1 pathway treat-
ment have been described [12–14]. These signatures
measure, using various technology platforms, different
but highly correlated gene transcripts associated with
the presence of an adaptive immune response that is
peripherally suppressed, a phenotype that appears to be
necessary, although not sufficient, for clinical benefit
from PD-1/PD-L1 blockade. One of these signatures,
described by Ayers et al. (2017) [12], was developed on
the NanoString nCounter gene expression system
(NanoString Technologies, Inc., Seattle, WA) in the
context of pembrolizumab treatment as a pan-tumor de-
terminant of response to PD-1-directed therapy. Samples
were obtained at baseline from patients undergoing
treatment with pembrolizumab in clinical trials of mul-
tiple distinct tumor types in a rigorous stepwise
validation of the hypothesis that immune-related gene sig-
natures can enrich for clinical response to PD-1 check-
point blockade, including samples from KEYNOTE-001,
KEYNOTE-006, and KEYNOTE-028. The final analytic-
ally validated, IUO-ready gene expression signature,
named the Tumor Inflammation Signature (TIS), contains
genes related to antigen presentation, chemokine expres-
sion, cytotoxic activity, and adaptive immune resistance
(Table 1). A score is calculated as a weighted linear com-
bination of the 18 genes’ expression values normalized to
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stable housekeeper gene expression, and scores above a
fixed threshold can be used to evaluate patients whose
tumor would benefit from pembrolizumab administration.
The TIS has been developed into a clinical trial assay
running on the nCounter Analysis System which has been
applied retrospectively in multiple immuno-oncology tri-
als (KEYNOTE-180, KEYNOTE-181, KEYNOTE-158).
As TIS is a measure of pre-existing adaptive immunity

that has been peripherally suppressed, we sought to ex-
plore how this immune phenotype distributes within
and across tumor types, and how it correlates with other
relevant variables such as mutation load, other gene ex-
pression signatures, and clinical outcomes in the absence
of specific immune therapeutic intervention. For this
purpose, we applied the TIS algorithm to gene expres-
sion data from The Cancer Genome Atlas (TCGA)
database of primary tumors. The specific objectives of this
study were a) to explore the distribution of TIS scores
within and across a wide range of immunotherapy-naive
primary tumors; b) to assess the TIS score’s prognostic
value; c) to evaluate the association between TIS score
and mutation load; d) to contrast TIS scores with
expression levels of immune checkpoint molecules
targeted by current immuno-oncology drugs in

development; and e) to identify gene expression patterns
associated with low TIS score (i.e., “cold” tumors). Similar
efforts to characterize presence and activity of the intratu-
moral immune response have been undertaken in the past
[15–17], and this report now extends upon those findings
by applying the signature which is the basis for a clinical
assay across a spectrum of both solid and hematological
malignancies.

Experimental section
TCGA data download
Level 3 RSEM-normalized RNASeqV2 data and level 3
mutation packager calls were downloaded from TCGA
database. Per standard practice and in alignment with
the TIS algorithm, RNASeq data were log2-transformed
to avoid extremely skewed gene expression distributions
and to allow additive methods like linear regression to
model fold-changes rather than absolute expression in-
creases. Each patient’s mutation load was calculated as
the number of non-synonymous mutations and then
log2-transformed before analysis.
Statistical methods:

a. Calculation of TIS score

To maximize fidelity of our computational TIS score
calculation to the clinical nCounter TIS assay, we
re-normalized the RSEM RNAseq data using the 10 ref-
erence (“housekeeping”) genes used in the nCounter
assay and performed a log2-transformation of the
normalized values. Second, we computed TIS score as a
linear combination of the 18 algorithm genes, calculating

TIS =
P18

i¼1xiwi , where xi is the ith gene’s
log2-transformed, normalized expression level and wi is
a predefined weight derived in Ayers et al. (2017) [12].
We applied the TIS algorithm to 9083 samples from 32
TCGA RNASeq datasets (Table 2).

b. Association between TIS scores and overall survival

In each cancer type’s dataset, a univariate Cox propor-
tional hazard model was fit predicting overall survival
from continuous TIS score. Kaplan-Meier curves were
drawn using the R library ggsurvplot.

c. Association between transcriptome and TIS scores

The R library GSA [18] was used to compute the ex-
tent of positive and negative association between Gene
Ontology (GO) terms [19] and the TIS scores. GO term
gene lists were obtained from the Molecular Signatures
Database (MsigDb) [20]. The GSA procedure was ap-
plied separately to each TCGA dataset taking the input

Table 1 Genes in the Tumor Inflammation Signature

TIS Biology Gene Protein Function

Antigen Presenting
Cell Abundance

PSMB10 PSB10 Immunoproteosome
Subunit

HLA-DQA1 MHC class
II DQA1

MHC Class II Antigen
Presentation

HLA-DRB1 MHC class
II DRB1

MHC Class II Antigen
Presentation

CMKLR1 CML1 Chemokine Receptor

T Cell/ NK Cell
Abundance

HLA-E HLAE Nonclassical Class I
Antigen Presentation

NKG7 NKG7 Cytolytic Granule Protein

CD8A CD8A MHC Class I Coreceptor

IFN Activity CCL5 CCL5 Monocytes and Memory T
cells Chemoattractant

CXCL9 CXCL9 Lymphocyte
Chemoattractant

CD27 CD27 Lymphocyte Activation

CXCR6 CXCR6 T cell Activation

IDO1 IDO Inhibitor of T cell
Proliferation and Function

STAT1 STAT1 Transcription Factor
Mediating IFN Response

T Cell Exhaustion TIGIT TIGIT Inhibitor of T cell Function

LAG3 LAG3 Inhibitor of T cell Function

CD274 PD-L1 Inhibitor of T cell Function

PDCD1LG2 PD-L2 Inhibitor of T cell Function

CD276 B7-H3 Inhibitor of T cell Function
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of the dataset’s normalized, log2-transformed expression
values as the predictor matrix, the dataset’s TIS scores as
the outcome, and GO terms as gene sets.

Results
TIS scores are highly variable across and within tumor
types, and a subset of patients with elevated scores exists
within each tumor type
Figure 1 shows TIS scores for all TCGA patients in-
cluded in the analysis, with tumor types ordered by me-
dian TIS scores. While median TIS scores are higher in

tumor types with higher rates of response to PD-1/
PD-L1 inhibitors (e.g., melanoma, renal cell cancer), and
cancers with high mutation load (e.g., non-small cell
lung cancer [NSCLC]), within each tumor type there is
considerable inter-sample variability. This finding is
consistent with a wide range of pre-existent adaptive im-
munity levels within different tumor types, and it raises
the possibility that TIS scores may identify rare
responders within tumor types that have low immuno-
therapy response rates, low median TIS scores, and low
mutation burden.
In the clinical setting, in order to use the TIS score

as a patient enrichment tool (i.e., identifying “hot”
versus “cold” tumors), one or more pre-specified
thresholds are needed. Based on TCGA TIS scores,
the following thresholds, in diminishing order of
stringency, could be reasonable choices depending on
the clinical population and the competing desires for
enrichment and broad selection: 6.72 is the median
TIS score in lung adenocarcinomas and the 75th per-
centile of all of TCGA; 6.0 is the median TIS score
in melanomas and the 61st percentile of all of TCGA;
and 5.5 is the median TIS score in all TCGA data-
sets. Given an estimated offset of 1.3 score units be-
tween TIS scores in TCGA and in the IUO assay,
these thresholds translate to approximately 8.02, 7.3
and 6.8 in the TIS IUO assay.
Checkpoint inhibitors currently have wider use in

late-stage tumors than in first-line settings. Thus the dis-
tribution of anti-tumor immunity as measured by TIS
score in only late-stage tumors is of interest. Add-
itional file 1: Figure S7 replots (Fig. 1) using only pa-
tients with stage IV disease. Within tumor types where
sufficient stage IV patients were available, (Fig. 1)‘s rank-
ing of tumor types by median TIS is broadly preserved
in stage IV patients, as is the observation of great vari-
ability of TIS within all tumor types.

Tumors with a high TIS score have shown clinical
response to anti-PD-1 blockade
Many of the tumor types with high median TIS values,
in particular advanced/metastatic renal clear cell carcin-
oma [21], melanoma [22], lung tumors [23], and head
and neck tumors [24], have shown clinical sensitivity to
anti-PD-1 blockade (Additional file 2: Figure S1).
The kidney cancers’ responsiveness to checkpoint

blockade is well-predicted by TIS scores, but not by mu-
tation burden (Fig. 1, highlighted in red text). Renal clear
cell carcinoma (KIRC), an immunogenic tumor type in
which immunotherapies such as IL-2 [25], IFN-α [26],
and nivolumab [27] have shown clinical benefit in a sub-
set of patients, had the second-highest median TIS
scores but fairly low mutation load. In contrast, chromo-
phobe renal cell carcinoma (KICH) and kidney renal

Table 2 TCGA Datasets Evaluated

Symbol N Name

ACC 79 Adrenocortical carcinoma

BLCA 396 Bladder urothelial carcinoma

BRCA 1092 Breast invasive carcinoma

CESC 301 Cervical squamous cell carcinoma and endocervical
adenocarcinoma

CHOL 36 Cholangiocarcinoma

COAD 280 Colon adenocarcinoma

DLBC 47 Lymphoid neoplasm diffuse large B-cell lymphoma

ESCA 183 Esophageal carcinoma

GBM 167 Glioblastoma multiforme

HNSC 516 Head and neck squamous cell carcinoma

KICH 65 Kidney chromophobe

KIRC 530 Kidney renal clear cell carcinoma

KIRP 270 Kidney renal papillary cell carcinoma

LAML 163 Acute myeloid leukemia

LGG 506 Brain lower grade glioma

LIHC 361 Liver hepatocellular carcinoma

LUAD 497 Lung adenocarcinoma

LUSC 483 Lung squamous cell carcinoma

MESO 87 Mesothelioma

OV 264 Ovarian serous cystadenocarcinoma

PAAD 179 Pancreatic adenocarcinoma

PCPG 184 Pheochromocytoma and paraganglioma

PRAD 493 Prostate adenocarcinoma

READ 95 Rectum adenocarcinoma

SARC 249 Sarcoma

SKCM 463 Skin cutaneous melanoma

STAD 409 Stomach adenocarcinoma

TGCT 139 Testicular germ cell tumors

THCA 504 Thyroid carcinoma

THYM 118 Thymoma

UCS 57 Uterine carcinosarcoma

UVM 80 Uveal melanoma
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papillary cell carcinoma (KIRP), which so far have shown
less evidence of susceptibility to anti-PD-1/PD-L1 block-
ade, have low-ranking median TIS scores and similar
median mutation burdens than clear cell carcinomas.
Randomized trials investigating the performance of
PD1 blockade in these tumors have not been reported
to date, but anecdotal data suggests that response
rates in the chromophobe subtype, which has the
lowest median TIS of the 3 subtypes, has been par-
ticularly poor [28, 29]. The finding of a high median
TIS score in renal clear cell carcinomas and the effi-
cacy of PD-1 blockade in this tumor type are consist-
ent with other findings that the immunogenicity of
renal clear cell carcinoma tumors cannot be explained
solely by mutation or neoantigen load, but is highly
correlated with MHC class I antigen presenting ma-
chinery expression [30].
Furthermore, some tumor types with a moderate

TIS score (e.g., pancreatic tumors) have shown not-
ably poor response to immunotherapy in an

unselected population. These tumors are known to be
highly infiltrated with myeloid cells which may act as
external suppressors of anti-tumor immune responses
that are not relieved by PD-1 checkpoint blockade
[31], raising the possibility of future gene signatures
that may by combined with TIS to further dissect im-
mune responses.

TIS scores are minimally correlated with mutation load
within most cancer types
Both TIS scores and mutation load have been investi-
gated as predictive biomarkers for benefit of checkpoint
inhibitors. These 2 biomarkers are weakly correlated
Fig. 2a: the absolute value of their correlation is below
0.3 in all TCGA datasets, and in most TCGA datasets
the 95% confidence interval for their correlation includes
0 Fig. 2b. The strongest correlations between TIS scores
and log2 mutation load occurred in colon cancer, which
is known to have a hypermutated and immunogenic
microsatellite instability high (MSI-H) subtype, and in

Fig. 1 TIS scores in all TCGA patients. a Boxplots and points show summary statistics and individual values of TIS scores in each cancer type,
ranked by median TIS scores. b Boxplots of log2 mutation burden, showed based on ranking in (a)
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thymomas and bladder cancer. Additional file 3:
Figure S6 shows MSI-H status to be associated with
elevated TIS scores in colon and stomach cancers.
Liver hepatocellular carcinomas and kidney renal clear
cell carcinoma showed statistically significant negative
correlations between these biomarkers. A significant
fraction of hepatocellular carcinomas are associated
with hepatitis B or C virus infection, which may drive
inflammation without the presence of a high number

of mutations. There is negligible correlation between
average mutation burden and average TIS scores
across tumor types in TCGA datasets Fig. 2.

The variability of TIS and mutation load are potential
indicators of their predictive utility within cancer types
The predictive utility of TIS and mutation load within a
given cancer type can only be definitively established by
clinical trials with sample sizes large enough to profile

a

b c

Fig. 2 Association between TIS scores and mutation load. a TIS score plotted against log2 mutation within each tumor type. b Point estimates
and 95% confidence intervals for the correlation between TIS score and log2 mutation load within each tumor type. Box size represents the
precision of the estimate with larger boxes indicating smaller standard errors; horizontal lines represent 95% confidence intervals. c Interquartile
range of TIS score and mutation load in each cancer type. To place cancer types in context, a line connects SKCM to the origin
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response rates conditional on varying levels of both
biomarkers. Until such data is available, large datasets
like TCGA can offer important insights into the prob-
able utility of these biomarkers in different cancer types.
A biomarker’s predictive strength in a cancer depends

on both the strength of its association with response and
its variability. In particular, a biomarker that varies little
within a population is less likely to successfully divide that
population between responders and non-responders. Mel-
anoma has a prominent role in the literature supporting
TIS score and mutation load as predictors of response to
checkpoint inhibitors; it also has a higher variability of
both biomarkers than any other cancer type Fig. 2c. Some
cancer types retain most of melanoma’s TIS score variabil-
ity while losing much greater variability in mutation load
Fig. 2c, below the line, while others retain a greater
proportion of melanoma’s mutation load variability
than its TIS score variability Fig. 2c, above the line.
Since a biomarker’s predictive strength in a cancer
depends in part on its variability, Fig. 2c can support
educated guesses on the performance of each putative
predictive biomarker in any given tumor type (in the
context of PD-1/PD-L1 pathway blockade). For ex-
ample, the interquartile range of mutation load in
lung squamous carcinoma (LUSC), head and neck
squamous cell carcinoma (HNSC), and sarcomas
(SARC) is approximately half as large as its interquar-
tile range in SKCM, suggesting that the predictive
utility of mutation burden observed in melanoma will
be lower in these cancers. Therefore, in these tumor
types and in the context of pharmacological blockade
of the PD-1/PD-L1 pathway, TIS score may be a
more useful predictive biomarker. Conversely, adeno-
carcinomas of the lung (LUAD), colon (COAD), and
stomach (STAD) have high mutation burden variabil-
ity but lower TIS variability than seen in melanomas.
However, since biomarker utility also depends on how
closely related the biomarker is to the mechanism of
action of the drug, and since TIS measures transcrip-
tional activity in the tumor microenvironment directly
related to immune adaptive resistance, the TIS may
provide additional utility in the context of mutation
load, which is measuring potentially immune activat-
ing neoantigen expression, to enrich for clinical re-
sponse to anti-PD1/PD-L1.

Evaluation of prognostic value of TIS scores
Since the TIS algorithm was developed in the context of
single-arm studies of patients universally treated with
single-agent pembrolizumab, its prognostic versus
predictive value has yet to be established. In addition,
considering that information about the nature,
quantity, location, and functionality of immune infil-
trates has been shown to contain prognostic

information [3, 32–35], we explored the prognostic
value of the TIS score in the absence of specific im-
mune treatment. We performed univariate Cox re-
gression predicting overall survival from TIS scores in
each TCGA dataset. TIS scores were not statistically
significantly prognostic in most cancers, with the not-
able exceptions of bladder cancer, cervical cancer, sar-
comas, and melanoma, where a modest prognostic
benefit (hazard ratio per unit of TIS score > 0.8) of
high TIS score was observed; and in renal papillary
cell carcinoma, lower grade glioma, and pancreatic
adenocarcinoma, where TIS was associated with poor
prognosis (hazard ratios > 1.2) Fig. 3. Of all these as-
sociations, only melanoma and lower grade glioma
cancers had p-values corresponding to a False Discovery
Rate [36] below 0.05. These findings can aid interpretation
of single-arm studies comparing survival in high and low
TIS score patients treated with an immunotherapy.

TIS in breast cancer: relation to subtype, survival, and
mutation burden
In order to explore the interaction between
tumor-intrinsic genetic programs, tumor mutation load,
and intratumoral immune response, we investigated the
distribution of TIS scores and mutation burden within
the intrinsic subtypes of breast cancers as defined by
gene expression profiling, i.e., the PAM50 algorithm
[37]. As shown in Fig. 4, TIS scores displayed consider-
able variability within all PAM50 subtypes. Average TIS
scores were higher in the basal and Her2-enriched
subtypes than in the luminal subtypes. However,
between-subtype differences explain little of TIS’s vari-
ability in breast cancer: the variance between the sub-
types’ means was 8% of the total variance of TIS score in
the breast cancer samples.
Univariate Cox proportional hazard regression found

no statistically significant association between TIS and
overall survival in the TCGA breast cancer dataset. Cox
models fit separately to each PAM50 subtype similarly
showed no significant association. However, we observed
that the subset of patients with the highest 10% of the
TIS score range shows substantially improved prognosis
(Additional file 9: Figure S5). This prognostic benefit of
anti-tumor immunity is limited to the very highest TIS
samples: the next highest 10% of TIS scores have prog-
nosis equivalent to the lowest 80% of samples. These re-
sults echo those of Hendrickx et al. (2017) [38], who
observed improved prognosis in breast cancers with the
most favorable immune phenotype as measured by the
immunologic constant of rejection (ICR). TIS scores and
mutation load were minimally correlated within each
PAM50 subtype Fig. 4, although Fig. 2 shows the weak
correlation between mutation burden and TIS scores in
breast cancer to be statistically significant.
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The TIS score reflects immune status rather than tumor-
specific biology and is thus agnostic to tissue of origin
Tumors from different cells of origin tend to display
highly divergent expression patterns, limiting the ap-
plicability of most gene expression algorithms across
tumor types. In contrast, because the TIS depends
primarily on genes expressed by immune cells or in
response to immune signaling, it is plausible that its
genes’ expression levels are driven by the magnitude
of a tumor’s immune response and not by its cell of
origin. To evaluate the applicability of the TIS algo-
rithm across tumor types, we examined the extent to
which the TIS genes’ expression levels depend on
tumor type versus overall immune status as measured
by TIS algorithm.
Figure 5 shows each gene’s association with TIS score

within each cancer type. Apart from the few exceptions
described below, all algorithm genes increase with TIS
score, and each gene’s lowess fit [39] to TIS score varies
little between cancer types. This expression pattern is
consistent with a model in which the algorithm genes
measure immune-related transcriptomic activity and are
minimally influenced by tumor type-specific expression.
We generally do not observe expression patterns indica-
tive of algorithm genes behaving differently across tumor
types, for example a gene that is uniformly elevated or

suppressed in a tumor type, or whose association with
the TIS algorithm is different between cancer types.
There are exceptions to this pattern. First, the gene

CD276, which codes for B7-H3, is uncorrelated with TIS
score. Second, the 3 cancers in TCGA arising from “im-
mune” cells, i.e., thymoma, acute myeloid leukemia
(AML), and diffuse large B-cell lymphoma (DLBCL), all
display expression patterns consistent with an effect of
tumor type on the algorithm. In thymomas, CD8A ex-
pression, which has been shown to quantify CD8 T-cells
in tumor samples [40], is high across all TIS scores and
weakly negatively correlated with TIS score, likely be-
cause the tumor occurs in the thymus, the site of
lymphocyte (T and B cell) maturation. In AML, the
trends for CD276, IDO1, and NKG7 all have substan-
tially different intercepts and slopes than seen in the
other tumor types. In DLBCL, CD27, HLA-DQA1,
HLA-DRB, and PSMB10 are all high across all levels of
TIS scores. The uniformly high TIS scores in DLBCL
likely result from tumor-intrinsic expression of algo-
rithm genes rather than truly high anti-tumor immunity;
Fig. 5 details the TIS genes that have idiosyncratic
expression in DLBCL. Close analysis of the coordinate
expression of TIS genes permits appropriate interpret-
ation of clinical settings where the signature can confi-
dently be deployed.

a b c

d e

Fig. 3 Association between TIS score and overall survival in TCGA. a Forest plot showing log hazard ratio estimates and 95% confidence intervals.
Cancers in which TIS score is statistically significantly (p < 0.05) associated with good prognosis are highlighted in blue; significant associations
with poor prognosis are in red. b-e Kaplan-Meier curves of overall survival split by TIS score tertiles within 4 selected tumor types: melanoma,
sarcoma, pancreatic adenocarcinoma, and lower grade glioma
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These results indicate that the TIS score interpretation
as a measure of the adaptive immune response may be
biased in cancers that affect cells of the immune system.
However, the unremarkable expression patterns of the
majority of TIS genes in these cancers suggest that an
adapted TIS score with the “offending” genes removed
could perform as it does in other cancers.
To visualize the results of Fig. 5 in another way, we

created a heat map of the TIS algorithm genes in all of
TCGA Fig. 5.
Additional file 4: Figure S2 quantifies the visual evi-

dence of Fig. 5. Linear mixed models were used to esti-
mate the variance in each gene’s expression attributable
to tumor type. For most algorithm genes, the variance
due to tumor type is a small proportion of total variance.
The TIS normalization (housekeeping) genes show low
variance within and across tumor types.

Association between TIS scores and the transcriptome.
Biological processes that are negatively correlated with
TIS scores could represent targets for future immuno-
therapies. In order to identify these processes, we
searched the whole transcriptome for gene sets with
persistent negative correlations with TIS. To do so, we
evaluated the association between single gene expression
levels and TIS scores in each cancer type using univari-
ate linear regression. Genes with strong positive associa-
tions with TIS scores were far more common and more
strongly correlated with TIS than genes with negative
associations (Additional file 8: Figure S3), which is
expected, because genes expressed by immune cells will
tend to be correlated with the total level of adaptive
immunity. Because genes that are persistently nega-
tively associated with TIS may indicate alternative
immune-inhibitory mechanisms, we used gene set

analysis (GSA) [18], which summarizes the extent to
which a gene set is positively or negatively associated
with a condition, to search for GO terms with strong
negative associations with TIS scores. Additional file 5:
Figure S4 shows the 50 GO terms with the lowest GSA
scores across all cancer types. Different tumor types have
different GO terms associated with low TIS. The
most frequent negatively-associated GO terms largely
involve metabolism, which may reflect transcription-
ally ‘lean’ tumors that have eluded immune detection
as posited by Turan et al., (personal communication).
Alternately, it may also reflect the suppressive effects
of IFN signaling on cell growth that would lead to
lower tumor cell metabolism in TIS-high tumors [41].
For each tumor type, Additional file 6: Table S1 lists
the GO terms that are negatively associated with TIS
scores, as defined by GSA scores < 1.

Association between TIS scores and immune checkpoint
genes
We specifically explored the association between TIS
scores and genes coding for immunotherapy target mol-
ecules. Many of these genes are in the TIS algorithm, in-
cluding IDO1, LAG3, PD-L1 (CD274), PD-L2
(PDCD1LG2), and TIGIT; however, no single gene con-
tributes enough to TIS to cause a spurious correlation
between its expression and TIS score. Every immuno-
therapy target examined is positively correlated with TIS
scores Fig. 6, suggesting that TIS scores could be of pre-
dictive value for all inhibitors of these targets. CLTA4 is
the greatest departure from this trend, possibly reflecting
the unique role CTLA4 plays in limiting the initial prim-
ing of T cells rather than suppressing T cell function
after activation Fig. 6. Additional file 7: Figure S8-S39
show TIS score versus individual checkpoint genes in all

a b

Fig. 4 TIS scores across PAM50 subtypes. a Distribution of TIS score within each PAM50 subtype. b TIS plotted against log2 mutation load in each subtype
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tumor types. TIS score and PD-L1 are correlated, but
not redundant: at any given TIS score, PDL1 (CD274)
has an expression range of approximately 4 log2-units,
or 16-fold on the linear scale. One potential explanation
for this may be specific post-transcriptional regulation of
immune checkpoint molecules, e.g., loss of miRNA
binding sites via 3’ UTR deletion of the PD-L1
transcript 26].
Alongside the general trend for all checkpoint genes

to be highly correlated with TIS scores in all cancers,
there are cancer types in which a subset of patients
has high expression of a checkpoint gene despite low
TIS scores. Notable instances of this pattern are
shown in Fig. 7.

Discussion
It is now recognized that the immune system can be
monitored and the results used to guide therapeutic
decisions [42]. Using gene-expression profiling signa-
tures, 2 major subsets of advanced solid tumors can be
identified: those with a T cell inflamed tumor micro-
environment, which have a signature of a pre-existing
adaptive immune response, and non-T cell inflamed

tumors, which lack evidence of a pre-existing adaptive
immune response [43].
In the context of the current treatment landscape (i.e.,

checkpoint inhibitors) the tumor inflamed phenotype
has been associated with response to these agents, e.g.,
[12, 33, 44, 45]; therefore, understanding whether a tumor
has an inflamed or non-inflamed phenotype should be the
starting point in the immunologic characterization of any
tumor samples.
Currently there are no analytically and clinically

validated gene expression-based tests for clinical use
measuring tumor cell inflammation, although there have
been previous efforts to characterize immune responses
in tumors based on transcriptional profiling. Rooney et
al. [15] use a set of genes associated with cytolytic
activity to rank-order tumor types by immune response
in a way that substantially agrees with our own ap-
proach. Two independent groups, Coppola et al. [16]
and Bindea et al. [46] also use gene expression profiling
to characterize immune response within colorectal
cancer, but these patterns of gene expression have not
been extended beyond CRC and have not been associ-
ated with response to immunotherapy.

PD1 TIGIT TIM3

LAG3 PD−L1 PD−L2

4−1BB CTLA4 IDO1

Tumor Inflammation Signature score

Lo
g2

 e
xp

re
ss

io
n

Fig. 6 Expression of immunotherapy target molecules versus TIS in melanoma. Log2 expression of drug target genes is plotted against TIS scores
in the TCGA melanoma dataset
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The TIS is an IUO 18-gene signature that detects
an adaptive immune response within tumors by meas-
uring expression of genes associated with cytotoxic
cells, antigen presentation, and interferon gamma
(IFNγ) activity [47]. The TIS has previously been
shown to enrich for a population of patients who
respond to the anti-PD1 agent pembrolizumab and
has been analytically validated as a clinical trial assay
for investigational use only and has been tested retro-
spectively in clinical trials [12, 47]. Since the genes in the
signature measure immune-intrinsic transcriptomic
activity with minimal contribution of tumor-intrinsic gene
expression, the signature may prove to be pan-cancer or
tumor-type agnostic. In the present study we applied the
TIS across a range of tumor gene expression data down-
loaded from the TCGA in order to characterize the
immune profile of a wide range of immunotherapy-naïve
tumor types.
As expected, we found that tumors with greater sensi-

tivity to anti-PD-1 blockade tend to have higher average
TIS scores. The tumor ranking we observed is compar-
able with that obtained by Spranger et al. (2016) [48],
who interrogated TCGA across 30 solid tumor types
with a 160-gene expression signature for T-cell inflam-
mation. In that work, a wide range of abundance of the

T cell-inflamed tumor microenvironment gene signature
was observed both within and across tumor types, with
the highest fraction seen in clear cell kidney cancer and
lung adenocarcinoma. Our work generated similar
results; however, since the genes in the Spranger
signature have not been published, direct comparison is
not possible. Furthermore, since the TIS (reagents, in-
strumentation, algorithm and software) has been analyt-
ically developed as an IUO diagnostic assay, it may be
prospectively deployed for patient selection in clinical
trials.
Notably, TIS genes have highly conserved co-expression

patterns across tumor types, consistent with a model in
which the genes measure immune phenotype independent
of the tumor cell of origin. In addition, while TIS scores
are higher in classically immunogenic tumor types, they
display a significant amount of intersample variability
within most tumor types, and a subset of patients can be
identified who possess elevated TIS scores, consistent with
responsiveness to anti-PD-1 blockade, in all tumor types
but with different prevalence. These findings raise the
possibility that TIS, much like MSI/dMMR, could be used
as pan-tumor biomarker enriching for patients likely to
respond to single agent anti-PD-1/PD-L1 treatment. Fur-
thermore, by simultaneously evaluating expression of

PD1 in LIHC PD1 in SARC PD1 in THCA

PD−L1 in BLCA PD−L1 in LUSC PD−L2 in SARC PD−L2 in THYM

CTLA4 in SKCM IDO1 in LIHC IDO1 in THCA LAG3 in SARC

Tumor Inflammation Signature score
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Fig. 7 Instances of a subtype with high checkpoint expression but low TIS scores
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other immune checkpoints relative to TIS expression, it
may be possible to identify tumors with high checkpoint
expression/low TIS score that are candidates for respond-
ing to the “right” checkpoint inhibitor despite being
“immune cold”, as measured by TIS score.
Mutation load has been shown in retrospective ana-

lysis to be a predictive biomarker for clinical benefit
from single-agent anti-PD-1/PD-L1 agents in certain
tumor types such as melanoma, NSCLC, bladder, and
HNSCC [9, 49–51]. Similarly, TIS’s association with clin-
ical benefit (i.e. reduction in tumor burden) from the
same agents has been shown in many of the same tumor
types [12, 51–53]. Notably, our study found only weak
correlation between TIS scores and mutation load;
although this is consistent with previous observations
from others [48, 54], it also suggests that the 2 bio-
markers are not fully overlapping and might contribute
orthogonal information in certain tumor settings [55].
Specifically, total mutation load is a surrogate measure
of the intrinsic potential tumor antigenicity (but it is
“upstream” of the immune response cascade), while TIS
score is a direct measure of the ongoing immune re-
sponse within the tumor, but is sensitive to sampling
bias due to the heterogeneity of the tumor microenvir-
onment. A combination of the 2 biomarkers could there-
fore increase accuracy in identifying patients who can
potentially benefit from checkpoint inhibitors.
In many cases, for example in the 3 kidney cancer

types in TCGA, ranking tumor types by median TIS
score showed superior association to reported clinical
sensitivity to PD-1/PD-L1 blockade than ranking of the
same tumors by mutation load; thus, in tumor types
with limited variability of mutation burden, TIS may
have more predictive power than other profiling tech-
niques. For instance, in head and neck tumors, some
cases are caused by smoking and will have high muta-
tion loads, but some cases are caused by human papillo-
mavirus (HPV) and would have immune responses
directed against the viral antigens. As shown by Had-
dad and colleagues (2017) [51], TIS predictive value
in the context of single agent pembrolizumab is inde-
pendent from HPV infection status while mutation
load is only predictive in HPV negative tumors. Simi-
larly, cervical tumors are also associated with HPV.
These tumors would be expected to have high TIS
and low mutation load, and this can be seen in the
data (CESC and HNSC, Fig. 2).
TIS appears to be minimally prognostic in most, but

not all cancers, perhaps due to the immune evasion
strategies that must be established in order for the
tumor to grow to the size that it is clinically detectable.
This finding supports interpretation of TIS in single-arm
clinical trials: if a survival benefit is seen in high TIS pa-
tients, it likely results from improved response to the

drug and not to an inherent survival benefit of high TIS.
In an important exception, this assumption does not
apply in melanoma, where TIS was highly statistically
significantly prognostic. TIS was also positively prognos-
tic in bladder carcinomas, cervical carcinomas, and sar-
comas. In these cancers, trials in high-TIS patients will
suffer attenuated power if the placebo arm displays better
survival than historical data [56]. The tumor types in
which TIS score is negatively prognostic (kidney papillary,
pancreatic, glioma) are known to be resistant to PD-1
therapy, and the prevalence of TIS positivity in these tu-
mors is low. In contrast to the limited prognostic power
of TIS, Ayers et al. reported that TIS was associated with
objective response to pembrolizumab across a variety of
tumors, so TIS has potential pan-cancer applicability in
predicting response to PD-1 checkpoint blockade [12].
Finally, to screen for novel suppressive mechanisms,

this study searched for biological pathways associated
with low TIS scores. Metabolism, ribosomal, and
telomere-associated pathways all predicted lower TIS
scores in multiple cancer types. No targetable oncogenic
pathways were associated with TIS.
This study has several technical limitations. The TIS

algorithm is an investigational assay on the NanoString
nCounter platform that was developed with data from
clinical trials of the checkpoint inhibitor pembrolizumab,
whereas TCGA samples were profiled using RNAseq
from biopsies taken at diagnosis. Data from the
nCounter-based assay differs from TCGA RNASeq data
in several ways: in the NanoString assay, a different
platform is used to measure gene expression, patient
sample data are normalized to an in-vitro transcribed
RNA reference sample to control for technical effects,
FFPE tissue is used, and tissues with < 50% tumor are
macrodissected. To the extent that these differences in-
fluence gene expression measurements by changing
probe efficiencies, a reasonable model for most of the ef-
fects, TCGA TIS scores will only be shifted by a constant
from what the TIS assay would have returned from the
same tissues. The effect of different macrodissection
protocols, however, is variable and hard to predict, and
could plausibly cause more complex inter-assay TIS
score differences.
Another limitation of the current study is that it re-

lies upon the early stage tumors that were collected
in the TCGA cohort and thus may not be well
matched to the late stage disease where immunother-
apy is being applied clinically today. However, at the
time of this work, large publicly available gene ex-
pression profiling datasets of late stage cancer cohorts
are not available. Furthermore, clinical trials in im-
munotherapy are being deployed earlier in the course
of disease where the TCGA cohort is more represen-
tative of the clinical population.
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Despite these limitations, this analysis of TCGA
data shows the value (both from a mechanistic and a
clinical point of view) of analytically validated gene
expression signature measuring the level of T cell
inflammation as an immune-phenotyping tool across
different histologically defined tumor types. It also
highlights the need for broader characterization of the
mechanisms of immune evasions operating within the
T cell inflamed and non-inflamed tumors, ideally in
the same assay, maximizing the clinically actionable
information extractable from a single tumor sample.
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