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The face inversion effect (FIE) is a behavioral marker of face-specific processing that

the recognition of inverted faces is disproportionately disrupted than that of inverted

non-face objects. One hypothesis is that while upright faces are represented by

face-specific mechanism, inverted faces are processed as objects. However, evidence

from neuroimaging studies is inconclusive, possibly because the face system, such as

the fusiform face area, is interacted with the object system, and therefore the observation

from the face system may indirectly reflect influences from the object system. Here we

examined the FIE in an artificial face system, visual geometry group network-face (VGG-

Face), a deep convolutional neural network (DCNN) specialized for identifying faces.

In line with neuroimaging studies on humans, a stronger FIE was found in VGG-Face

than that in DCNN pretrained for processing objects. Critically, further classification error

analysis revealed that in VGG-Face, inverted faces were miscategorized as objects

behaviorally, and the analysis on internal representations revealed that VGG-Face

represented inverted faces in a similar fashion as objects. In short, our study supported

the hypothesis that inverted faces are represented as objects in a pure face system.

Keywords: face inversion effect, deep convolutional neural network, VGG-Face, face system, AlexNet

INTRODUCTION

Faces are an important type of visual stimulus in human social life and interaction, conveying
a wealth of characteristic information (e.g., identity, age, and emotion) (Bahrick et al., 1975;
O’Toole et al., 1998; Rhodes et al., 2011). Previous studies have found that humans processed faces
differently from ordinary objects (e.g., Tanaka and Sengco, 1997). A classic manifestation of face
specificity was the face inversion effect (FIE) (Yin, 1969; Valentine, 1988), in which humans are
disproportionately less likely to recognize a face correctly when it is inverted than when an object
(e.g., a cup) is inverted. However, the underlying mechanism of the FIE remains unclear.

Neuroimaging studies have been conducted to investigate how face-selective regions respond to
upright and inverted faces. They found that the fusiform face area (FFA) is activated more highly
when processing upright faces than inverted faces (Kanwisher et al., 1998; Yovel and Kanwisher,
2005; Epstein et al., 2006; Mazard et al., 2006). Further, the neural FIE observed in the FFA is
positively correlated with behavioral FIE, suggesting that the FFA is likely the neural basis of the FIE
(Yovel and Kanwisher, 2005; Zhu et al., 2011). In contrast, the activation of lateral occipital cortex
(LOC), which is specialized for processing objects (Malach et al., 1995; Epstein, 2005), is greater
during processing inverted faces than upright faces (Haxby et al., 1999; Yovel and Kanwisher, 2005).
Taken together, the double dissociation of upright and inverted faces is considered as evidence that
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they are processed by the face system and object system,
respectively. However, the findings are inconclusive; for example,
the FFA is still responsive to inverted faces (Kanwisher et al.,
1998; Yovel and Kanwisher, 2005) and the LOC is still responsive
to upright faces (Haxby et al., 1999; Yovel and Kanwisher, 2005).
It is possibly because the FFA is interacted with the LOC (Haxby
et al., 1999; Yovel and Kanwisher, 2005; Epstein et al., 2006)
and cannot completely rule out the influences from the object
processing system.

Deep convolutional neural network (DCNN), which is
inspired by biological visual systems, is used to simulate human
vision recently (Kriegeskorte, 2015; Parkhi et al., 2015; Simonyan
and Zisserman, 2015; Krizhevsky et al., 2017; Liu et al., 2020;
Song et al., 2020; Huang et al., 2021; Tian et al., 2021; Zhou
et al., 2021). Here we used a representative DCNN for face
recognition, VGG-Face (Parkhi et al., 2015), which is pretrained
to identify faces only. In recent years, various deep learning
methods have been used in face recognition systems (Fuad et al.,
2021). Among the various methods, DCNN is the most popular
deep learning method for face recognition (Fuad et al., 2021).
Further, visual geometry group network-face (VGG-Face) is one
of the most commonly used CNN models for face recognition
(e.g., Ghazi and Ekenel, 2016; Karahan et al., 2016; Grm et al.,
2017) and has shown successful performance of face recognition
under various conditions (Ghazi and Ekenel, 2016). Therefore,
we selected VGG-Face in the present study as representative of
face recognition models. VGG-Face provides an ideal model for
human face system, completely insulated from the interference
of the object system. Here we asked how the artificial face system,
VGG-Face, represented inverted faces.

METHODS

Deep Convolutional Neural Networks
As a pure face system, VGG-Face (available in https://www.
robots.ox.ac.uk/~vgg/software/vgg_face/) is pretrained with the
VGG Face Dataset. The architecture of VGG-Face includes 13
convolutional layers and 3 fully connected layers (i.e., FC1,
FC2, and FC3), and the FC3 is a 2,622-dimensional classifier,
corresponding to the 2,622 face identities to be identified during
pretraining (Parkhi et al., 2015).

FIGURE 1 | Example stimuli in our study. (A) Top, upright faces; bottom, inverted faces. (B) Top, upright objects; bottom, inverted objects.

To compare the FIE between face system and object
system, we used AlexNet (available in https://pytorch.org/) as
an object system, which was pretrained for classifying objects
with the ImageNet data set (Krizhevsky et al., 2017). AlexNet
has an eight-layer architecture; the first five layers are the
convolutional layers, and the last three layers are fully connected
layers (i.e., FC1, FC2, and FC3); the FC3 layer is a classifier
of 1,000 units.

To examine the effects of network architecture and pretraining
task on the FIE, we also used VGG-16 (Simonyan and Zisserman,
2015), which has the same network architecture as VGG-Face
but the same pretraining experience as AlexNet. In addition, we
used an AlexNet with the same pretraining experience of face
recognition as VGG-Face using the VGG Face Dataset (Grm
et al., 2017).

Experiment Settings
The Face and Object Data Sets
We used a data set of 60 groups of images, of which 30
groups were face images and 30 groups were object images
(Figure 1). Each group of face images contained images of
one individual in different scenes, all selecting from CASIA-
WebFace database (Yi et al., 2014). To rule out the effect of
the pretrained face identities on the transfer training, the face
identities in our data set did not overlap with those in VGG-
Face pretraining data set. Each group of object images contained
images of one specific cup in different scenes, and all object
images were selected from the Internet. All the images were
evaluated to ensure that the face or object in each image was
complete. In each group, there were 75 images for transfer
training, 25 images for validation, and 50 upright images and 50
inverted images for testing. The inverted stimuli were obtained
by rotating the upright images 180 degrees. Thus, a total of
12,000 images were used in this study, with 4,500 images used
for training, 1,500 images used for validation, and 6,000 images
used for testing (1,500 upright faces, 1,500 inverted faces, 1,500
upright objects, and 1,500 inverted objects). Before training,
the input images were normalized to a uniform size of 224
× 224 and normalized according to the mean and standard
deviation of the ImageNet database (mean= [0.481,0.457,0.398],
std= [0.237, 0.232, 0.231]).
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Transfer Learning
The transfer learning included a training period and a validation
period. During the training period, the DCNNs were trained
to classify images of 30 face identities and 30 cup identities.
All network parameters of the pretrained DCNNs were frozen
except for the last FC3 layer, using DNNBrain (Chen et al.,
2020) based on the PyTorch. The FC3 layer of the DCNNs
was changed to an FC classifier of 60 units to fit the training
task. The 60-group data set was presented to DCNNs, and
the classifiers of the FC3 layers were trained. A total of 100
epochs were performed in the training period, and the loss
value of the network was generated after each epoch. The
loss fluctuates within a stable range when the training is
finished. After the training period, other exemplars of the 60
faces and cup identities were presented to the DCNNs in the
validation period, and the recognition accuracy of validation
was evaluated.

Testing Experiment
After transfer learning, we presented upright faces, inverted
faces, upright objects, and inverted objects to the DCNNs
in the testing experiment. The recognition accuracy was
obtained by comparing the output and input identities
of each image. Further, for classification error analysis,
we examined the errors the DCNNs made in different
conditions (i.e., whether upright/inverted faces were classified
as objects and whether upright/inverted objects were classified
as faces).

To further explore how the DCNNs represented upright and
inverted images, we used representational similarity (RS) analysis
(Kriegeskorte et al., 2008) to examine the RS of different stimulus
identities in the DCNNs. We used DNNBrain (Chen et al., 2020)
to extract the activation values of the 6,000 testing images in
the three FC layers of the DCNNs. For both networks, the
activation values of 4,096 units in FC1, 4,096 units in FC2,
and 60 units in FC3 were extracted. The activation values of
the 50 upright images and 50 inverted images of each identity
were averaged, respectively, and for each identity, the activation
patterns of upright and inverted conditions were obtained in each
FC layer. Then, Pearson’s correlation was calculated to obtain the
representation similarity of different stimulus identities in each
FC layer.

RESULTS

Transfer Learning of VGG-Face
VGG-Face was trained to classify images of 30 face
identities and 30 cup identities in transfer learning. The
training performance reached stability after 50 epochs. The
validation accuracy of VGG-Face was 67.8%, significantly
higher than the random level (random accuracy = 1.67%),
which indicated that the transfer learning of VGG-Face
was successful.

FIE in VGG-Face
We first examined whether there was an FIE in VGG-Face as
a pure face system. We performed a two-way ANOVA analysis

on recognition accuracy with orientation (upright, inverted)
and stimuli category (faces, objects) as factors (Figure 2A).
The main effects of both orientation [F(1, 116) = 824.76,
p < 0.001] and stimulus category [F(1, 116) = 55.90, p < 0.001]
were significant. There was an interaction between stimulus
category and orientation [F(1, 116) = 228.58, p < 0.001].
The accuracy of inverted images decreased more in face
condition [F(1, 116) = 960.8, p < 0.001] than in object condition
[F(1, 116) = 92.47, p < 0.001], indicating that there was an FIE
in VGG-Face.

To further investigate why the VGG-Face showed an FIE,
we examined the classification errors of VGG-Face in different
conditions. While all upright faces were classified as faces and
all upright and inverted objects were classified as objects, only
17% of the inverted faces were classified as faces and 83%
were classified as objects in VGG-Face (Figure 2B). This result
suggested that VGG-Face showed an FIE because it tended to
classify inverted faces as objects.

VGG-Face Represented Inverted Faces
Similarly as Objects
The misclassification of inverted faces as objects behaviorally
suggested that inverted faces might be representedmore similarly
to objects in VGG-Face. To test this intuition, we performed
the RS analysis in the three FC layers of VGG-Face. We found
that in FC1 and FC2, the representation of inverted faces was
clustered with that of the objects, rather than with that of
upright faces (Figure 2C). In FC1 layer, the RS within upright
faces (0.27) was much lower than that within inverted faces
(0.84) and within objects (0.94). Importantly, the RS between
inverted faces and objects was 0.66, while the RS between
inverted and upright faces was only −0.037, and that between
upright faces and objects was −0.07. The results in FC2 layer
showed a similar pattern as in FC1. That is, the RS within
upright faces (0.12) was much lower than that within inverted
faces (0.82) and within objects (0.91). The RS between inverted
faces and objects was 0.59, while the RS between inverted and
upright faces was only −0.002, and that between upright faces
and objects was −0.013. In FC3 layer, we observed that the
representations of upright faces, inverted faces, and objects were
clustered into three clusters (Figure 2C). The RS within upright
faces was 0.66, the RS within inverted faces was 0.71, and
the RS within objects was 0.87. The RS between upright faces
and inverted faces was 0.21, the RS between upright faces and
objects was−0.68, and the RS between inverted faces and objects
was −0.05. These results indicated that inverted faces were
represented more similarly as objects than as upright faces in the
FC layers of VGG-Face, providing representational basis for the
behavioral results that VGG-Face tended to classify inverted faces
as objects.

AlexNet Did Not Show an FIE
Having shown the FIE and revealed its internal representations
in a pure face system, VGG-Face, we next examined whether
the FIE was specific to the pure face system or would also
be observed in an object system. Here we used AlexNet
(Krizhevsky et al., 2017), which was pretrained for object
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FIGURE 2 | Recognition performance and representations of VGG-Face. (A) The recognition accuracy of the upright and inverted faces and objects of VGG-Face.

The error bars denote the standard error of the mean across the 30 groups of images in each condition. (B) The classification confusion matrix of VGG-Face. The

percentage in the matrix denotes the classification errors of VGG-Face in each condition. (C) The representational similarity matrix of the three FC layers in VGG-Face.

The color in the matrix indicates correlation values between activation patterns of different stimulus identities, with cool color in the matrix indicating low correlation

and the warm color indicating high correlation.

categorization with ImageNet. The same procedure of
transfer learning was applied for AlexNet as for VGG-
Face, the training performance reached stability after 40
epochs. After training, the validation accuracy of AlexNet
was 69%.

To examine whether there was an FIE in AlexNet, we
performed a two-way ANOVA of orientation (upright, inverted)
by stimuli category (faces, objects) on recognition accuracy. The
main effects of both orientation [F(1, 116) = 62.27, p < 0.001]
and stimulus category [F(1, 116) = 70.43, p < 0.001] were
significant, but the interaction between stimulus category and
orientation was not significant [F(1, 116) = 2.57, p = 0.11]
(Figure 3A). This result indicated that there was no FIE in
AlexNet. We also performed a three-way ANOVA of orientation
(upright, inverted), stimuli category (faces, objects), and network
(AlexNet, VGG-Face), and the significant three-way interaction
[F(1, 232) = 40.41, p < 0.001] indicated that VGG-Face showed a
greater FIE than AlexNet.

Then, we examined the classification errors of AlexNet in
different conditions. In contrast to VGG-Face where most
inverted faces were classified as objects, 99.7% of the inverted
faces were classified as faces in AlexNet (Figure 3B). Besides, all
upright faces were classified as faces, and all upright objects and
99.5% inverted objects were classified as objects in AlexNet. These

results suggested that inverted faces were represented similarly as
upright faces, rather than objects, in AlexNet.

To test this hypothesis, we performed the RS analysis in the
three FC layers of AlexNet. We found that the representations
of faces and objects were grouped into two clusters in AlexNet,
regardless of the upright and inverted orientations (Figure 3C).
In all FC layers, the within-category RS was greater than the
between-category RS. That is, the RS between upright and
inverted faces (FC1 layer was 0.86; FC2 layer was 0.86; FC3
layer was 0.78) and the RS between upright and inverted objects
(FC1 layer was 0.62; FC2 layer was 0.64; FC3 layer was 0.79)
were greater than the RS between faces and objects (FC1 layer
was 0.19; FC2 layer was 0.34; FC3 layer was −0.63). These
results indicated that upright and inverted faces were similarly
represented in AlexNet.

VGG-16 Pretrained With Object
Classification and AlexNet Pretrained With
Face Recognition
The different FIEs observed in VGG-Face and AlexNet might
be accounted for either by their different network architectures
or by different pretraining tasks (face recognition vs. object
classification). In order to explore the effects of pretraining
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FIGURE 3 | Recognition performance and representations of AlexNet. (A) The recognition accuracy of the upright and inverted faces and objects of AlexNet. The

error bars denote the standard error of the mean across the 30 groups of images in each condition. (B) The classification confusion matrix of AlexNet. The percentage

in the matrix denotes the classification errors of AlexNet in each condition. (C) The representational similarity matrix of the three FC layers in AlexNet. The color in the

matrix indicates correlation values between activation patterns of different stimulus identities, with cool color in the matrix indicating low correlation and the warm color

indicating high correlation.

experience and network architecture on FIE, two more
experiments were conducted. First, we used VGG-16 (Simonyan
and Zisserman, 2015), which has the same network architecture
as VGG-Face but the same pretraining task of object classification
as AlexNet. Second, we used an AlexNet trained from scratch
with the same pretraining experience of face recognition as
VGG-Face (Grm et al., 2017).

The same procedure of transfer learning was applied, and
the training performance reached stability after 50 epochs. After
training, the validation accuracy was 65.4% for VGG-16 and
64.7% for AlexNet.

For VGG-16, we performed a two-way ANOVA of
orientation (upright, inverted) by stimuli category (faces,
objects) on recognition accuracy. The main effects of both
orientation [F(1, 116) = 51.73, p < 0.001] and stimulus category
[F(1, 116) = 150.98, p< 0.001] were significant, but the interaction
between stimulus category and orientation was not significant
[F(1, 116) = 0.96, p = 0.32] (Figure 4A). That is, the VGG-16
pretrained with object classification did not show an FIE.

Similar analysis was performed for the AlexNet pretrained
with face recognition. The main effect of orientation
[F(1, 116) = 223.96, p < 0.001] was significant and the main
effect of stimulus category was not significant [F(1, 116) = 0.002,
p = 0.96]. Importantly, there was an interaction between
stimulus category and orientation [F(1, 116) = 17.29, p < 0.001]

(Figure 4B). The accuracy of inverted images decreased more
in face condition [F(1, 116) = 182.85, p < 0.001] than in object
condition [F(1, 116) = 58.37, p < 0.001], indicating that there was
an FIE in the AlexNet pretrained for face recognition.

Taken together, the two network architectures showed similar
FIE after pretrained with face recognition task, but showed no
FIE after pretrained with object classification task. These results
suggested that the observed FIE in DCNNs may result from
pretraining experience of face recognition, rather than particular
DCNN network architectures.

DISCUSSION

In this study, we used VGG-Face to examine whether there
was an FIE in an artificial pure face system and how
upright and inverted faces were represented in this system.
We found that there was an FIE in VGG-Face and the
FIE was stronger than that in AlexNet which was pretrained
for processing objects. Further classification error analysis
revealed that in VGG-Face, inverted faces were misclassified as
objects behaviorally, and the analysis on internal representations
revealed that the VGG-Face represented inverted faces in
a similar fashion as objects. These findings supported the
hypothesis that inverted faces are represented as objects
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FIGURE 4 | Recognition performance of VGG-16 and AlexNet pre-trained with face recognition. (A) The recognition accuracy of the upright and inverted faces and

objects of VGG-16 pretrained with object classification. (B) The recognition accuracy of the upright and inverted faces and objects of AlexNet pretrained with face

recognition. The error bars denote the standard error of the mean across the 30 groups of images in each condition.

in the face system. Although fMRI studies have revealed
some neural basis of FIE, especially in the FFA (Yovel and
Kanwisher, 2005), the results are inconclusive, which may
be due to the fact that the face system is not completely
insulated from object system in human brain. By using an
artificial pure face system as well as a pure object system,
our study provides a clearer account for the representations
underlying FIE.

The FIE found in VGG-Face as a pure face system is consistent
with previous human fMRI findings showing an FIE (i.e., higher
response to upright than inverted faces) in the face-selective
FFA, and the FIE in the FFA correlates with the behavioral FIE
(Yovel and Kanwisher, 2005). Further, fMRI adaptation results
provide a possible neural basis for the behavioral FIE by showing
that the FFA was more sensitive to identity differences between
upright faces than inverted faces (Yovel and Kanwisher, 2005).
This finding fits nicely with our results that the RS within upright
faces was much lower than that within inverted faces and objects
in VGG-Face, indicating that different identities were more
uniquely represented in upright faces than inverted faces. Our
results are also consistent with a previous study which showed
a similar FIE using pretrained VGG-Face (Elmahmudi and Ugail,
2019).

More importantly, we extended previous finding by revealing
representations underlying the observed FIE. First, we found
that VGG-Face misclassified the inverted faces as objects
behaviorally. This result is in line with neuropsychological
finding that a patient with object recognition impairment was
severely impaired in recognition of inverted faces, but normal at
recognition of upright faces (Moscovitch et al., 1997). Moreover,
RS analysis showed that in VGG-Face, inverted faces were
represented similarly as objects, while representation of upright
faces was separate from those of inverted faces and objects.
Together, these results provide novel and clear evidence for an
account of human FIE that inverted faces are represented by

general object mechanisms whereas upright faces are represented
by mechanisms specialized for faces (Yin, 1969; Pitcher et al.,
2011).

In contrast, the AlexNet and VGG-16 pretrained for
object categorization did not show an FIE, and upright and
inverted faces were similarly represented in AlexNet. This
result is consistent with human fMRI results that the object-
selective LOC shows similar sensitivity to face identities for
upright and inverted faces (Yovel and Kanwisher, 2005).
Notably, although the AlexNet did not show a behavioral
FIE in our study, it is reported that responses of face-
selective units in untrained AlexNet responded more
highly to upright faces than inverted faces (Baek et al.,
2021). The discrepancy may be caused by different analysis
levels (behavioral level vs. single unit response level) or
different layers (FC layers vs. convolution layers). It will be
interesting to examine whether untrained AlexNet will show an
FIE behaviorally.

In sum, the present study showed an FIE in an artificial
pure face system. Our study highlighted the important role of
pretraining of face identification for a system to show the FIE;
future studies are awaited to examine whether other DCNN
networks or other types of deep learning models pretrained with
face identification tend to show a similar FIE and whether the
exposure of face stimuli or the task of face identification is
more critical. Additionally, our study provided evidence for a
possible mechanism of the FIE that inverted faces are represented
as objects while the upright faces are represented differently
from objects and inverted faces. Human behavioral studies have
suggested that processing of upright faces is special in that they
are processed in a holistic manner, while processing of inverted
faces and non-face objects is based on featural information
(Young et al., 1987; Tanaka, 1993; Farah et al., 1995; Tanaka
and Sengco, 1997; Maurer et al., 2002; Tanaka and Farah,
2006). Future studies are invited to examine in what manners
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upright and inverted faces are represented in artificial face
system. Finally, our study may inspire more researchers to use
DCNNs to explore the cognitive mechanisms of face recognition,
especially the problems that cannot be solved with human
subjects because of some limitations (such as ethics, experience,
and workload).
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