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Abstract: A non-destructive identification method was developed here based on dropout deep belief
network in multi-spectral data of ancient ceramic. A fractional differential algorithm was proposed
to enhance the spectral details by making use of the difference between the first and second-order
differential pre-process spectral data. An unsupervised multi-layer restricted Boltzmann machine
(RBM) was employed to extract some high-level features during pre-training. Some weight and bias
values trained by RBM were used to initialize a back propagation (BP) neural network. The RBM
deep belief network was fine-tuned by the BP neural network to promote the initiative performance
of network training, which helped to overcome local optimal limitation of the network due to the
random initializing weight parameter. The dropout strategy has been put forward into the RBM
network to solve the over-fitting of small sample spectral data. The experimental results show that
the proposed method has excellent recognition performance of the ceramics by comparisons with
some other ones.

Keywords: dropout deep belief network; ancient ceramic; multi-spectral data; fractional order
differential; non-destructive identification

1. Introduction

As one of the great treasures of world cultural heritage, ancient ceramics has many
kinds, all of them having rich cultural connotations and high scientific and technological
research value for the study of human civilization history. In the traditional identification
method of the ceramics, the ceramics are identified mainly by means of an eye view, hand
touch, and other sensory means from the aspects of shape, glaze color, and body of ceramics.
Experienced experts provide recognition and conclusion through the personally empirical
combination of vision and tactile sense. Since there is no standard for the classification of
ceramics, it is difficult for people to unify the fault source in the dating and the authenticity
discrimination of ceramics [1]. To overcome the limitations of personal experience, a lot of
research on ceramics has been done. X-ray diffraction, scanning electron microscopy, and
spectral analysis were usually carried out to discriminate ceramics [2–8]. Another research
area is based on the manufacturing process of ceramics, including firing temperature, raw
material treatment, and glaze formula [9–13]. Some researchers have studied the differences
in element composition and other related information of ceramics from different origins
and periods [14,15].

Certain machine learning methods such as pattern recognition and artificial intelli-
gence [16–20] have been increasingly applied to the ceramic discrimination in recent years.
A fuzzy clustering method [16] was selected to classify ceramic fragments according to
the surface texture of ceramics. Cluster analysis requires high similarity within the same
species, and it needs to initialize cluster centers in advance. Different cluster centers will
lead to different clustering results, and so the classification stability is not ideal. Back
propagation (BP) neural network [17] was used to perform data stream classification. Since
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BP neural network is prone to fall into local optimum due to different values of random
initialization weight parameters, the overall classification performance is limited. The
celadon classification model was established in [19] through a combination of random for-
est algorithm and Mahalanobis distance. Random forest is also prone to cause over-fitting
due to multi-spectral data with anomaly to some extent.

Some machine learning approaches [21–27] have been developed to improve classi-
fication performance further. Analysis of performance quality and tuning effects of the
machine-learning techniques was presented in [21], in which Adaboost ensembles were
more easily optimized than the other techniques. The performance of thirteen methods was
investigated for modelling and predicting mortgage early delinquency probabilities [22].
Heterogeneous ensemble methods lead to other methods in the training, out-of-sample,
and out-of-time datasets in terms of risk classification. A model called B2S has been pro-
posed by gathering the advantages of the ensemble-based approaches to overcome the
imbalance problem of the EOR dataset [23]. This provided the highest accuracy among the
10 models studied.

Several feature ranking methods have been evaluated for improving RFBoost [24]. A
version of RFBoost namely “RFBoost1” was proposed in [24]. A distributed kernel extreme
learning machines algorithm was proposed in [25]. The distributed subnetwork was
adopted to reduce the computational complexity. A dual-branch deep convolution neural
network was proposed for Polarimetric SAR image classification in [26]. The extracted
features were combined into a fully connected layer that shares the polarization and spatial
property. An ensemble of online linear models was developed to make predictions in
partial feature information in [27]. The online feature selection approach adopted a linear
model as the base classifier.

Since most of the acquired ceramics are rare and precious material wealth, its structure
is not allowed to be destroyed. A well-known method applied is called non-destructive
testing (NDT) [28]. The NDT techniques do not permanently alter the physical character-
istics of the tested product. Furthermore, the NDT techniques are used because they are
cheap and fast, and also the evaluation of the quality of the product is instantaneous [29].
Hyperspectral imaging is a popular non-destructive testing technique widely used for
discriminating the information of the ceramics [2,3]. However, the hyperspectral imaging
technique depends on the material properties of the surfaces to be monitored and on the
environmental conditions [30–32].

A non-destructive method for determining information of the ceramics is developed
in this paper. A frame of non-destructive ceramic identification based on multiple sensors
includes (1) data acquisition; (2) data processing; (3) classification recognition. In the signal
acquisition step, a spectrometer used provides hundreds of bands in specific parts of the
electromagnetic spectrum. In the second step, data processing aims to suppress the influ-
ence of noise and irrelevant information from the spectral data. The objective is to enhance
the spectral information that affects the discriminating results as well as computational
efficiency. Our experimental results show that the classification accuracy of the ceramics is
only 84.52% without differential treatment (order 0), while the classification accuracy based
on different fractional differential is significantly higher than that of order 0. When the
fractional differential is 0.6, the classification performance is the best, reaching 93.7%. In
classification recognition, unsupervised multi-layer restricted Boltzmann machine (RBM)
is employed to extract the features of the high-level spectral data further. The mean correla-
tion coefficient of spectral data between features before RBM is 0.8916, while the correlation
coefficients after dimension reduction by the first and second RBM are 0.5365 and 0.3861,
respectively. This indicates that the correlation between features and redundancy can be
significantly reduced by RBM. The deep belief network has been used to classify ceramics
from different dynasties. When the number of RBM is 2 with 100 hidden layer nodes and
the dropout ratio is 0.5, the classification performance is optimal. The average classification
accuracy of all the ceramics is 92.8%, and the accuracy of the Qionglai is the highest with
93.7%.
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The main contributions are as follows. The first contribution of the developed method
is that we propose a dropout deep-belief network to realize the non-destructive identifica-
tion of ceramics. Dropout strategy has been put forward into a RBM deep belief network
to solve the over-fitting of small sample spectral data. The second contribution is that we
propose a fractional differential algorithm to enhance the spectral information by making
use of the difference between the first-order and second-order differential spectral data. A
third important contribution is to discriminate the ceramics from the spectral data without
any hypothesis in advance. Comparison with some investigated methods indicates the
superior performance of the proposal. A flow diagram is shown in Figure 1.

Figure 1. A flow chart of ceramic dating identification in multi-spectral data.

The spectral data of ceramics are acquired by a UV-VIS-NIR analyzer. Some ceramic
samples are given in Figure 2

Figure 2. Some examples of the ceramic samples.

The spectral data are pre-processed based on fractional differential, and background
information and noise interference are suppressed at first. Unsupervised learning RBM is
selected to pre-train the deep network and to extract the features of the high-level spectral
data. BP neural network is initialized with the weight parameters obtained from RBM
pre-training, which are used to fine-tune the deep belief network. In addition, the deep
belief network is fine-tuned to overcome the limitation of neural network falling into local
optimal due to random initialization of weight parameters. In order to avoid over-fitting of
small sample data in the training, a dropout random discard strategy is proposed to reduce
the inter-dependence among the features. Both objective and quantitative comparisons are
done with some methods. The experimental results show that the proposed method has
excellent recognition performance of ceramics.

2. Experimental Data and Preprocessing
2.1. Spectral Data Acquisition

A PG2000-Pro UV-VIS-NIR spectrometer produced by Ideaoptics was adopted to
collect the spectral data from different kilns. The incidence angle was measured at 10◦–60◦

at intervals of 5◦. The measurement angle was controlled by rotating a machine acquisition
arm attached to a turntable whose rotation was controlled by a programmable motor.
The reflection spectrum of the ceramic was obtained by measuring the ratio of reflected
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light at different incidence angles to the light source. The total number of valid sample
data in the 300–1108 nm band was 3586, and each spectral data contained 1024 observed
values. These samples included 638 pieces from Qionglai, 583 from Ru, 594 from Yaozhou,
572 from Guan, 583 from Yue, and 616 ones from Jun kilns in China. Some spectral curves
of the sample from one kiln are shown in Figure 3.

Figure 3. Some spectral curves of the ceramic from one kiln.

It can be found from Figure 3 that the spectral curve has obvious burrs, especially at
the range of 1000–1108 nm, which indicates there is a large spectral amplitude fluctuation
anomaly. In order to get a reliable classification model of the ceramics, it is necessary
to perform pre-processing as follows. In order to suppress the influence of noise and
irrelevant information from the spectral data for the ceramics discrimination, Savitzky–
Golay (S-G) filtering [33] was used to smooth the spectral data. The smoothed spectral
curve is shown in Figure 3b. A multivariate scattering correction (MSC) [34] was selected
to further smooth the spectral curve for avoiding the influence of uneven distribution on
the sample surface. Some results are given in Figure 3c. It can be seen from Figure 3c that
the difference between the spectral curves with different incident angles was significantly
reduced after MSC. Even so, there is amplitude fluctuation anomaly seen, especially at
the range of 1000–1108 nm still. In order to get a reliable classification of the ceramics, the
visible-near-infrared band with a spectral wavelength range of 400–1000 nm is selected for
analysis and discussion.

2.2. Pre-Processing Based on Fractional-Order Differential Spectrum

In the fields of traditional signal analyzing and processing, especially in singularities
inspecting and extracting, integral differential-based algorithms have been wildly applied.
However, the essence of modern signal analyzing and processing is to study the signals
that feature non-linear, non-causal, non-minimum phase systems, non-Gaussian, non-even,
nonintegral differential, and non-white additive noise [35]. Fractional differential is an
effective mathematical method for dealing with fractal problems [36]. Many findings
show that fractional-based algorithms are powerful approaches for dealing with the above-
mentioned non-problems in signal processing [37–39]. In addition, fractional differential
can be used for non-linearly enhancing complex fractal-like spectral data details [39,40].
Therefore, we could implement the Grümwald–Letnikov-based fractional differential.

In order to further enhance the spectral information, the first and second-order deriva-
tives of the spectral curves corrected by MSC are carried out. Some results are given in
Figure 4.

The first-order derivative was selected to eliminate some linear noise and background
information. The second-order differentials was used to eliminate the effects of baseline
drift and background information. In addition, both the first and second-order differentials
are used together to enhance spectral details. It can be seen from Figure 4 that the spectral
curves of the first-order differential and the second-order differential differ greatly. In
order to make use of the difference between first-order and second-order differentials, a
fractional differential algorithm is proposed to pre-process spectral data.
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Figure 4. The first and second-order differentials pre-processing.

Fractional differentiation is an extension of integer-order differentiation, which is used
to study the mathematical properties and applications of differential mathematics of any
order [41]. The fractional differential of Grunwald–Letnikov [42] is as follows:

dα f (x)
dxq = lim

h→0

1
hα

t−a
h

∑
m=0

(−1)m Γ(α + 1)
m!Γ(α−m + 1)

f (x−mh) (1)

where α is differential order, h is differential step length, Г is a gamma function, q is a real
number, f (x) is a one-dimensional signal, t is a time variable of a one-dimensional signal, m
∈ Z, Z is a set of integers.

Since the sampling interval of spectral data is 0.6 nm, h in Equation (1) is set as 0.6 in
the later experiment. The fractional differential of Equation (1) is expressed as following
according to the limit theorem:

w(α)
0 = 1; w(α)

m =

(
1− α + 1

m

)
w(α)

m−1;
dα f (x)

dxq ≈ 1
hα

t−a
h

∑
m=0

(−1)mw(α)
m f (x−mh) (2)

where w(α)
m represents the coefficient after m iterations with α order.

The differential results of different orders among 0.2–2.0 (interval is 0.2) can be ob-
tained according to Equation (2). The data were mapped to 0–1 using the linear normaliza-
tion method. Some results are shown in Figure 5.

Figure 5. Different order differential processing of spectral data.

It can be preliminarily found from Figure 5 that the spectral data have a gradual
process with the increase of the differential order. How to discriminate the ceramics with
different order differentials would be discussed and analyzed in subsequent experiments.

3. Classification of Ceramics Based on Dropout Deep Belief Network
3.1. Deep Belief Network

BP is a kind of widely used neural network model, which is often used in pattern
classification. It is easy to fall into the local optimum due to its random initialization of
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weights and thresholds [43]. A deep belief network method for ceramics discrimination is
proposed based on the RBM and BP neural networks. The network model is composed of
a certain number of RBM and a layer of supervised BP back propagation network, shown
as Figure 6.

Figure 6. Deep belief network model diagram.

The training of the deep belief network is divided into two stages: pre-training and
fine-tuning to get good network parameters. The network adopts a step-by-step training
strategy to carry out unsupervised training on each RBM layer during the pre-training.
We first determine how the output of hidden layer l satisfies the following conditional
probability according to the energy function of RBM and Bayesian equation [44]:

p(lj = 1|vi) =
1

1 + exp(−bj−
m
∑

i=1
wijvi)

= sigmoid(bj +
m

∑
i=1

wijvi) (3)

where wij represents the connection weight between visual layer unit vi and hidden one lj,
bj is the bias of the hidden layer unit lj, sigmoid represents S function operator.

When the data of the output layer are determined, the conditional probability of the
input visual layer element is as follows:

p(vi = 1|l) = 1

1 + exp(−ai −
n
∑

j=1
wijlj)

= sigmoid(ai +
n

∑
j=1

wijlj) (4)

where ai represents the bias of the visual layer unit vi.
Some redundant and irrelevant features will inevitably be introduced due to the

high dimension of the original spectral data. In addition, some components may even
play a negative role and bring about a dimension disaster. Both feature dimension and
redundancy reduction strategies were adopted to overcome the limits as mentioned above.
The deep belief network uses the stacked RBM structure to take the hidden layer output
of the lower layer as the visible one input of the higher one. Some high level features of
spectral data were extracted.

The following parameters were obtained by maximizing the logarithmic likelihood
function of RBM on the input layer data v as:

∂ ln L(w, a, b)
∂wij

= p(lj = 1|v)vi −∑
v

p(v)p
(
lj = 1|v

)
vi (5)

∂ ln L(w, a, b)
∂ai

= vi −∑
v

p(v)vi (6)
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∂ ln L(w, a, b)
∂bj

= p(lj = 1|v)−∑
v

p(v)p
(
lj = 1|v

)
(7)

where L(w, a, b) represents the likelihood function with w connection weight, a and b biases.
The probability distribution p(v) requires a lot of calculation, and it cannot be calcu-

lated directly. The gradients in Equations (5)–(7) are approximately computed [45,46] as
follows:

ai = ai + ε
[
vi

(0) − vi
(k)
]

(8)

bj = bj + ε
[

p(lj = 1|v(0))− P(lj = 1|v(k))
]

(9)

∆wij = wij + ε
[

p(lj = 1|v(0))vi(0) − P(lj = 1|v(k))vi
(k)
]

(10)

where ε is the learning rate, vi
(0) is the sample value, vi

(k) is the sample satisfying distribution
p(v).

The supervised BP network is used for training during the fine-tuning. The back
propagation of the BP network is used to return the error and to further fine-tune the
weights and threshold parameters of the depth belief network so that the error between
the actual output and the expected one can reach the minimum value.

3.2. Dropout Random Discard Strategy

Deep neural network is mainly applied to a large number of data samples. For small
sample data or samples with low characteristic dimensions, over-fitting may occur in the
network. In order to prevent over-fitting, the following dropout strategy was developed in
the deep belief network as follows. In the network training, the weights of some hidden
layer nodes are randomly disabled with a certain probability p as shown in Figure 7.

Figure 7. Dropout strategy in deep belief networks.

The output of the j-th node in the hidden layer is as follows:

lj = Xjsigmoid(bj +
m

∑
i=1

wijvi) =

 sigmoid(bj +
m
∑

i=1
wijvi), if Xj = 1

0, other else Xj = 0
(11)

where P(Xj = 0) = p, p is the percentage of hidden nodes that are randomly discarded, Xj
represents whether the j-th node works or not.

Non-working nodes can temporarily be considered not part of the network structure.
Its weight is retained, and it is only temporarily not updated. During the next iteration,
these non-working hidden layer nodes may be re-used for training. In the case of small
sample training data, too many iterations may lead to interdependencies among nodes.
Some nodes in the hidden layer are randomly discarded during each iteration of dropout
strategy, so the training network changes with each iteration to prevent interdependence
between features.
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4. Experimental Results and Discussions
4.1. Fractional Differential Order

The α in Equation (2) is set as 0–2 with an interval of 0.2 for differential pretreatment,
and the dropout-DBN deep belief network was used to classify the ceramics. The number
of RBM layers was set as 2 layers, and the number of nodes in the hidden layers of RBM
was fixed as 100. The result is shown in Figure 8.

Figure 8. Classification performance of the ceramics with different α values for the Qionglai ceramics.

It can be seen from Figure 8 that the classification performance of the ceramics im-
proves with α increasing. When α is 0.6, the classification performance is the best. Then,
classification performance decreases with α increasing. The performance is the lowest
when α is 0, that is, no differential treatment is performed. The results show that fractional
differential pretreatment is helpful to the discrimination of the ceramics. In the subsequent
experiments, α in Equation (2) is set as 0.6 and keep the same.

4.2. Network Parameters

Since the range of the ceramic data used is 400–1000 nm and the sampling interval is
0.6 nm, the characteristic dimension of spectral data is 1000 ones. The number of units in
the input layer of the first RBM in the dropout deep network was set as 1000. The number
of units for hidden layer H and the number of RBM will be discussed later.

4.2.1. RBM Number

In the dropout deep network, the number of stacked RBM affects the depth and
classification performances. The higher RBM number is helpful to extract more high-level
features for the classification performance. However, RBM makes the network depth
deeper, the classification performance would be reduced [44,47,48]. On the one hand, the
increase in the number of RBM means that more parameters are required to participate in
the network model operation, which leads to the over-fitting of the network model. On the
other hand, when the number of RBM increases, the errors caused by BP neural network
for fine-tuning will be accumulated in the back propagation process.

In order to get the optimal number of RBM, the enumeration method was used to
change the number of RBM from 1 to 6 in the experiment. The mean square error of the
actual output Yk and the expected output Ok is used for evaluation as:

E =
1
2

r

∑
d=1

q

∑
k=1

(Ydk−Odk)
2 (12)

where r is the sample number, q is the node number of output layer.
Some results for mean square error and overall classification accuracy for the ceramic

are shown in Figure 9.
It can be seen from Figure 9 that the number of RBM has significant influence on the

classification performance. When the number of RBM is 1, the mean square error is large,
which indicates that the characteristics of RBM output layer cannot well fit the spectral data
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of input layer at this time. When the number of RBM increases to 2, the mean square error
decreases significantly, and the classification performance reaches the optimal level. With
the increase of RBM number, the mean square error increases gradually, and classification
performance decreases gradually. The optimal number of RBM is 2. In the subsequent
experiments, the number of RBM is set as 2 and keep the same.

Figure 9. The output mean square errors and classification performances in different restricted
Boltzmann machines (RBMs) for the Qionglai ceramics.

4.2.2. RBM Hidden Layer Node Number

The more nodes there are in the RBM hidden layer, the more accurate the distribution
of training data can be represented by the RBM hidden layer [33,49]. The network may not
be trained at all, or the network performance is poor if the number of hidden layer nodes
is too small. However, if the number of nodes in the hidden layer is too great, the error
would be increased. On the one hand, the training time of the whole network model would
be prolonged. On the other hand, it is still easy to fall into the local minimum value instead
of the optimal one. The number of hidden layer nodes must be far less than the number
of training data, otherwise the network model has no generalization ability. In order to
select the optimal number of hidden layer nodes, the enumeration method is selected to
change the number of RBM hidden layer nodes from 50 to 300 with an interval of 20. The
experimental results are shown in Figure 10.

Figure 10. The output mean square errors and classifications in different RBM hidden layer nodes
for the Qionglai ceramics.

One can find from Figure 10 that with the increase of the number of hidden layer nodes,
the mean square error decreases gradually, and the classification performance increases
gradually at first. When the number of hidden layer nodes is 100, the mean square error is
significantly reduced, and the classification performance reaches the optimum. With the
increase of the number of hidden layer nodes, the mean square error gradually increases,
while the classification performance decreases gradually. It shows that when the number
of hidden layer nodes is 100, the network performance is optimal. The number of nodes in
RBM hidden layer is set as 100 and remains unchanged in the later experiment.
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4.2.3. Dropout Ratio

The relationship between the proportion of randomly discarded hidden layer nodes
and classification performance is shown in Figure 11.

Figure 11. Some classification results in different dropout discard rates for the Qionglai ceramics.

It can be seen from Figure 11 that the classification performance is significantly im-
proved after the dropout strategy. When the dropout ratio is 0.50, the classification perfor-
mance is the highest with 93.7%. The classification performance decreases continuously
with the increase of dropout discard ratio after 0.50. The dropout discard ratio is set as 0.50
and remains the same in the experiment.

4.3. Objective Quantitative Evaluation and Comparison

In order to further verify the fact that the stacked RBM can be used to eliminate some
redundant features, Pearson correlation coefficient is selected to evaluate the performance
as [50,51]:

R =
|cov(X, Y)|√

var(Xi)var(Yi)
(13)

where cov (X,Y) is the covariance of characteristic subset X and Y; var (Xi) and var (Yi)
represent the variances for X and Y, respectively.

The correlation between different features is lower if R in (13) is smaller, which
indicates that the redundancy degree of the feature set is lower. The dimension of spectral
data is 1000, and the size of the correlation coefficient matrix obtained is 1000 × 1000 before
the characteristic dimension reduction. After the dimension reduction, the dimension is 100,
and the size of the correlation coefficient matrix obtained is 100 × 100. Since the correlation
coefficient matrix is large, the mean value and variance of correlation coefficients between
statistical features are selected to perform comparison and analysis as shown in Table 1.

Table 1. Analysis of multispectral data before and after dimension reductions.

Feature Dimension Mean Variance Maximum Minimum

before reduction 1000 0.8916 0.0126 0.9976 0.5154

first layer RBM 100 0.5365 0.0869 0.7763 0.0798

second layer RBM 100 0.3861 0.1256 0.5736 0.08687

It can be found from Table 1 that the correlation between the features before dimen-
sion reduction (1000 dimensions) is as high as 0.8916, while the variance is only 0.0126.
After dimension reduction by RBM in the first layer and the second layer, the correlation
coefficient is reduced to 0.5365 and 0.3861, respectively. This indicates that the correlation
between features is significantly reduced, and the data redundancy is significantly reduced
compared with that before dimension reduction.

Here, a 30-time 10-fold cross-validation was selected to perform a classification of
the ceramics from six different kilns as mentioned above. In order to visually show the
classification results, the confusion matrix was adopted, as shown in Figure 12.
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Figure 12. Classification performance of different kilns in confusion matrix.

The rows and columns of the confusion matrix represent the real category and the
predicted category, respectively. Accuracy is calculated as the number of samples correctly
predicted divided by the total number of samples.

In order to further evaluate whether the proposed method is effective to identify
the ceramic from different kilns, the proposed method was compared with some other
ones [16,17,19]. To get a fair test, a 30-time 10-fold cross-validation was done at the
experiment. The algorithms used in [16,17,19] were used for experimental comparisons
based on the obtained spectral data as mentioned above. The parameters used are all
those recommended by the authors in [16,17,19], respectively. The experimental results are
shown in Table 2.

Table 2. Experimental comparisons in different methods.

Method Accuracy Rate (%)

Fuzzy clustering 85.8

BP network 86.3

machine learning 89.6

Ours 92.8

One can find from Table 2 that the classification performance in our method is the
best among the investigated methods [16,17,19]. The main reason is that the dropout deep
belief network model proposed provides an appropriate initial value for BP neural network
parameters through RBM unsupervised learning in the pre-training stage. The developed
strategy avoids falling into the local optimum by random initialization weights of the
BP network [17]. Fuzzy clustering [16] is prone to fall into the local optimum because
of the fact that whether the cluster center value is appropriate. Different cluster centers
would cause different clustering performances. Random forest [19] is also prone to cause
over-fitting since the multi-spectral data obtained have obvious amplitude fluctuation
anomaly, which is effectively solved by the developed pre-processing and the dropout
deep belief network model.

5. Conclusions

A ceramic non-destructive identification method was proposed based on multi-
spectral data. The spectral data are pre-processed in a fractional order differential way at
first. The dropout deep belief network was adopted to realize classification of the ceramics.
BP neural network was overcome in order to fall into the local optimum due to random
initialization of the weight parameter. The dropout strategy was developed into a RBM
deep belief network to solve the over-fitting of small sample spectral data. The experi-
mental results show that the proposed method has excellent performance in the ceramics
non-destructive identification.
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13. Vlase, D.; Rogozea, O.; Moşoiu, C.; Vlase, G.; Lazău, R.; Vlase, T. Thermoanalytical investigations of some ceramics dated from

the Neolithic period, discovered at Oxenbrickel, Sânandrei, Romania. J. Therm. Anal. Calorim. 2019, 138, 2145–2157. [CrossRef]
14. Li, L.; Yan, L.T.; Feng, S.L.; Xu, Q.; Liu, L.; Huang, Y.; Feng, X.Q. Elemental characterization by EDXRF of imperial Longquan

Celadon Porcelain excavated from Fengdongyan Kiln, Dayao County. Archaeometry 2016, 57, 966–976. [CrossRef]
15. Sun, H.Y.; Li, L.; Zheng, J.M.; Yan, L.T.; Huang, Y.; Feng, X.Q. A study on the elemental composition of Chinese mise type wares

from different periods and kilns. Archaeometry 2018, 60, 33–41. [CrossRef]
16. Qi, L.Y.; Wang, K.G. Kernel fuzzy clustering based classification of ancient ceramic fragments. In Proceedings of the 2nd IEEE

International Conference on Information Management and Engineering, Chengdu, China, 16–18 April 2010; pp. 348–350.
17. Zhang, B.; Wang, G.; Guilin, X.; Xue, L. An improving data stream classification algorithm based on BP neural network. In

Proceedings of the International Conference CSPS, Dalian, China, 14–16 July 2018; pp. 145–153.
18. Mu, T.; Wang, F.; Wang, X.; Luo, H. Research on ancient ceramic identification by artificial intelligence. Ceram. Int 2019, 45,

18140–18146. [CrossRef]
19. Sun, H.; Liu, M.; Li, L.; Yan, L.; Zhou, Y.; Feng, X. A new classification method of ancient Chinese ceramics based on machine

learning and component analysis. Ceram. Int. 2020, 46, 8104–8110. [CrossRef]
20. Wang, E.; Xiong, Y.; Zhu, Y.; Wu, J. Regional microstructural characteristics between the body and glaze of ancient Chinese

ceramics. Ceram. Int. 2020, 46, 22253–22261.
21. Bustillo, A.; Urbikain, G.; Perez, J.M.; Pereira, O.M.; Lacalle, L.N.L. Smart optimization of a friction-drilling process based on

boosting ensembles. J. Manuf. Syst. 2018, 48, 108–121. [CrossRef]
22. Chen, S.; Guo, Z.; Zhao, X. Predicting mortgage early delinquency with machine learning methods. Eur. J. Oper. Res. 2021, 290,

358–372. [CrossRef]

http://doi.org/10.1007/s10973-018-7244-5
http://doi.org/10.1016/j.jasrep.2016.02.013
http://doi.org/10.1016/j.microc.2015.12.009
http://doi.org/10.1016/j.sab.2018.07.012
http://doi.org/10.1177/0003702819861576
http://doi.org/10.1016/j.ceramint.2016.02.072
http://doi.org/10.1016/j.ceramint.2017.05.334
http://doi.org/10.1016/j.ceramint.2019.02.125
http://doi.org/10.1007/s10973-009-0226-x
http://doi.org/10.1016/j.ceramint.2016.08.126
http://doi.org/10.1016/j.ceramint.2016.10.095
http://doi.org/10.1016/j.ceramint.2019.04.031
http://doi.org/10.1007/s10973-019-08767-8
http://doi.org/10.1111/arcm.12149
http://doi.org/10.1111/arcm.12355
http://doi.org/10.1016/j.ceramint.2019.06.003
http://doi.org/10.1016/j.ceramint.2019.12.037
http://doi.org/10.1016/j.jmsy.2018.06.004
http://doi.org/10.1016/j.ejor.2020.07.058


Sensors 2021, 21, 1318 13 of 13

23. Pirizadeh, M.; Alemohammad, N.; Manthouri, M.; Pirizadeh, M. A new machine learning ensemble model for class imbalance
problem of screening enhanced oil recovery methods. J. Pet. Sci. Eng. 2021, 198, 8214. [CrossRef]

24. Salemi, B.A.M.; Noah, A.S.A.M. Feature ranking for enhancing boosting-based multi-label text categorization. Expert Syst. Appl.
2018, 113, 531–543. [CrossRef]

25. Lu, J.; Huang, J.; Lu, F. Distributed kernel extreme learning machines for aircraft engine failure diagnostics. Appl. Sci. 2019, 9,
1707. [CrossRef]

26. Gao, F.; Huang, T.; Wang, J. Dual-branch deep convolution neural network for Polarimetric SAR image classification. Appl. Sci.
2017, 7, 447. [CrossRef]

27. Ditzler, G.; Barck, J.L.; Ritchie, J.; Rosen, G.; Polikar, R. Extensions to online feature selection using bagging and boosting. IEEE
Trans. Neural Netw. Learn. 2018, 29, 4504–4509. [CrossRef]

28. Rosado, L.S.; Santos, T.G.; Piedade, M.; Ramos, P.M.; Vilaca, P. Advanced technique for non-destructive testing of friction stir
welding of metals. Measurement 2010, 43, 1021–1030. [CrossRef]

29. Cunha, R.; Maciel, R.; Nandi, G.S.; Daros, M.R.; Cardoso, J.P.; Francis, L.T.; Ramos, V.F.C.; Marcelino, R.; Frohlich, A.A.; Araujo,
G.M.D. Applying non-destructive testing and machine learning to ceramic tile quality control. In Proceedings of the VIII Brazilian
Symposium on Computing Systems Engineering (SBESC), Salvador, Brazil, 5–8 November 2018; pp. 54–61.

30. Czimmermann, T.; Ciuti, G.; Milazzo, M.; Chiurazzi, M.; Roccella, S.; Oddo, C.M.; Dario, P. Visual-based defect detection and
classification approaches for industrial applications—A survey. Sensors 2020, 20, 1459. [CrossRef]

31. Wei, Y.; Li, X.; Pan, X.; Li, L. Nondestructive classification of soybean seed varieties by hyperspectral imaging and ensemble
machine learning algorithms. Sensors 2020, 20, 6980. [CrossRef] [PubMed]

32. Pevenage, J.V.; Baeck, M.; Verhaeven, E.; Vincze, L.; Moens, L.; Vandenabeele, P. First spectroscopic analysis of lead glazes of
Belgian tile panels. J. Cult. Herit. 2020, 41, 27–33. [CrossRef]

33. Patchava, K.C.; Alrezj, O.; Benaissa, M.; Behairy, H. Savitzky-Golay coupled with digital bandpass filtering as a pre-processing
technique in the quantitative analysis of glucose from near infrared spectra. In Proceedings of the 38th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp.
6210–6213.

34. Jayanthi, M.; Mohd, S.; Caliman, J.P. Robust generalized multiplicative scatter correction algorithm on pretreatment of near
infrared spectral data. Vib. Spectrosc. 2018, 97, 55–65.

35. Pu, Y.F.; Zhou, J.L.; Yuan, X. Fractional differential mask: A fractional differential-based approach for multiscale texture
enhancement. IEEE Trans. Signal Process. 2010, 19, 491–511.

36. Rocco, A.; West, B. Fractional calculus and the evolution of fractal phenomena. Phys. A 1999, 265, 535–546. [CrossRef]
37. Almeida, L. The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 1994, 42, 3084–3091.

[CrossRef]
38. Unser, M.; Blu, T. Fractional splines and wavelets. SIAM Rev. 2000, 42, 43–67. [CrossRef]
39. Ozaktas, H.M.; Zalevsky, Z.; Kutay, M.A. The Fractional Fourier Transform: With Applications in Optics and Signal Processing; Wiley:

London, UK, 2001.
40. Linfei, C.; DaomuImage, Z. Encryption with fractional wavelet packet method. Int. J. Light Electron. Opt. 2006, 119, 286–291.
41. Khudair, A.R.; Haddad, S.A.M.; Khalaf, S.L. Restricted fractional differential transform for solving irrational order fractional

differential equations. Chaos Solitons Fractals 2017, 101, 81–85. [CrossRef]
42. Tang, S.; Ying, Y.; Lian, Y.; Lin, S.; Yang, Y.; Wagner, G.J.; Liu, W.K. Differential operator multiplication method for fractional

differential equations. Comput. Mech. 2016, 58, 1–10. [CrossRef]
43. Liu, P.; Zhang, W. A fault diagnosis intelligent algorithm based on improved BP neural network. Int. J. Pattern Recogn. 2019, 33,

9028. [CrossRef]
44. Xie, C.; Lv, J.; Li, X. Finding a good initial configuration of parameters for restricted Boltzmann machine pre-training. Soft.

Comput. 2016, 21, 6471–6479. [CrossRef]
45. Liu, Z.C.; Cai, W.S.; Shao, X.G. Outlier detection in near-infrared spectroscopic analysis by using Monte Carlo cross-validation.

SCI China Ser. B 2008, 51, 751–759. [CrossRef]
46. Zhang, M.; Zhang, S.; Iqbal, J. Key wavelengths selection from near infrared spectra using Monte Carlo sampling-recursive

partial least squares. Chemometr. Intell. Lab. 2013, 28, 17–24. [CrossRef]
47. Everard, C.D.; Mcdonnell, K.P.; Fagan, C.C. Prediction of biomass gross calorific values using visible and near infrared spec-

troscopy. Biomass Bioenerg. 2012, 45, 203–211. [CrossRef]
48. Fu, X. Unsupervised Pre-training classifier based on restricted Boltzmann machine with imbalanced data. In Proceedings of the

International Conference on Smart Computing and Communication, Shenzhen, China, 17–19 December 2016; pp. 102–110.
49. Lee, T.; Yoon, S. Boosted categorical restricted Boltzmann machine for computational prediction of splice junctions. In Proceedings

of the 32nd International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 2483–2492.
50. Zhelezniak, V.; Savkov, A.; Shen, A.; Hammerla, N.Y. Correlation coefficients and semantic textual similarity. arXiv 2019,

arXiv:1905.07790.
51. Atoum, I. Scaled Pearson’s correlation coefficient for evaluating text similarity measures. Mod. Appl. Sci. 2019, 13, 26–38.

[CrossRef]

http://doi.org/10.1016/j.petrol.2020.108214
http://doi.org/10.1016/j.eswa.2018.07.024
http://doi.org/10.3390/app9081707
http://doi.org/10.3390/app7050447
http://doi.org/10.1109/TNNLS.2017.2746107
http://doi.org/10.1016/j.measurement.2010.02.006
http://doi.org/10.3390/s20051459
http://doi.org/10.3390/s20236980
http://www.ncbi.nlm.nih.gov/pubmed/33297289
http://doi.org/10.1016/j.culher.2017.11.010
http://doi.org/10.1016/S0378-4371(98)00550-0
http://doi.org/10.1109/78.330368
http://doi.org/10.1137/S0036144598349435
http://doi.org/10.1016/j.chaos.2017.05.026
http://doi.org/10.1007/s00466-016-1320-0
http://doi.org/10.1142/S0218001419590286
http://doi.org/10.1007/s00500-016-2205-z
http://doi.org/10.1007/s11426-008-0080-x
http://doi.org/10.1016/j.chemolab.2013.07.009
http://doi.org/10.1016/j.biombioe.2012.06.007
http://doi.org/10.5539/mas.v13n10p26

	Introduction 
	Experimental Data and Preprocessing 
	Spectral Data Acquisition 
	Pre-Processing Based on Fractional-Order Differential Spectrum 

	Classification of Ceramics Based on Dropout Deep Belief Network 
	Deep Belief Network 
	Dropout Random Discard Strategy 

	Experimental Results and Discussions 
	Fractional Differential Order 
	Network Parameters 
	RBM Number 
	RBM Hidden Layer Node Number 
	Dropout Ratio 

	Objective Quantitative Evaluation and Comparison 

	Conclusions 
	References

