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ABSTRACT

Much remains unknown about the progression and
heterogeneity of mutational processes in different
cancers and their diagnostic and clinical potential.
A growing body of evidence supports mutation rate
dependence on the local DNA sequence context for
various types of mutations. We propose several tools
for the analysis of cancer context-dependent mu-
tations, which are implemented in an online com-
putational framework MutaGene. The framework ex-
plores DNA context-dependent mutational patterns
and underlying somatic cancer mutagenesis, ana-
lyzes mutational profiles of cancer samples, identi-
fies the combinations of underlying mutagenic pro-
cesses including those related to infidelity of DNA
replication and repair machinery, and various other
endogenous and exogenous mutagenic factors. As
a result, the combination of mutagenic processes
can be identified in any query sample with sub-
sequent comparison to mutational profiles derived
from malignant and benign samples. In addition,
mutagen or cancer-specific mutational background
models are applied to calculate expected DNA and
protein site mutability to decouple relative contri-
butions of mutagenesis and selection in carcino-
genesis, thus elucidating the site-specific driving
events in cancer. MutaGene is freely available at
https://www.ncbi.nlm.nih.gov/projects/mutagene/.

INTRODUCTION

Cancer genomics studies have revealed high intra- and inter-
tumor phenotypic and genetic heterogeneity (1–3). This
may be the consequence of various forms of infidelity of
DNA replication and repair machinery, differences in tu-
mor micro-environments and various other endogenous

and exogenous mutagenic factors. A growing body of evi-
dence supports mutation rate dependence on the local DNA
sequence context for various types of mutations (4) and
sequence motifs (5). Several DNA context-dependent mu-
tational patterns have been reported that are character-
istic for a particular cancer type, tissue (6–11) or muta-
gen (12–16): UV light, chemical agents, aberrant activity
of APOBEC/Activation Induced Deaminase (AID)-family
cytidine deaminases and defective mismatch repair or other
factors. In addition, sequence dependent structural and
thermodynamic properties of the DNA molecule may also
affect the DNA repair and replication, and therefore muta-
genesis (17,18). Relative contributions of extrinsic and in-
trinsic factors to DNA mutagenesis have long been debated
and the consensus view suggests that many different mu-
tagenic processes have cumulatively shape the observed so-
matic mutational profiles in cancer.

DNA context-dependent mutational patterns have been
analyzed previously (10,17,19–23). Some of these studies
examined local DNA sequence contexts around mutated
sites for several thousands of cancer genomes and exomes
and reported 5 to 30 pervasive mutational signatures (21).
It was suggested that these signatures could correspond to
the underlying processes of mutagenesis and the etiology of
some of them was characterized. Moreover, several compu-
tational tools were created to derive signatures from the can-
cer genomics data (24–28). Nonetheless, there is still a lim-
ited understanding of extracted signatures and their clinical
potential.

Identification of cancer driver genes and mutations is one
of the central problems in cancer research. This calls for
further advances in computational techniques to more pre-
cisely predict the effects of cancer mutations on protein sta-
bility, binding and function (29,30). Statistical models ac-
counting for differential transition and transversion muta-
tion frequencies, kataegis and naı̈ve estimates of the back-
ground somatic mutation rates have been used in several
driver prediction methods (31). In order to leverage an ex-
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ponential growth of cancer sequencing data and existing ev-
idence of dependence of mutation rate on cancer type and
local DNA sequence contexts (32), it is necessary to explic-
itly integrate the context-dependent mutations into the can-
cer specific mutational models to reduce false positive rates
in driver gene and driver mutation predictions (33,34).

Here we propose several methods for the analy-
sis of context-dependent mutations, which are imple-
mented in an online computational framework MutaGene
(https://www.ncbi.nlm.nih.gov/projects/mutagene/). Muta-
Gene constructs DNA context-dependent mutational pro-
files and derives signatures from major cancer whole exome
and genome sequencing studies available through the Inter-
national Cancer Genome Consortium (ICGC) and the Can-
cer Genome Atlas (TCGA) repositories. Mutational pro-
files are categorized based on cancer type and primary tu-
mor sites and are normalized by removing the bias from
mutational hotspots with recurring mutations. Mutational
profiles from the human germline SNPs and benign tissue
samples from cancer patients are examined as well. Individ-
ual cancer samples are further analyzed in terms of their
underlying mutagenesis to explore within and between can-
cer heterogeneity.

The proposed methods can analyze any given set of muta-
tions, determine the contributions of predefined annotated
mutational signatures and identify the cancer type, primary
tumor site and cohorts of patients with similar mutagenic
processes. This can be interpreted in terms of malfunctions
in DNA damage repair mechanisms and exposure to muta-
gens, for further analyzes with regard to survival, treatment
prognosis and drug response. Finally, for any gene or ge-
nomic region, MutaGene can apply context-dependent mu-
tational profiles and individual signatures to calculate the
background DNA mutability and amino acid substitution
rates expected from a given underlying mutagenesis process
and not affected by selection. The background mutability
can be compared to the observed frequencies of mutations
in cancer patients that allows to link cancer genotype with
the phenotype to decipher relative roles of mutagenesis and
selection in carcinogenesis.

MATERIALS AND METHODS

Data sources for extracting cancer mutations

In order to avoid a bias toward more frequently sequenced
genes or mutations identified by genotyping we only con-
sidered single base substitutions in protein-coding genomic
loci from the whole genome and whole exome-sequenced
samples originating from ICGC (35) projects, TCGA (36)
and the Pediatric Cancer Genome Project (Supplementary
Figure S1). We relied upon annotations from The Cata-
logue of Somatic Mutations in Cancer (COSMIC) release
v75 (37) that curates mutations from these sources and veri-
fies whether mutations are somatic, discarding all mutations
with an ‘unknown somatic status’. Currently, MutaGene in-
cludes 9450 cancer samples from 37 projects with 1,139,534
non-recurring mutations (Figures 1B and S2). Additionally,
we included 1,953 somatic mutations identified in 70 benign
TCGA samples (38) and common germline variants with no
clinical association from the dbSNP database (39).

Construction of context-dependent mutational profiles

We identified the DNA sequences of transcripts affected
by mutations using GRCh38 reference human genome as-
sembly. The nucleotide context of a mutation was de-
fined as the neighboring nucleotides in 5′ and 3′ direc-
tions from the mutated nucleotide according to the tran-
script sequence. Altogether, six substitution types (C→A,
C→T, C→G, T→A, T→C, T→G) in 16 possible 5′3′ con-
texts result in 96 context-dependent mutation types: τ =
{N [x ∈ Y → N\x] N} , where N = {A, T, C, G}. Given
the number of observed mutations fi for each type τi ,
a mutational profile can be represented as a probability
mass function of a multinomial distribution for all possible
context-dependent mutation types V(v1, . . . , v96) : vi =

fi∑
i fi

= Pr(mutation = τi ) . Recurring mutations observed
at the same genomic location in multiple patients (Figures
S2 and S3) were counted only once since these mutations
and sites might be under selection (hotspots).

Derivation of mutational signatures

Cancer specific context-dependent mutational profile is a
manifestation of different mutational processes. These pro-
cesses may have distinct etiology and may result in distinct
sets of mutations in characteristic DNA sequence contexts,
so called context-dependent mutational signatures (21). Pre-
viously, the numeric deconvolution of matrices of muta-
tional profiles of cancer samples (Figure 2A) was obtained
using the non-negative matrix factorization (NMF) method
(28,40–42). The major goal of this procedure was to obtain
the underlying mutational signatures (Figure 2B) and rep-
resent cancer samples in terms of exposure to these signa-
tures (Figure 2C). Mutational signatures should ideally rep-
resent distinct uncorrelated context-dependent mutational
processes that can be further annotated in terms of their
etiology. Sparseness of mutational signatures becomes an
important aspect when it comes to annotation of signatures.
Assuming that a limited number of mutational processes af-
fects each cancer sample, the exposure matrix also has to be
sparse. Therefore we applied non-smooth (ns)NMF method
(43) with sparse random initialization allowing to obtain
sparse solutions for both signature and exposure matrices
(Supplementary Figures S7C and S7D) while avoiding high
correlation between the signatures (Supplementary Figure
S7B).

Given n cancer samples, we represented context de-
pendent mutations (m = 96) in these samples as a non-
negative matrix Vm × n . NMF finds two non-negative matri-
ces Wm × k and Hk × n for a given number of components k,
so that V ≈ WH. Matrix Wm × k contains k mutational sig-
natures and matrix Hk × n describes exposures of n samples
to k mutational processes defined by signatures in a matrix
W. In case of non-smooth NMF decomposition method
(nsNMF) (43), the problem is formulated as V ≈ WSH,
where a square non-negative smoothing matrix Sk × k allows
reconstructing into globally sparse solutions. Figure 2 and
Supplementary Figures S5 and S6 illustrate the deconvolu-
tion for NMF and nsNMF methods.

We analyzed the reproducibility of deconvolution results
by calculating a cophenetic correlation coefficient of con-
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Figure 1. Exploring and comparing context-dependent mutational profiles in various cancer types. (A) Mutational profiles of pan-cancer somatic muta-
tions, germline mutations (single nucleotide polymorphisms) and somatic mutations found in benign tissues in cancer patients. (B) The list of fingerprints
of mutational profiles of 37 cancer types defined based on large scale whole-genome and whole-exome projects. (C) Similarity matrix calculated by different
distance measures between cancer-specific mutational profiles and clustering of cancer types according to similarities of their profiles using cosine metric.
(D–F) 2D profiles of colon and gastric cancers illustrate within-cancer heterogeneity, where each line corresponds to the tumor sample and each column
to the type of context-dependent mutation. (E) Comparison of relative frequencies of mutation types between colon and gastric cancers on log scale.
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Figure 2. Decomposition of mutational profiles of pan-cancer samples into mutational signatures. (A) The matrix of mutational profiles of pan-cancer
samples V; (B) Ten mutational signatures MutaGene10 in matrix W annotated by the corresponding mutagenic processes and (C) exposure matrix H rep-
resenting relative contributions of mutational processes (represented by ten signatures) in each tumor sample. The matrices are transposed for visualization
purpose. Matrices V and H are heat maps where pixel intensity indicates the frequency, whereas in matrix W the values of row vectors as shown as bar
plots.

sensus matrix C̄ (see Supplementary Data). Previously it
was used to determine an optimal number of components
in NMF deconvolution as a point where this coefficient be-
gins to decrease (42). A consensus matrix C̄n × n is an av-
erage of connectivity matrices produced as a result of mul-
tiple runs of NMF or nsNMF algorithms. A connectivity
matrix Cn × n is calculated based on the exposure matrix H
and shows if samples are exposed to the same dominating
mutagenic process. Supplementary Figure S7A shows that
cophenetic correlation coefficient decreases after five and
ten components when applying NMF and nsNMF respec-
tively. Moreover, NMF deconvolution with more than ten
signatures/components resulted in highly correlated signa-
tures with correlation coefficients larger than 0.6 (Supple-
mentary Figures S7B and S13). Therefore, we used nsNMF
decompositions with five and ten components and obtained
two MutaGene5 and MutaGene10 signature sets listed and
annotated on the MutaGene website.

Identification of mutational profiles, signatures and muta-
genic processes for a query set of mutations

MutaGene tools determine the mutational DNA context
according to the reference human genome assembly and
construct a query mutational profile for any given set of mu-
tations. The query profile can be compared to the collection
of profiles in the MutaGene database using the ‘Identify’
tool, which ranks the query mutational profile by its dis-
tance to the MutaGene profiles using the k-nearest neigh-
bors classifier and distance measures listed in Supplemen-
tary Data. MutaGene also provides Naı̈ve Bayes, random
forest and linear support vector machines (SVM) classifiers

pre-trained with 4-fold cross-validation, treating different
cancer types and primary tumor sites as classification la-
bels. Performance evaluation results are shown in Supple-
mentary Figures S8–11. In addition, contributions (expo-
sures) h of pre-annotated signature sets W (MutaGene5,
MutaGene10 and COSMIC30) for a sample query profile
v are calculated by solving Wh = v with a non-negative
constrained least squares method.

Analysis of mutability

A mutational background model represented by the mu-
tational profile or mutational signature can be applied to
any protein-coding gene sequence or any other genomic
region in order to calculate the DNA mutability expected
for each particular site. DNA mutability of a base bi in
a trinucleotide context t = bi−1 bi bi+1 is calculated using
the total number of mutations Ft for a given trinucleotide t
according to the context-dependent mutational profile F .
Given the number of samples included in the mutational
profile nF and the number of trinucleotides t in a diploid
human exome xt according to the reference genome as-
sembly GRCh38, one can define mutability as ωt = Ft

nF xt
.

The number of trinucleotides in the human exome is calcu-
lated for each nucleotide base considering its trinucleotide
context. In case when mutability is calculated using signa-
tures, mutation rate Ft

nF
is set to 120, which corresponds

to the pan-cancer average of the number of mutations per
exome (Supplementary Figure S4). MutaGene also allows
to specify an arbitrary mutation rate for mutability calcu-
lations. Mutability is estimated per Megabase per sample
(Figure 3). Mutability of a codon � j is calculated as the
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Figure 3. Analysis of mutability in DNA and protein sequences. Two examples showing the results of mutability calculations using the pan-cancer muta-
tional profile: (A) a sequence fragment of TP53 gene and protein with Arg273 interacting with the DNA (red arrow) and Arg283 not in direct contact with
the DNA (blue arrow) and (B) mutability of site Leu858 (red arrow) in epidermal growth factor receptor (EGFR) gene and protein using a pan-cancer
mutational profile. Expected DNA mutability depending on the local sequence context, depicted as a green line, is scaled per Megabase DNA per cancer
sample. The heatmap shows expected mutabilities for each DNA position, where the color encodes silent, missense and nonsense nucleotide substitutions
and color intensity represents the scale of mutability values. Expected mutability is translated onto the protein level (shown in orange line for each codon)
and the heatmap below shows the mutability values for each amino acid substitution. Yellow circles indicate mutations observed in cancer patients, with
height of the pins showing relative numbers of observed mutations in log scale. Note that in sites pointed by arrows expected mutability and observed
mutation frequencies show the opposite trends. Such maps are generated by MutaGene ‘Analyze mutability’ tool and are designed for interactive use,
where clicking on a circle shows a distribution of observed mutations over cancer types.
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sum of mutabilities of the three nucleotides comprising the
codon � j = ∑3 j

i=1,3 j−2 ωi . Amino acid substitutions corre-
sponding to each mutation are calculated by translating the
mutated codon using a standard codon table. The relative
propensities of all types of mutations in a codon j includ-
ing missense, silent and nonsense mutations sum up to � j .

RESULTS

Exploring the diversity of mutational profiles in human cancer

A context-dependent mutational profile is a results of con-
tributions of different DNA context-dependent processes
characteristic for a given cancer sample. Importantly, mu-
tational profile is calculated solely based on the types of nu-
cleotide substitutions and their context, regardless of the
chromosome location and gene type. Mutational profiles
are represented as probability mass functions in order to
emphasize the relative mutational preferences, because an
absolute value of mutation rate (Supplementary Figure S2)
is not necessarily directly associated with the underlying
mutagenic processes and may be determined by the number
of replications, cell divisions and other factors (44). More-
over, some sites (hotspots) may harbor several hundreds of
mutations from different samples (45) and mainly represent
mutations offering selective advantage to the clone. In fact,
we found that about eight percent of all cancer mutations
were recurring. Proportions of recurring mutations varied
depending on cancer type reaching up to 30% of recur-
ring mutations in some cases (Figures S3). To avoid biases
caused by selection acting upon particular genomic sites,
mutational profiles have been derived by counting muta-
tions only once and excluding recurring mutations (Figure
S14).

A collection of mutational profiles in MutaGene allows
to explore the diversity of mutagenic processes in different
cancers and tissues (Figure 1B). In Figure 1A, a pan-cancer
somatic mutational profile is shown along with the pro-
files of germline mutations obtained from human SNPs and
somatic mutations found in benign human tissue samples.
Pan-cancer and most cancer specific mutational profiles
(Figure 1B) contain a dominating C→T mutations in the
NpCpG context, which is also characteristic for germline
mutational profile, pointing to striking similarities between
the accumulation of mutations in tumors and in germline
cells. The mutation rate at nucleotide C in the CpG dinu-
cleotide context associated with methylation was previously
found to be much larger than that of other sites (46). The
mutational profile of benign pan-tissue somatic mutations
allows distinguishing cancer-specific somatic patterns and
highlights the differences between benign and malignant tis-
sues, particularly in T→G and C→A transversions.

Figure 1C shows a heat map representing the pairwise
comparisons of all cancer-specific mutational profiles. This
comparison reveals inter-cancer similarities in terms of their
mutational profiles. Namely, the similarities have been de-
tected between lung and oral carcinomas; breast, bladder
and cervical carcinomas; liver and kidney carcinomas; and
a large group of blood, brain, gastric and colorectal can-
cers. However, while mutational profiles of different can-
cer types can be very similar, as in the case of colon and

gastric adenocarcinomas (cosine similarity of 0.98) (Figure
1E), mutational profiles of individual samples within the
same cancer type may reveal large heterogeneity. In Figure
1D and 1F individual cancer samples are ordered based on
the distances between their mutational profiles, shown as
bands on the heat maps, indicating that within cancer types
these differences may be more pronounced than between
cancer types. Understanding of cancer genetic heterogene-
ity is deeply rooted in our understanding of the underlying
mutagenic processes and will be explored in the following
sections.

Analysis of query mutational profiles

MutaGene can analyze any set of mutations from one or
several cancer samples to identify cancers of unknown pri-
mary tumor site, to detect the most likely mutagenic pro-
cess and to distinguish tumorigenic from benign mutation
sets (Supplementary Figure S12). First, a mutational pro-
file is calculated for a query sample of interest. Next, Mu-
taGene compares the query profile to the collection of pro-
files and signatures in the MutaGene database and calcu-
lates the contributions of different annotated mutagenic
processes to the mutational profile of interest (exposures).
We thoroughly assessed the performance of cancer type and
primary tumor site identification with a cross-validation
benchmarks, in particular the dependence of its accuracy on
the number of mutations in the query sample. We found that
the average accuracy of primary site identification ranges
from 38 to 85% (Supplementary Figure S9D). According
to our benchmarks, random forest classification method
outperformed multinomial Naı̈ve Bayes and SVM classifier
with a linear kernel (Supplementary Figures S9, S10), there-
fore random forest is used in MutaGene by default. For can-
cer types that have similar mutational profiles (Figure 1C),
it could be sufficient to identify a correct cancer or tissue
type within the top two or three matches. Using this more
relaxed criterion, the average accuracy of cancer type pre-
diction using random forest classifier increases from 66 to
90%, if we consider top three matches (Supplementary Fig-
ure S10B). For primary site prediction, the same approach
would show a boost in accuracy from 72 to 92% (Supple-
mentary Figure S10E).

Per-class performance analysis shows (Supplementary
Figure S11A and Table ST1) that some cancer types, such
as pancreatic cancer , breast cancer and renal adenocar-
cinoma are not predicted correctly as a top-matching hit.
Due to within-cancer heterogeneity, some samples belong-
ing to lung squamous cell carcinoma were attributed to lung
adenocarcinoma (LUAD), however almost all LUAD sam-
ples were correctly identified. Regarding the primary tu-
mor sites, esophagus and pancreas are the most problematic
sites, where the classifier incorrectly attributes most of the
samples to colon and stomach because mutational profiles
of stomach and colorectal samples are practically indistin-
guishable. However, despite high heterogeneity, MutaGene
correctly identifies the primary site for almost all liver, lung
and colorectal samples (Supplementary Figure S11B and
Table ST2). Therefore, we show that it is possible to iden-
tify cancer types and primary sites for a given cancer sample
with sufficient accuracy using only the information about
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its mutational profile. This analysis uncovers and illustrates
diagnostic potential of context-dependent mutational pro-
files, however in practical diagnostic applications it may be
necessary to combine mutational profile with other types of
data such as presence/absence of mutations in certain genes,
copy number variations, gene expression and DNA methy-
lation.

Estimating the background DNA and protein site mutability

MutaGene provides background mutational models in the
form of cancer-specific mutational profiles or mutagen-
specific signatures that can be used to calculate the num-
ber of mutations expected as a result of underlying muta-
genesis, not affected by selection pressure in somatic cells.
The site mutability (see ’Materials and Methods’ for defini-
tion) can be estimated for each genomic site thus allowing to
compare relative mutabilities of different sites between each
other and simultaneously relate them to the frequencies of
mutations observed in certain sites in cancer patients. For
protein-coding sequences MutaGene calculates the rates of
expected amino acid substitutions for each codon thus tak-
ing into account the local DNA context, the nucleotides sur-
rounding the codons of each amino acid. Figure 3A shows
the DNA and protein mutability for a fragment of gene
TP53 calculated using pan-cancer mutational profile. This
figure shows two sites: R273 that is involved in DNA bind-
ing (red arrow) and R283 site (blue arrow) that is not di-
rectly involved in binding of DNA. There is experimen-
tal evidence (47) that any missense mutations in codons of
DNA-binding arginine result in a loss of function, whereas
many amino acid substitutions of another arginine can be
tolerated (48). These two arginines have different mutabil-
ity values since mutability depends on both codons and nu-
cleotides surrounding these codons. Particularly interesting
is that the key position involved in interactions with DNA
(R273) has the highest numbers of observed mutations in
cancer patients, however its mutability is much lower than
that of other arginine (R283) that is not involved in DNA
interactions. Consistent with this, Figure 3B shows a very
low expected mutability of an oncogene epidermal growth
factor receptor (EGFR) L858 site (red arrow) although it is
frequently mutated in cancer. Respectively, expected muta-
bilities of adjacent codons, that are supposedly not under
selection in cancer, are high. In general, by comparing ob-
served frequencies to expected mutabilities one can poten-
tially get important clues about the potential cancer driving
events.

DISCUSSION

Cancers are notorious for their intra- and inter-tumor func-
tional and genetic heterogeneity, which imposes difficul-
ties in terms of cancer type classification and targeted drug
therapy. Exploring the heterogeneity of cancer in terms of
mutagenic processes is not trivial. First, mutational pro-
files of cancer samples with only a few mutations could be
too sparse and not well defined. Second, mutational pro-
files of samples represent a combination of different muta-
tional signatures and processes, many of which remain un-
characterized (21,22,49). Third, mutational processes may

act independently, but their signatures may be overlapping,
for instance the signature of somatic hypermutation en-
zyme, AID, as we identified recently, overlaps with the CpG
methylation site (50). Finally, mutational profiles and sig-
natures are intended to represent the context-dependent
propensities determined by the underlying background mu-
tagenic processes rather than selection and a signal com-
ing from selection processes is hard to eliminate. The evo-
lution of cancer is largely driven by somatic mutations and
clonal selection of these mutations (51); it is therefore im-
portant to decouple mutagenesis from selection in order
to characterize driving events in tumor evolution. Muta-
genesis can be affected by the local DNA sequence con-
text around the mutated site and therefore sequence con-
text should be accounted for in estimating the mutational
probability and mutation rate at any given site. Context-
dependent mutational models allow MutaGene to calculate
the expected background mutability of nucleotide and pro-
tein sites, thereby linking processes operating at the DNA
level to the protein phenotype. The choice of mutational
model is crucial and the expected mutability may largely de-
pend on the background model. Additionally, considering
mutational hotspots and excluding recurring mutations that
may be subject to selection is important for calculating the
accurate background mutational model.

In addition to histological characterization of a cancer
sample, methods of molecular diagnostics are aimed toward
correct and timely diagnosis and the optimal choice of per-
sonalized treatment for a cancer patient. Currently these
methods are mostly relying on biomarkers related to dif-
ferential gene expression, methylation, copy number varia-
tion and by the presence or absence of mutations in certain
genes. However, much remains unknown about the muta-
tional processes operating at the level of DNA in any given
cancer patient or sample. Identification of the underlying
mutational processes can improve molecular subtype clas-
sification, particularly in cancers with high heterogeneity.
Identification of cancer type and primary site is also impor-
tant for free-floating DNA blood samples and metastatic
cancer samples, where the original tumor site may be un-
known. Additionally, it may help to identify the actual
source of tumor in case of a metastatic sample. Mutational
studies in cell culture, viral and animal models may also re-
quire a comparison to the reference human datasets using
MutaGene. Coupled to the analysis of clinical features, such
as drug response, resistance and survival for different co-
horts of patients with similar mutational profiles mutational
analysis with MutaGene server provides an additional fac-
tor to consider in explaining cancer heterogeneity.

AVAILABILITY

MutaGene is freely available at https://www.ncbi.nlm.nih.
gov/projects/mutagene/.
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Supplementary Data are available at NAR Online.
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