
Transcriptional regulation via TF-modifying
enzymes: an integrative model-based analysis
Logan J. Everett1,2,*, Shane T. Jensen1,3 and Sridhar Hannenhalli1,2

1Genomics and Computational Biology Program, 700 Clinical Research Building, 415 Curie Boulevard,
Philadelphia, PA 19104, 2Penn Center for Bioinformatics, 3104G Biomolecular Sciences Building (#296),
College park, MD 20742 and 3Department of Statistics, The Wharton School, University of Pennsylvania,
Philadelphia, 463 Huntsman Hall, 3730 Walnut Street, Philadelphia, PA 19104, USA

Received November 17, 2010; Revised February 3, 2011; Accepted March 10, 2011

ABSTRACT

Transcription factor activity is largely regulated
through post-translational modification. Here, we
report the first integrative model of transcription
that includes both interactions between transcrip-
tion factors and promoters, and between transcrip-
tion factors and modifying enzymes. Simulations
indicate that our method is robust against noise.
We validated our tool on a well-studied stress
response network in yeast and on a STAT1-
mediated regulatory network in human B cells.
Our work represents a significant step toward a
comprehensive model of gene transcription.

INTRODUCTION

Transcription is a critical step in the expression of all gene
products, and is coordinately regulated to induce broad
changes in the cellular state. Eukaryotic gene transcription
follows an elaborate sequence of events involving modi-
fication enzymes, transcription factors (TFs), co-factors
and RNA polymerase (1–3). Constructing a comprehen-
sive model of gene transcription that incorporates
these various biological processes holds the potential
to decipher systems-level behavior in the cell (4,5). A
crucial component of transcriptional control relies on
sequence-specific binding of TF proteins to short DNA
sites in the relative vicinity of the target gene. However,
an effective interaction between the TF and the gene’s
regulatory elements is critically mediated by other
cellular processes and signaling pathways.

In response to various stimuli, cell signaling pathways
relay information to the nucleus and alter the transcrip-
tome, often via post-translational modification (PTM) of

the TF proteins (6–10). Numerous types of chemical modi-
fications of TF proteins have been documented, including
phosphorylation (11), acetylation (12,13) and methylation
(14). A classic example of PTM-mediated transcriptional
regulation involves the TF CREB, which requires phos-
phorylation of serine at position 133 in order to promote
transcription. This serine residue is targeted by multiple
signaling pathways, and coordinates different transcrip-
tional programs depending on other modified residues
(8). In this way, PTM-dependent TFs act as ‘molecular
switchboards’ mapping upstream signals to gene tran-
scripts and ultimately coordinating complex cellular re-
sponses to internal and external stimuli (7,8).
For many TFs, the full cohort of regulatory PTMs and

the modifying enzymes responsible for catalyzing their
addition and removal are not known. However, new ex-
perimental techniques (15–17) now provide additional
clues for this level of regulation. Given the importance
of PTMs in determining TF activity and the eventual
control of gene transcription, it is imperative that
models of transcriptional regulatory networks incorporate
PTMs and the mediating modification enzymes.
Most approaches to infer transcriptional regulatory

networks consider only regulatory interactions, or
‘network edges’, between TFs and target genes, and do
not include the modulators of these TF–gene interactions,
such as modification enzymes [see (4,5,18) for recent
reviews and (19–27) for specific examples]. Although a
few computational methods have been developed to
infer modulators of TF–gene interactions (28–34), none
of these methods infer the target genes and upstream
modifiers of a TF concurrently, nor do they integrate het-
erogeneous data sources.
Here we propose the first principled computational

model of gene transcription that explicitly incorporates
interactions between modifying enzymes and TFs, thus
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extending the prevalent view of TF–gene connectivity to
modifier–TF–gene connectivity. Our method, called
‘Modification-dependent Network-based Transcriptional
Estimator’ (MONSTER), combines expression compendia
with other data sources indicative of physical interactions
to simultaneously infer the target genes and upstream
modifiers of each TF. We first use simulated data sets to
demonstrate that our computational model and the par-
ameter estimation procedure are robust against noise
from a variety of sources. Next, we use a well-studied
stress–response regulatory network in the model system
Saccharomyces cerevisiae to demonstrate the accuracy of
MONSTER on experimental data.
Finally, we apply MONSTER to investigate the

STAT1-mediated regulatory network in human B cells.
B cells play a critical role in adaptive immune response,
and dysregulation of B cell networks can lead to a number
of human diseases including autoimmune disorders (35),
leukemias (36) and lymphomas (37). A highly pleiotropic
TF, STAT1 is a critical mediator of B cell development
and function and is subject to complex post-translational
regulation (38–41). MONSTER predicts a module of
STAT1 target genes and modifying enzymes active in B
cells, which is well-supported by the STAT1 literature, and
includes novel hypotheses about the role of STAT1 in
specific signaling pathways.

MATERIALS AND METHODS

Overview of MONSTER network model

The computational problem addressed here is the infer-
ence of a regulatory network model that incorporates:
(i) interactions between TFs and gene regulatory regions
and (ii) interactions between TFs and their modifying
enzymes. Here, we introduce the mathematical foundation
of our model, which is represented graphically in Figure 1.
We denote individual variables in italics and use bold font
to denote corresponding vectors and matrices of variables
(see Supplementary Tables S1 and S2 for a guide to our
notation).
The primary input for our method is an expression com-

pendium encompassing N target genes, J TFs and Kmodi-
fiers, all across T sample conditions. We define the
expression git of each target gene i in each condition t as
a function of four additive components: (i) basal expres-
sion �i, (ii) direct influence from regulating TFs, (iii) syn-
ergistic influence from specific TF–modifier pairs and (iv)
an error component eit encompassing technical and bio-
logical noise. These components are formally defined in
the following equation:

git ¼ �i+
XJ

j¼1

�jCijfjt+
XJ

j¼1

XK

k¼1

�jkCijDjk� fjt,hkt
� �

+eit ð1Þ

We apply Equation (1) to all genes i from 1 to N and all
samples t from 1 to T. The terms fjt and hkt denote the
expression values of TFs j and modifiers k, respectively.
Each TF j is assigned an ‘influence’ parameter �j, which
describes the linear relationship between TF expression
and target gene expression. Each TF–gene pair is

assigned an ‘edge’ indicator variable Cij, such that
Cij=1 if TF j is a regulator of gene i and Cij=0 other-
wise. Thus, TF j only directly affects the subset of genes
where Cij=1. Modifiers differ from TFs in our model in
that they do not influence target gene expression directly,
but rather indirectly by modulating TF activity. In the
second summation term, each TF–modifier pair (j,k)
has an influence parameter � jk and an edge indicator
variable Djk, analogous to the �j and Cij variables, respect-
ively. All TF–modifier synergy effects are assumed to
follow a non-linear function of the expression values,
denoted by �. In this work we use a sign-corrected
product, which is based on the biological intuition that
synergistic effects require sufficient expression of both
the TF and modifier to take effect (see Section 1 in
Supplementary Data). Error parameters eit are assumed
to be normally distributed with unknown model-wide
variance �2. The inference problem can now be ap-
proached as a probabilistic search for optimal parameters
that minimize the error variance �2.

We integrate additional knowledge of network structure
by defining prior probabilities for the edge variables
C and D. In particular, the C variables are given prior
probabilities derived from a weighted combination of
two sources:

P Cij ¼ 1
� �

¼ b
wj

ij m
1�wj

ij ð2Þ

In our applications, bij is a prior probability derived
from ChIP-seq binding experiments for TF j and mij is a
prior probability derived from scanning gene promoters
with a positional weight matrix (PWM) describing the
preferred binding sites of TF j. The weight parameter wj

provides a way to dynamically determine the relative
quality of prior knowledge for each TF. Similarly, priors

Figure 1. Conceptual diagram of network model with relationships to
model equations. Input data is shown in green and model parameters
are shown in blue. Expression matrices g, f and h correspond to
samples t for genes i, TFs j and enzymes k, respectively. Prior
matrices b, m, a and s are derived from TF binding data, TF motif
data, protein–protein interaction data and protein motif data, respect-
ively. Model parameters include TF–Gene edges C and TF–modifier
edges D, TF activities b, TF–modifier synergy terms c, TF-specific
prior weights w and modifier-specific prior weights u.
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for Djk are derived from additional data sources a and s,
analogous to Equation (2):

P Djk ¼ 1
� �

¼ aukjk s
1�uk
jk ð3Þ

Here, ajk is derived from protein–protein interactions
and sjk is derived from PWMs describing modifier-specific
substrate recognition motifs. Table 1 lists the data source
we used in specific analyses. Note that when only a single
type of prior is available for either C or D edge variables,
then Equation (2) or (3) simplifies to using only the one
available prior directly, without weighting.

Summary of model-fitting procedure

Given the expression data and the priors, we estimate the
posterior probabilities for all model parameters. We used
a variable-selection linear regression model as defined in
Equations (1–3), extending the model described by Chen
et al. (24). Our overall estimation procedure is conceptu-
ally similar to Gibbs Sampling (42), but is more localized
in its exploration of the solution space, and therefore more
tractable for large networks. In order to estimate the pos-
terior probability of the model, we performed multiple
replicates of a novel heuristic model-fitting procedure.
We initialized this procedure by selecting a network
based solely on the prior probabilities. We then fit all
numeric parameters to this initial network using linear
regression. From this initial model state we iteratively
maximized the individual posterior probabilities of each
variable conditioned on the current values of all other
variables. After converging on a local maximum, we re-
peatedly resample the edge indicator variables (C, D and
c) in order to specifically estimate the network posterior
probabilities. Once estimated, the posterior probabilities
of C and D can be used to probabilistically infer a network
with connectivity between target genes, TFs and modify-
ing enzymes. In addition, the best-fit values of other par-
ameters such as b and c can be used to infer the strength
and directionality of these interactions. Multiple replicates
of the model-fitting procedure were averaged together for
increased robustness, if they corresponded to similar

networks. Further details and equations are provided in
Section 1 in Supplementary Data.

Detecting multiple alternative network models

Our model is generally over-parameterized relative to the
available data and it is possible for MONSTER to find
multiple model-fitting solutions that encompass complete-
ly different networks. Network models predicted by repli-
cate runs of our model-fitting method were analyzed by
hierarchical clustering (43) to check for the occurrence of
multiple solution modes (see Section 1 in Supplementary
Data). Resulting dendrograms were visually inspected
for the presence of well-separated clusters. In the case of
the STAT1 network, three well-separated solution modes
were observed, and we analyzed the models corres-
ponding to similar networks separately (see Section 5 in
Supplementary Data).

Data simulation

Input data matrices (g, f, h, b, m, a, s) were simulated for a
network containing N=200 target genes, J=10 TFs and
K=100 modifiers measured under T=100 conditions.
Network parameters and expression values in f and h
were sampled at random. Expression data for g was then
computed using Equation (1), with eit terms randomly
sampled for �2 ranging from 0 to 1. Noisy prior
probabilities (b, m, a, s) were randomly sampled to be
informative, but also noisy and insufficient to predict the
network structure exactly. Data simulation is fully
described in Section 2 in Supplementary Data.

Data pre-processing and normalization

The input data variables (g, f, h) are derived from a com-
pendium of microarray experiments in both the yeast and
human applications (Table 1). The yeast expression com-
pendium was previously compiled and normalized by
Chen et al. (24). This compendium includes 314 samples
compiled from 18 studies covering a diverse set of con-
ditions such as cellular stresses and cell cycle phases.
The expression compendium for human B cells and
related cancers (44) was downloaded in Affymetrix

Table 1. Model inputs

Variable(s) Summary Data type References

Yeast application
g, f and h Compendium of yeast microarray experiments Gene expression (24)
m MSN2/4 binding sites PWM (47)
a Yeast kinase substrate profilesa PWM (53)

Human B-cell application
g, f and h Human B cells, B cell-derived cancers and cell lines Affymetrix HGU95A gene expression GEO:GSE2350 (44)
b STAT1 ChIP-seq in IFN-g-treated HeLa S3 cell line Illumina DNA sequence reads GEO:GSE12782 (51)
m STAT1 binding sites in response to IFN-a/b (ISRE) PWM TRANSFAC: M00258 (48)
m STAT binding sites in response to IFN-g (GAS) PWM (49)
a STRING Database, ‘experimental’ and

‘pathway’ channelsb
Protein–protein interactions (54)

Data sources used as input for model applications, organized by application and model variable. All relevant literature citations and database
accessions are shown in the ‘References’ column.
aWe found that corresponding interactions in STRING were too sparse for this application.
bIn order to include a larger set of modifying enzymes, we did not rely on kinase-specific profiles for this application.
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HGU95A raw format and processed with RMA (45) in
BioConductor (46). This compendium includes 336
samples from 62 different human B cell sources, including
39 cell lines. Both yeast and human gene expression
profiles were further normalized such that each profile
had a mean of 0 and 1 SD on the log-scale. This final
normalization strengthens the model assumption that
residual error terms follow a normal distribution with 0
mean and model-wide variance. Some expression profiles
corresponding to the same TF or modifying enzyme were
combined as described in Section 2 in Supplementary
Data.
TF–gene priors m were calculated using PWMs for both

the yeast and STAT1 analyses. PWMs for yeast MSN2
and MSN4, previously generated by Harbison et al. (47),
were scanned against the 700 bp upstream region of each
gene. Two separate PWMs for STAT1 corresponding to
ISRE (48) and GAS sites (49) were both scanned against
the 1-kb upstream regions of each target gene. In all cases,
the most significant PWM P-value (50) in each promoter
was converted to a prior probability (24).
Additional TF–gene priors b were derived for the

human B cell application. We processed the reads from
STAT1 ChIP-seq in IFN-g-treated HeLa S3 cells (51)
with GLITR (52). Peak scores were compared to input
controls and converted to probabilities (see Section 2
in Supplementary Data). TF–target gene priors b were
calculated as the maximum peak probability within
the 1 kb upstream region of each gene transcription start
site.
In both the yeast and human applications, a single

matrix was used for the prior probabilities of TF–
modifier interactions. For the yeast application, only
kinases were considered as candidate modifiers, and a
PWM describing the substrate specificity of each kinase
was calculated using the Predikin web server (53). Each
PWM was scanned across the entire protein sequence of
each TF to compute prior probabilities s using the same
general method as for TF binding site PWMs (24). For the
human B cell application, TF–modifier prior matrix a for
all kinases and phosphatases were derived from the
STRING database using only the channels corresponding
to ‘experimental evidence’ and ‘pathway’ sources in order
to focus on physical, rather than functional, associations
(54). Further details on all data pre-processing methods
are described in Section 2 in Supplementary Data.

Human B cell expression shuffling control

The expression profiles (rows) in g, f and h were each
shuffled randomly to disrupt any biological regulatory
signal in the data. We then repeated our model-fitting
method 10 times, using the same prior probabilities in
m, b and a, and averaged together the model results. We
repeated this entire procedure 10 times and compared the
distributions of model parameters across all shuffled
models to those in the primary STAT1 model.

MINDY analysis

As a comparison, we also analyzed the expression data
listed in Table 1 using MINDY v2.0 (10/28/07) (30),

obtained from the authors’ website. We ran the algorithm
using the same expression profiles as for MONSTER in
both applications, using no thresholds, and default values
for all other parameters. We first used the global MI value
to score each TF–gene edge i,j. We then selected a number
of top genes for each TF comparable to the number of
genes predicted by MONSTER and used the maximum
absolute �MI value over these genes to score each TF–
modifier edge j,k. In the yeast application, we computed
an ROC curve for the global MI values based on the
known targets of MSN2/4, and ranked all kinases based
on the max �MI score for either MSN2 or MSN4. In the
human B cell application, we ranked all STAT1 target
genes and modifiers based on the MINDY scores, and
selected the same number of targets and modifiers as in
the primary STAT1 network predicted by MONSTER.

Functional enrichment analysis

Functional enrichment analysis of putative STAT1 target
genes was performed using a hypergeometric test on each
available annotation using the BioConductor package
‘GOstats’ (46). We excluded all GO terms one or two
levels below the ontology root, as these tend to be the
broadest and least informative. As a comparison to indi-
vidual data sources, we selected the same number of probe
sets predicted by MONSTER from lists of target genes
ranked by each of the input data sets alone, and by the
MINDY analysis. We then repeated the enrichment
analysis for each of these lists, tabulated the enriched
terms for all lists and applied Bonferroni correction for
multiple testing (55). We reported all terms for which the
corrected P-value is <0.05 in at least one of the target gene
lists. P-values that were >1 after Bonferroni correction are
reported as ‘—’.

RESULTS

MONSTER infers simulated networks with high
accuracy and is robust against noise

We first evaluated our model-fitting procedure using
simulations. We generated a random network of genes,
TFs and modifiers, and simulated noisy expression data
from Equation (1). We also simulated noisy priors, as
described in Section 2 in Supplementary Data. Given the
simulated data, we estimated the posterior probabilities
of all model parameters using our model-fitting method.
We visualized the performance of estimated posterior
probabilities C and D using a Receiver Operating
Characteristic (ROC) curve, and quantified the accuracy
by the area under the curve (AUC) metric. We found that
MONSTER perfectly recovered the TF–gene edges
(AUC=1), out-performing the simulated priors and
the TF–gene expression correlation (AUCs< 0.75,
Supplementary Figure S1A). TF–modifier edges were
harder to infer, owing to their indirect effect on gene ex-
pression. However, MONSTER predicted these edges
with greater accuracy (AUC=0.78) than either simulated
prior type alone (AUCs< 0.7, Supplementary Figure
S1B). We further assessed the effect of various types of
noise on the accuracy of MONSTER. We simulated three
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sources of noise: (i) individual expression values, (ii) the
inclusion of additional genes unconnected to the network
and (iii) the inclusion of additional, uninformative expres-
sion samples (Supplementary Figure S1C–E). Only the
noise from source (iii) had any effect on model accuracy,
and in all cases MONSTER remained more accurate than
each individual data type alone. Based on our detailed
simulation studies, we conclude that our model-fitting
method can reconstruct an underlying network model
despite substantial noise, and with greater accuracy than
the individual input data sources. A complete descrip-
tion of our simulated data analysis is provided in
Supplementary Data, Section 3.

MONSTER accurately predicts target genes and
upstream kinases for stress response regulators
MSN2/4 in S. cerevisiae

To assess the utility of our model for biological inference
from experimental data, we applied MONSTER to a
well-studied stress response network in the yeast S.
cerevisiae. We chose a network based around the TFs
MSN2 and MSN4 in order to validate against existing
knowledge of target genes (9,56) and upstream signaling
components (9,57,58) for these two TFs. MSN2/4
function redundantly to regulate a core transcriptional
response to most cellular stresses (59,60). Both TFs are
regulated primarily at the post-translational level, with
various kinases controlling their nuclear localization
(57,58). We prepared an input data set as summarized in
Table 1. From a compendium of 314 microarray samples
(24), we extracted expression profiles for the following
genes: (i) the genes encoding MSN2 and MSN4, (ii) 40
known MSN2/4 target genes, compiled in the
PTM-Switchboard database (9), (iii) all 81 yeast kinase
genes with available expression profiles in the compen-
dium (24) and (iv) 40 additional ‘decoy’ target genes
selected at random from the remaining expression data,
ensuring that no decoy gene had any Gene Ontology (GO)
(61) annotation suggesting involvement in stress response
(Supplementary Table S3). We used PWMs for MSN2 and
MSN4 from (47) to derive TF–gene edge priors m and we
used protein PWMs for each kinase derived from the
Predikin server (53) to derive TF–modifier edge priors s.

We used MONSTER to fit all model parameters to
the network of 80 target genes, 2 TFs and 81 modifiers.
We first assessed the accuracy with which MONSTER
predicted known target genes for both MSN2 and
MSN4. We constructed a ROC curve measuring the
overall separation of true and decoy target genes using
the MONSTER posterior edge probabilities C. For com-
parison, we assessed how accurately the MSN2/4 targets
could be predicted using either the PWM-based prior
probabilities alone, or the TF–gene expression correl-
ations. In addition, we compared the performance of
MONSTER with a previously published tool—MINDY,
which uses TF–gene expression mutual information (MI)
to predict the TF targets (30). For each of the three alter-
native approaches, we computed the ROC curve and AUC
(Figure 2). We found that the posterior edge probabilities
estimated by our model had the highest AUC (0.87),

indicating the best separation of true and false TF–gene
edges. Thus, in predicting the TF–gene network,
MONSTER provides a significant improvement over
each individual data source used as input (bootstrap
P=0.005), and a significant improvement over the
expression-based MINDY method (bootstrap P< 10�5).
For example, at 10% false positive rate, MINDY correctly
predicts 29% of the targets while MONSTER was able
to correctly predict 78% of the targets—a 2.7-fold
improvement.
We next assessed the accuracy with which MONSTER

identified known modifiers of TF activity. MSN2/4 are
regulated in response to a wide range of cellular conditions
(57,59) and many of the kinases in our input data are
likely to have some indirect effect on MSN2/4 activity.
However, there is a small set of kinases in our input
data that have experimental evidence for direct regulation
of MSN2/4 proteins, specifically PKA (58,62,63), SNF1
(57), RIM11/GSK3 (64), SSN3 (65) and YAK1 (66)
(Table 2). MONSTER estimated significantly higher pos-
terior probabilities D and influence parameters c for these
known kinases, as compared to all other input kinases
(Mann–Whitney test P=0.007 for D, P=0.047 for |c|).
By comparison, neither the prior probability alone [based
on the Predikin tool (53)], nor a ranking based on the
MINDY (30) analysis (see ‘Materials and Methods’
section), significantly favors the known kinases modifying
MSN2/4 activity. Furthermore, the rankings of the known

Figure 2. ROC curves of MSN2/4 target gene selection in yeast
network models. Curves are drawn by computing the sensitivity and
specificity from known and decoy target genes at all possible thresholds
for: (i) the magnitude of correlation between TF and target gene ex-
pression profiles (dashed blue line, AUC=0.63); (ii) the prior
probabilities m derived from PWMs (dotted blue line, AUC=0.73);
(iii) the posterior probabilities from MONSTER with no kinases (solid
blue line, AUC=0.82); (iv) the posterior probabilities from
MONSTER with TF-kinase synergy terms (solid green lines,
AUC=0.87) and (v) the global MI estimated by MINDY (solid red
line, AUC=0.6). The difference between the AUC values for the
MONSTER models with and without kinases is significant with
P-value=0.0018 based on bootstrap tests.
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kinases based on MONSTER analysis are significantly
better than the rankings based on either Predikin alone
(Mann–Whitney P=0.047) or the MINDY results
(P=0.036). Finally, we also show that the inclusion of
kinases in the model significantly improves the accuracy of
MSN2/4 target prediction (Supplementary Table S4, boot-
strap P=0.0018; see Section 4 in Supplementary Data).
We also performed 5-fold cross-validation and found that
the inclusion of kinases in our model does not increase
the tendency for over-fitting, despite the increase in the
number of parameters (see Section 4 in Supplementary
Data).

A modification-dependent regulatory network mediated
by STAT1 in human B cells

STAT1 is a highly pleiotropic TF known to mediate
cellular responses to a broad range of cytokines and
growth factors in many human tissues, and improper
STAT1 activity is implicated in human immune disorders
and cancers (39–41). Although the mechanistic details of
STAT1 regulation in many of these processes are not
known, it is now clear that a variety of upstream signals
converge at STAT1 and evidence for regulation by a wide
range of signaling pathways continues to grow (38–40). To
gain a better mechanistic understanding of STAT1’s pleio-
tropic function, additional knowledge is needed regarding
the modifying enzymes targeting STAT1 and their influ-
ence on the expression of specific STAT1 target genes.
The STAT1-mediated regulatory network is a particu-

larly attractive application for MONSTER due to the
availability of a variety of relevant high throughput
datasets (Table 1). We obtained the model input expres-
sion matrices g, f and h from a compendium of 336 ex-
pression samples from human B cells, related cancers and
cell lines (44). We merged highly correlated probe sets
corresponding to the same TF or modifier, but many
target genes and modifiers are represented by multiple
probe sets in this analysis.
We derived the TF–gene prior matrix b from a ChIP-seq

experiment for STAT1 binding in response to IFN-g (51).
We derived the TF–gene prior matrix m by analyzing gene

promoters with two STAT1 PWMs related to IFN-a/b
and -g response elements (48,49). In this initial applica-
tion, we considered only modifiers related to phosphoryl-
ation (kinases and phosphatases), which is known to be
the primary regulator of STAT1 activity (38), and derived
a single TF–modifier prior matrix a from the STRING
database (54). Details of data pre-processing are described
in Section 2 in Supplementary Data. We then
applied MONSTER to input data covering 7026 target
genes, 1 TF (STAT1) and 323 modifiers (kinases and
phosphatases).

Consistent with a pleiotropic role for STAT1, and the
fact that our expression data covers a wide range of
network perturbations, MONSTER predicted three
distinct network models. We analyzed the statistical and
functional properties of all three models (see Section 5 in
Supplementary Data). For brevity, here we present the
‘primary’ network model, which was the most balanced
in terms of its fit to all input data sources, and which
predicted the most likely set of target genes under active
STAT1 regulation in B cells.

Our primary STAT1 network model predicts that
STAT1 regulates the transcription of 1559 input genes.
As shown in Figure 3A, the predicted target genes gener-
ally have a greater expression correlation with STAT1
than the remaining input genes. The same is true when
we compare the priors b and m for the predicted target
genes against all remaining input genes (Figure 3B and C).
However, none of these properties, by themselves, accur-
ately discriminate the same set of target genes predicted
by MONSTER. Therefore, the model-based prediction
of network edges integrates the information embedded
in the priors and the expression data. Interestingly, the
model correctly predicts STAT1 as an activator, rather
than repressor, of these target genes (38,40).

We first determined whether the predicted targets are
enriched for known targets of STAT1. Robertson et al.
(49) compiled a list of experimentally verified direct targets
of STAT1, including 23 genes in our input data. Of these,
18 (78%) were predicted by MONSTER (Supplementary
Table S5, hypergeometric test enrichment P=1.7� 10�8).

Table 2. Known MSN2/4-regulating kinases

Known kinases MONSTER results Predikin MINDY

Symbol Reference(s) Role P(Djk=1) � jk Rank Prior Rank Max(�MI) Rank

TPK1 (58,62,63) � 0.59 0.10 30 0.81 35 0.18 50
TPK2 (58,62,63) � 0.97 �0.13 7 0.82 35 0.18 55
TPK3 (58,62,63) � 0.90 0.07 14 0.82 35 0.23 16
SNF1 (57) � 0.73 0.07 22 0.95 10 0.29 4
RIM11 (64) + 1.00 0.22 1 0.85 32 0.18 49
SSN3 (65) � 0.54 0.06 34 0.85 10 0.15 73
YAK1 (66) + 0.58 0.09 31 0.58 60 0.18 52

Kinases known to regulate MSN2/4 (columns 1–3) with corresponding results from MONSTER applied to yeast input data (columns 4–6).
MONSTER results are reported for the TF with the highest posterior of connectivity to each kinase. Results include the posterior probability
P(Djk=1), the associated influence parameter � jk and the rank (out of 81) of the posterior among all kinase connections to the TF. For comparison,
the prior probability and rank of this TF-kinase connection are shown in columns 7 and 8. The maximum differential MI predicted by MINDY and
the corresponding rank are shown in columns 9 and 10. Overall, the rankings from MONSTER for these known kinases (column 6) are significantly
better than the rankings from Predikin (column 8, Mann–Whitney P=0.047) and the rankings from MINDY (column 10, Mann–Whitney
P=0.036).
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Table 3. Annotation enrichment for predicted STAT1 target genes

GO biological process MONSTER Expr ChIP-Seq PWM MINDY

Signal transduction 6E-08 – – – –
Regulation of I-kappaB kinase/NF-kappaB cascade 7E-06 – – – –
Regulation of signal transduction 5E-05 – – – –
I-kappaB kinase/NF-kappaB cascade 2E-04 – – – –
Inflammatory response 4E-04 – – 0.049 –
Positive regulation of I-kappaB kinase/NF-kappaB cascade 4E-04 – – – –
Intracellular signaling cascade 7E-04 – – – –
Response to wounding 8E-04 – – 0.351 –
Cell death 0.002 – – – –
Response to virus 0.003 – – – –
Protein kinase cascade 0.004 – – – –
Programmed cell death 0.005 – – – –
Apoptosis 0.007 – – – –
Negative regulation of biological process 0.010 – – – –
Biopolymer metabolic process – – 3E-07 – 0.027
Nucleobase, nucleoside, nucleotide and nucleic acid metabolic process – – 2E-06 – 0.003
RNA metabolic process – – 0.006 – –
Regulation of cellular metabolic process – – 0.007 – –
Regulation of nucleobase, nucleoside, nucleotide and nucleic

acid metabolic process
– – 0.016 – –

Response to DNA damage stimulus – – 0.038 – 0.340
DNA metabolic process – – 0.607 – –
DNA replication – – – – 0.004

KEGG PATHWAY

Leukocyte transendothelial migration 3E-07 – – – –
Focal adhesion 1E-05 – – – –
Cell adhesion molecules (CAMs) 0.009 – – – –
T-cell receptor signaling pathway 0.010 0.839 – – –
Cytokine–cytokine receptor interaction 0.012 – – – –
ECM–receptor interaction 0.020 – – – –
Pyrimidine metabolism – – – – 3E-04
RNA polymerase – – – – 0.049
Purine metabolism – – – – 0.049

Significantly enriched terms (1st column) for gene targets in primary STAT1 network, using all gene targets in the input data as the background, with
Bonferroni-corrected P-values (2nd column). As a control, corrected P-values are also shown for the most correlated genes (3rd column), genes with
the highest ChIP-seq and PWM-based priors (4th and 5th columns), and genes with the highest MINDY score (6th column). P-values that were �1
after Bonferroni-correction are listed as ‘�’, and all other P-values greater than 0.05 are italicized to indicate lack of significance.

Figure 3. Network edge properties of predicted STAT1 target genes. Histograms for STAT1 target genes predicted by the primary network model
(black filled bars) and all other input target genes (white filled bars with black outline). Distributions are shown for (A) absolute correlations between
STAT1 and target gene expression profiles across all input samples, (B) ChIP-seq-based prior probabilities for STAT1 binding in the gene’s proximal
promoter and (C) PWM-based prior probabilities for STAT1 binding in the gene’s proximal promoter.
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The network of target genes is also enriched for GO (61)
and KEGG Pathway (67) annotations relevant to both
STAT1 and B cell functions (Table 3). As in the yeast
application, we compared the MONSTER predictions
with those obtained using individual priors, using
STAT1-gene expression correlation, or by applying the
MINDY tool (30). Many of the annotations enriched
among the MONSTER predicted genes are not signifi-
cantly enriched among the same number of target genes
predicted by the alternative methods, including MINDY
(Table 3, right-hand columns).
Our network model also predicts 20 kinases and 1 phos-

phatase (Figure 4) as upstream regulators of STAT1
activity, including all 4 members of the Janus Kinase
family, which are well-characterized activators of the
STAT TF family (40). Based on the � values, the most
influential modifier in our STAT1 network model is
JAK1, which has experimentally characterized roles in
both Types I and II interferon signal transduction
through STAT1 (41). Additional literature supporting
each predicted modifier is summarized in Supplementary
Table S6. Overall, 18 (86%) of the predicted modifiers
have existing evidence for specific regulation of STAT1
transcriptional activity. By comparison, only 30% of the
top modifiers predicted by MINDY are currently sup-
ported by literature evidence (Supplementary Table S7).
MINDY did not predict any of the well-characterized
JAKs as highly ranked STAT1 modifiers; JAK1 ranked
142 out of 510, and was the most highly ranked JAK in
the MINDY analysis.
While MONSTER predicts kinases reasonably well, it

predicts only a few phosphatases. A well-characterized
phosphatase modifier of STAT1—TC-PTP/TC45 (68)
(referred to by the alias PTPN2 in our data set)—was
predicted by our model, but did not have a strong
enough absolute gamma factor to make our list of high-
confidence STAT1 modifiers. An overall paucity of pre-
dicted phosphatases is likely because phosphatases are
relatively under-studied compared to kinases, and may
have inherently less functional specificity, leading to
sparse and less informative priors. MINDY does not

utilize the prior knowledge and relies solely on expression
data. As a result, while MINDY predicts three
known phosphatases (but also fails to predict the well-
characterized TC-PTP/TC45/PTPN2), it also predicts
four phosphatases with no evidence of modifying
STAT1 (43% specificity).

As a control, we repeatedly shuffled the expression
values within each gene profile and recomputed the
MONSTER network model. In all cases, the shuffled
model predicted fewer target genes and upstream modi-
fiers for STAT1, with weaker � and � influence parameters
(Figure 5). This control empirically demonstrates that our
predicted network is the result of coherent signal in both
the expression and network prior data.

We expect the predicted modifiers of STAT1 to be func-
tionally linked to the predicted targets of STAT1. To test
this, we first extracted functional association scores from
the STRING database (54) for all pairs (i,k) containing a
target gene and a modifier from our input data. However,
to avoid any biases due to a greater expression similarity
between the target gene and the modifier, we excluded the
‘co-expression’ channel and recomputed the STRING
scores. We found that the pairs for which gene i and modi-
fier k were both predicted as part of the STAT1-mediated
network overlapped significantly with pairs predicted to
have functional associations by STRING (Fisher exact
test P< 2.2� 10�16). Furthermore, the distribution of
defined STRING association scores was higher for
network pairs predicted by MONSTER (Supplementary
Figure S2, Mann–Whitney test P< 2.2� 10�16).

DISCUSSION

In this work, we have presented a novel model-based
method to infer regulatory networks—MONSTER—that
simultaneously predicts TF–gene and TF–modifier inter-
actions by integrating heterogeneous data types in a prob-
abilistic framework. Our simulation studies show that
MONSTER is robust against a variety of noise sources.
We have further demonstrated the validity and usefulness

Figure 4. STAT1 modifiers predicted by MONSTER primary network model. All predicted modifiers have P(Djk=1)> 0.9 and |� jk|> 0.05 and are
ordered by decreasing |� jk|. DUSP3 and LCK are modeled by multiple, uncorrelated probe sets and therefore have multiple � jk parameters.
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of our method through applications to a stress response
network in S. cerevisiae and a STAT1-mediated network
in human B cells.

MONSTER is an accurate and practical tool for
inferring modification-dependent regulatory interactions

A fundamental challenge in computational biology is to
construct models that are both biologically comprehensive
and computationally tractable. The TF–modifier inter-
actions capture a critical and oft ignored aspect of tran-
scriptional regulatory networks, but also render the model
highly parameterized. As a result, the exploration of
possible models presents a computational and statistical
challenge.

Chen et al. (24) used a similar—but simpler—model and
were able to estimate the joint posterior distribution over
all parameters using standard Gibbs Sampling (42). Our
model is substantially more complex due to the additional
network layer of TF–modifier connectivity, and we were
unable to accurately estimate posterior probabilities using
Gibbs Sampling (data not shown). As a practical alterna-
tive, we fit the model parameters using a heuristic that
identifies a sufficiently good solution for biological infer-
ence in the cases studied here. In general terms,
MONSTER leverages the prior knowledge of network

structure, and combines the merits of both maximization
and sampling approaches.
In certain instances, replicate runs can produce distinct

networks. In the B-cell application, clustering the network
parameters estimated from individual runs revealed three
distinct networks. It is possible that all three predicted
networks are correct, and capture distinct biological
roles of STAT1 (see Section 5 in Supplementary Data).
Given the apparent biological validity of our model,
and the general challenges it presents for standard
model-fitting procedures, further work is merited to
explore alternate methods for model estimation and sum-
marization of multiple network structure predictions.

Approximating TF and modifying enzyme activities
from their transcript levels

MONSTER relies on an assumption common to most
expression-based network inference methods—that TF
and modifier transcript levels are indicative of their
relative activity (4,5,22,24,30,44). The validity of this as-
sumption is known to vary widely between different TFs
(69), and is also likely to vary for each modifier.
Our model improves the estimate of TF activity through
the use of TF–modifier synergy effects, exemplified by
the results obtained for yeast MSN2/4. Specifically,
MONSTER identifies known targets of MSN2/4 with

Figure 5. Primary STAT1 network model versus shuffled expression controls. Distributions of model parameters for primary STAT1 network (black
filled bars) and for the networks obtained from randomly shuffled expression data (white filled bars with black outline) for: (A) STAT1–gene
posterior probabilities, (B) STAT1–modifier posterior probabilities, (C) STAT1 �j parameters and (D) STAT1–modifier � jk magnitudes.
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improved accuracy when using the full model with
TF–modifier synergistic effects.
Our initial results also suggest that, when observed over

a sufficient number of conditions, there is substantial bio-
logical signal in the expression profiles of modifying
enzymes. In the yeast application, the expression level of
the known MSN2/4 modifier TPK1 varied 78-fold across
the included conditions. Similarly, expression of JAK1
varied 14-fold across the B cell samples. Although many
modifying enzymes are regulated at the post-translational
level, there seems to be significant perturbation occurring
at the transcript level, which is likely to affect their signal-
ing activity.
Accurate prediction of TF–modifier edges is particular-

ly challenging. It is possible that modifiers with lower
transcript variability may go undetected by our model.
This reduced variability in expression can be partly
mitigated by having a larger and/or different set of expres-
sion samples, as well as more accurate TF–modifier priors.
Therefore, the sensitivity of modifier prediction is reduced,
in part, by the available data, and does not necessarily
reflect an inherent limitation of our method.

Interpreting the TF–modifier effect parameter c

In addition to assigning a posterior probability for each
TF–modifier interaction, we also estimate an influence
parameter �. The magnitude of this parameter can be
used as an additional filter for the inference of TF–
modifier interactions that affect gene transcription. In
our yeast application, the magnitudes of � parameter for
the known MSN2/4-regulating kinases were all >0.05, and
were significantly larger compared to the other kinases
(Mann–Whitney P=0.047, Table 2). In our human B
cell application, JAK1 is known to be a highly influential
regulator of both IFN-a/b and IFN-g-dependent STAT1
activity (41), and also has the strongest effect on STAT1
(�=0.29) in our primary STAT1 network model.
The sign of each � parameter potentially provides

information on whether the modifier up- or downregulates
the activity of the target TF. For example, in our yeast
application, the � values associated with several known
modifiers are consistent with their known inhibitory or
activating roles (Table 2). The primary STAT1 network
model correctly identifies JAK1 (�=0.29), TYK2
(�=0.08) and JAK2 (�=0.05) as positive regulators of
STAT1 activity (41). Many of the other � parameter
values for predicted STAT1 modifiers are supported by
literature evidence (Supplementary Table S6).
MONSTER predicts a negative � value for JAK3. In
absence of experimental evidence to support this, we can
only speculate that JAK3 may negatively regulate STAT1
activity. However, an alternative explanation may be
that the model is fit to steady state expression values,
and therefore cannot capture any feedback loops that
may alter the observed relationship between modifier
and TF. Therefore, while MONSTER accurately infers
TF–modifier edges, the dynamics of these regulatory rela-
tionships need to be further scrutinized under specific
experimental conditions.

MONSTER provides biological insights into the
STAT1 network in human B cells

MONSTER predicted a large module of target genes
regulated by STAT1 in human B cells. This module is
significantly enriched for known direct targets of
STAT1. Moreover, the genes in the module are enriched
for GO biological processes relevant to STAT1, such as
‘apoptosis’ (70) and ‘I-kappaB kinase/NF-kappaB
cascade’ (71). Other enriched GO terms suggest general
STAT1 and B cell functions, i.e. ‘response to virus’ and
‘inflammatory response’ (Table 3). Importantly, many of
these annotations are not enriched among the top target
genes as predicted by ChIP-seq, PWM or expression cor-
relation analysis alone. Overall the functional enrichment
analysis of predicted target genes support the relevance of
our network model to the TF and cell type we analyzed.

The primary STAT1 network model inferred by
MONSTER also provides a compelling list of potential
STAT1 modifiers, including known, suspected and novel
regulators of STAT1 transcriptional activity. Many of the
STAT1 modifiers predicted by MONSTER are annotated
for pathways related to the immune system, while STAT1
interaction partners predicted only by STRING are not
(Supplementary Table S8). However, there are relatively
few modifiers predicted by either method, as is expected,
and many of these modifiers are poorly annotated,
limiting our ability to reliably assess the statistical sig-
nificance of this observation. Overall, 86% of our pre-
dicted modifiers are supported by literature evidence
(Supplementary Table S6), with the exception of several
novel predictions discussed below.

MONSTER predicts a novel association between the
dual-specificity phosphatase DUSP3/VHR and STAT1
transcriptional activity. This phosphatase has been
shown to dephosphorylate STAT5 in interferon signaling
(72) and inactivate Erk2 and Jnk downstream of the T cell
antigen receptor (73). VH1, the vaccinia virus homolog of
DUSP3, is known to block STAT1 activation during in-
fection (74). However, our analysis is the first to suggest a
link between endogenous DUSP3 and STAT1 transcrip-
tional control.

MONSTER also predicts Receptor-Interacting Protein
Kinase 1 (RIPK1) as a modifier of STAT1 transcriptional
activity. RIPK1 is a kinase known to interact with TNF
receptor 1 (TNFR1) resulting in a switch between the
pro-apoptotic and anti-apoptotic responses to TNF-a.
Experiments in 293T cells have shown that STAT1 can
competitively bind TNFR1, displacing the interaction
with RIPK1, and disrupting downstream signaling
through the NF-kB pathway independent of STAT1
nuclear import or DNA binding (71). Cancer progression
models in mice have shown that TNF-a can suppress
tumor growth in a STAT1-dependent manner (75). Our
model is the first to suggest that RIPK1 may antagonize
signaling through STAT1 in a way that affects STAT1
target gene transcription. In combination with the pre-
dicted STAT1 target genes related to apoptosis and
NF-kB signaling (Table 3), our network suggests a
critical role for STAT1 in balancing the pro-apoptotic
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and pro-survival responses to TNF-a in tumor
progression.

Comparison to alternative methods

A comprehensive model-based approach to predict both
the downstream targets as well as the upstream regulators
of a TF has not been previously reported. However, the
individual prior sources used as input to our model con-
stitute methods for predicting either target genes or TF
modifiers, and therefore provide a reasonable point of
comparison for each of these types of predictions in our
model. Furthermore, the MINDY algorithm (30), an ex-
tension of the popular ARACNE algorithm for network
inference (22), can be used to simultaneously predict target
genes and modifiers for a TF, although it differs from
MONSTER in two critical ways: (i) MINDY scores indi-
vidual modifier–TF–gene triplets using �MI, rather than
constructing a comprehensive network model and (ii)
MINDY relies solely on expression data and does not
take advantage of the additional data sources used for
the MONSTER analysis. However, it is one of the
closest available algorithms to our application in terms
of functionality, and therefore was a reasonable choice
for comparison.

In the yeast application, we found that MONSTER sig-
nificantly out-performed MINDY in terms of predicting
both known MSN2/4 target genes and known MSN2/4
modifying kinases. Based on the AUC metric, MINDY
predicted MSN2/4 target genes with approximately the
same accuracy as expression correlation, which is not
surprising given that both measures are based on the
same underlying data. At a false positive rate of 10%,
MONSTER predicted more than twice as many correct
MSN2/4 target genes as MINDY. MINDY performs
poorly in this case most likely because MSN2 and
MSN4 are primarily regulated at the post-translational
level, and therefore the transcript profiles of these TFs
alone have limited ability to model their activity.
Adjusting MINDY kernel parameter did not improve
these predictions (data not shown). Similarly, in terms of
predicting kinases, MONSTER significantly outper-
formed MINDY. While the known kinases were among
the top ranked according to MONSTER (Mann–Whitney
P=0.007), this was not the case for MINDY-based
ranking (P=0.58). We note that our yeast application
outperformed MINDY using only a single set of priors
for each type of network connection. Additional data
sources will likely further improve these results, but are
currently not available in sufficient quality for use in this
application (see Section 2.2 in Supplementary Data).

In the human B cell application, MINDY predicted a
set of STAT1 target genes with completely different func-
tional enrichments, and only predicted two of the same
STAT1 modifiers. The STAT1 target genes predicted by
MINDY is predominantly enriched for pathway terms
indicative of general transcription or cell growth, rather
than terms shared by STAT1, or indicative of immune-
related processes as observed in the MONSTER
analysis. The alternate set of STAT1 modifiers predicted

by MINDY is only weakly supported by the literature
(Supplementary Table S7).
In conclusion, we have developed a network inference

tool, MONSTER, which infers modifier–TF–gene
networks from a combination of expression data and
prior probabilities of physical interactions. MONSTER
is extremely flexible and can be applied to any of the
growing compendia of high-throughput data describing
gene expression, protein–DNA interactions and enzyme–
substrate interactions. Recent developments in protein
microarrays (15,76,77), peptide library screening (16,78)
and mass spectrometry (17,79,80) have made it possible
to assay a much wider range of PTM types with greater
sensitivity, and can further refine computational predic-
tions of enzyme-specific substrates. These collective break-
throughs in PTM research represent a major opportunity
to expand regulatory network models beyond the scope of
simple TF–gene interactions. MONSTER provides a
powerful framework to analyze these and future prote-
omic datasets in conjunction with expression and
protein-DNA interaction data. The potential uses for
MONSTER are broad, ranging from large-scale network
inference for elucidating systems-level properties, to
focused analysis of a specific TF under post-translational
regulation.

AVAILABILITY

The source code for MONSTER is available from the
authors upon request.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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