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Exacerbated expansion of adipose tissue seen in diet-induced obesity leads to endocrine

dysfunction and disturbance in adipokine secretion, with such abnormal profile positively

associated with type 2 diabetes and other mild chronic inflammatory conditions. Ginkgo

biloba extract (GbE), a mixture of polyphenols with antioxidant properties, has been

recently investigated in a variety of experimental models of endocrine dysfunction,

with several potentially beneficial effects identified, including improvement in insulin

sensitivity in obese rats, and reduction of weight gain in ovariectomy-induced obesity

and diet-induced obesity. The aim of this study was to investigate in high fat diet-induced

obese male rats the effects of GbE supplementation for 2 weeks on adipocyte volume

and adipose tissue lipid accumulation. GbE supplementation was effective in reducing

energy intake in obese rats compared to the saline-treated placebo group. Epididymal

adipocyte volume was reduced in GbE-supplemented rats, as were epididymal [1-14C]-

acetate incorporation into fatty acids, perilipin (Plin 1) and fatty acid synthase (Fasn)

mRNA, and FAS protein levels. Adipocyte hypertrophy in obesity is associated with insulin

resistance, and in the present study we observed a reduction in the adipocyte volume of

GbE-supplemented obese rats to dimensions equivalent to adipocytes from non-obese

rats. GbE supplementation significantly reduced acetate accumulation and tended to

reduce [3H]-oleate incorporation, into epididymal adipose tissue, suggesting a potentially

anti-obesogenic effect in longer term therapies. Further studies that investigate the effects

of GbE supplementation in other experimental models are required to fully elucidate its

suggested beneficial effects on mild chronic inflammatory conditions.
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INTRODUCTION

The definition of white adipose tissue (WAT) as an inert mass
for energy storage is long gone; over the last two decades the
adipose tissue has been recognized as a dynamic tissue and key
player in the modulation of energy metabolism (1, 2). Adipokines
such as leptin, adiponectin, and tumour necrosis factor-α (TNF-
α) have a direct effect on energy homeostasis and modulation
of low-grade inflammation (3). The intake of high fat diets has
the potential to not only disturb normal adipokine secretion
but also to remodel adipose tissue by increasing adipocyte size
and/or number, contributing to the development of a pro-
inflammatory microenvironment (4, 5). These perturbations
have been positively associated with metabolic disorders such
as obesity, type 2 diabetes, non-alcoholic fatty liver disease
(NAFLD), insulin resistance, and cardiovascular diseases (6, 7).

In obesity, particularly visceral obesity, enlargedWAT visceral
adipocytes show dysregulated lipolysis, inducing high levels of
circulating non-esterified fatty acids (NEFAs) (8, 9). NEFAs in
normal circumstances are utilized as energy by tissues such as
liver and muscle; however, when in excess they contribute to
the development of insulin resistance (4, 9–11). Furthermore,
in response to overnutrition, hypertrophic adipocytes contribute
to increased circulating triacylglycerol (TAG) levels mainly from
de novo lipogenesis, in which fatty acids (FA) are synthetized
from non-lipid substrates, particularly carbohydrates, or from
FA obtained from ex-situ lipid sources such as chylomicrons
and very-low-density lipoproteins (VLDL) (12, 13). Visceral
obesity seems to play a central role in the development of
metabolic disorders, being associated with low-grade chronic
inflammation and the production of pro-inflammatory cytokines
which have the potential to trigger insulin resistance and
endothelial dysfunction (14–16).

In this context, several pharmacological approaches have
been tried for the treatment of obesity. However, more often
than not such approaches were followed by undesired side
effects, including psychiatric manifestations, increased risk of
cardiovascular events, and others (17). Considering the dramatic
increase in the prevalence of obesity over the last decades
globally, a range of anti-obesogenic alternative supplementation
therapies based on plant extracts (18) have been investigated.

More recently, Ginkgo biloba Extract (GbE) has been
investigated as an alternative therapy for metabolic disorders
associated with obesity. GbE, a herbal extract containing
flavonoids, terpenoids, and terpene lactones (19), is a well-
known phytotherapic compound often employed as coadjuvant
supplement in neurodegenerative diseases (20, 21), NAFLD
(22, 23), type 1 and 2 diabetes (24, 25). Previous findings
from our research group showed that diet-induced obese (DIO)
rats supplemented with GbE showed reduced food and energy
intake, reduced body adiposity, improved insulin signalling and
sensitivity, enhanced insulin receptor and AKT phosphorylation,
and reduced NFκB-p65 phosphorylation in retroperitoneal
adipose tissue (26, 27).

GbE may have a potentially therapeutic use for menopause-
associated obesity; supplementation with 500 mg/kg of GbE
stimulated hypothalamic serotonergic activity in ovariectomized

rats (28). GbE isolated bioactive compounds have been
demonstrated to stimulate lipolysis in 3T3-L1 adipocytes (29),
and to inhibit adipogenesis through activation of the AMPK
pathway (30). However, the effects of GbE supplementation on
metabolic processes of visceral adipose tissue in DIO rats remain
largely unknown. In view of the considerations highlighted
above, the aim of the present study was to investigate the effects of
GbE supplementation as a potentially anti-obesogenic effector for
improvement in lipid metabolism of epididymal adipose tissue of
DIO rats.

MATERIALS AND METHODS

Ethical approval
This study was carried out in strict accordance with the
recommendations of the Guide for the Care and Use of
Laboratory Animals. The Committee on Animal Research
Ethics of the Universidade Federal de São Paulo approved
all procedures for the care of the animals used in this study
(Process number: 8700110814).

Animal Care
Two months-old male Wistar rats fromMultidisciplinary Center
for Biological Investigation in Laboratory Animals Science
(CEMIB - Campinas, Brazil) were housed at 4 or 5 rats per cage
and maintained in controlled lighting (12:12-h light/dark, lights
on at 6:00 a.m.) and temperature (23◦C ± 1◦C) conditions, with
ad libitum access to food and water.

Briefly, the high fat diet was prepared by mixing 40% (w/w)
ground standard chow (Nuvilab R©, Brazil, 2.7 kcal/g), with
28% (w/w) melted lard, 20% (w/w) casein powder, 10% (w/w)
sucrose, 2% (w/w) soybean oil, and 0.02% (w/w) butylated
hydroxytoluene (5.0 kcal/g). All the ingredients were thoroughly
mixed and lukewarm drinking water added to obtain the
consistency necessary to allow perfect homogenization of the
mixture and production of pellets, which were subsequently dried
in a forced ventilation oven at 60

◦
C for 24 h. This diet provides

19.5% of energy from carbohydrate, 23.2% from protein, and
57.3% from fat, and has been demonstrated in previous studies to
induce obesity (26, 27). The diet macronutrient composition was
analysed in the laboratory of Bromatology and Microbiology of
Foods, Universidade Federal de Sao Paulo, and the diet fatty acid
composition was determined by gas chromatography (Table 1).

Over the course of 2 months for the development of obesity,
normal fat diet-fed rats (NFD, n = 20) received the standard
chow, while the high fat diet-fed rats (HFD, n = 54) received
the lard enriched diet, as described above. All rats were weighted
once weekly, and the food/energy intake was calculated by the
difference between the food left from the food offered 24 h before.
Food efficiency was calculated by the ratio of body weight gain (g)
to food ingestion (g) weekly.

GbE Supplementation
At the end of the 2 months induction period, the HFD group was
randomly sorted into two subsets. The NFD group and the first
HFD subset received 1mL 0.9% saline by gavage daily for 2 weeks,
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TABLE 1 | Macronutrients and fatty acid composition (% of total fatty acids) of

standard chow and high-fat diet.

Standard chow High-fat diet

Humidity (%) 9.1 1.1

Lipids (%) 4.5 31.6

Protein (%) 22.7 27.0

Carbohydrates (%) 35.9 27.5

Total fibre (%) 18.9 8.6

Fixed mineral residue (%) 8.9 4.2

Sodium chloride (%) 0.6 0.2

Calculated energy (kcal/g) 2.7 5.0

Fatty acid composition (% total)

SATURATED FATTY ACIDS

Myristic acid - C14:0 0.0 1.1

Palmitic acid - C16:0 14.6 21.4

Stearic acid - C18:0 3.6 11.6

Monounsaturated fatty acid

Palmitoleic acid - C16:1n7 0.0 1.7

Vaccenic acid - C18:1n7 0.9 2.26

Oleic acid - C18:1n9 24.1 35.5

Eicosanoic acid - C20:1n9 0.3 0.6

POLYUNSATURATED FATTY ACIDS

Linoleic acid - C18:2n6 55.4 21.4

Linolenic acid - C18:3n3 4.7 1.3

whilst the second HFD subset (HFD+GbE) was orally gavaged
with GbE 500 mg/kg, as previously described (31).

GbE was obtained from Huacheng Biotech Inc. (China), and
themajor bioactive compounds were flavone glycosides (25.21%),
terpenoids (6.62%), ginkgolides A, B, C (3.09%), and bilobalides
(2.73%). Food and energy intake were registered daily for the
2 weeks of supplementation. Body weight gain was calculated
by the difference between the first and the last day of the 2
weeks period.

Adipocyte Isolation
Adipocyte isolation was performed as previously described and
optimized (32–34). Briefly, epididymal fat pads were diced
in small fragments in a flask containing 4mL of DMEM
supplemented with HEPES (20mM), glucose (5mM), bovine
serum albumin (BSA, 1%), and collagenase type II (1 mg/mL),
pH 7.4 and incubated for ∼40min at 37◦C in an orbital shaker.
Isolated adipocytes were filtered through a plastic sieve (150µm)
and washed three times in fresh buffer without collagenase. After
washing and brief spin, the medium was thoroughly aspirated,
and the adipocytes harvested. Adipocytes were photographed
under an optic microscope (×100 magnification) coupled to
a microscope camera (AxioCam ERc5s; Zeiss R©, Oberkochen,
Germany). Mean adipocyte volume (4/3 x π x r3), expressed in
pL, was calculated by averaging the measurement of 50 cells,
employing AxioVision LE64 software.

The percentage of adipocytes contained in the total cell
suspension was determined using 40 µL of the cell suspension
in EHB buffer placed in glass capillary and subjected to
centrifugation (500 g for 1min). The total volume of the

suspension corresponds to 100% and the volume of adipocytes
obtained after centrifugation gives the percentage of adipocytes
of the sample.

Lipolysis
Lipolysis was estimated as concentration of glycerol release into
the incubation medium. For this, isolated epididymal adipocytes
(1 × 106 cells/mL) were incubated in Krebs/Ringer/phosphate
buffer (pH 7.4) containing BSA (20mM) and glucose (5mM)
for 30min at 37◦C in the presence or absence of isoproterenol
(2 × 10−6 M). The reaction was stopped by cooling the flasks
on ice, and the media was carefully collected for measurement
of glycerol release employing a free glycerol determination kit
(Sigma R©). Results are expressed as nmol of glycerol / 1 ×

106 adipocytes.

Fatty Acid Uptake
Fatty acid uptake, measured by intracellular accumulation of
[3H]-oleate, was quantified following previously established
methods (32, 33). Briefly, isolated epididymal adipocytes (1 ×

106 cells/ mL) were incubated in Krebs/Ringer/phosphate buffer
(pH 7.4) containing BSA (1%), glucose (2mM), [3H]- oleate
(100µM, 1850 Bq/tube or well) for 2 h at 37◦C in a water
bath. At the end of the incubation period, the mixture was
transferred to 1.5mL tubes containing 400 µL of silicone oil and
centrifuged for 30 s. The cell pellet on top of the oil layer was
transferred to polypropylene tubes containing 2.5mL of Dole’s
reagent for lipid extraction. After addition of n-heptane (1.5mL)
and distilled water (1.5mL), tubes were vortexed and the mixture
decanted for 5min. An aliquot of the upper phase was collected
into a scintillation vial for the determination of radioactivity
incorporated into TAG (1450 LSC, Couter MicroBeta, Trilux;
Perkin Elmer, Waltham R©, MA, USA). Results are expressed as
nmol of oleate/1× 106 cells/h.

Incorporation of [1-14C]-Acetate
Into Triacylglycerol
De novo lipogenesis in epididymal adipocytes was
estimated by incubating isolated cells (1 × 106 cells/mL) in
Krebs/Ringer/phosphate buffer (pH 7.4) containing BSA (1%),
glucose (2mM), and [1-14C]-acetate (1mM, 1850 Bq/tube or
well) for 2 h at 37◦C in a water bath and processed as described
previously (32, 33). Results are expressed as nmol of acetate
incorporated into TAG/1× 106 cells/h.

RNA Extraction and Quantitative Real-Time
Polymerase Chain Reaction (qPCR)
Total RNA from epididymal adipocytes was extracted
with Trizol R©reagent (Invitrogen Life Technologies R©)
and reversely transcribed into cDNA using a High-
Capacity cDNA kit (Applied Biosystems R©) following
the manufacturer’s instructions. Gene expression was
evaluated by real-time qPCR using a Rotor Gene (Qiagen R©)
and SYBR Green as fluorescent dye with Beta2M as
housekeeping gene.

Primers used and annealing temperatures were employed
as followed: FAS (Fasn) (5′-3′ sense: GAGTCCGAGTCT
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GTCTCCCGCTTGA; 5′-3′ antisense: GCCGTGAGGTTGCTG
TTGTCTGTAG; 64◦C; NM_017332); HSL-(Lipe) (5′-3′ sense:
CCTGCTGACCATCAACCGAC; 5′-3′ antisense: CCTCGATCT
CCGTGATATTCCAGA; 60◦C; NM_012859); Perilipin 1 (Plin1)
(5′-3′ sense: CCTCTTGCCCCGATCTGGAT; 5′-3′ antisense:
CAAGCCCCAAGGATGCCTTA; 60◦C; NM_013094); beta-2
microglobulin (Beta2M) (5′-3′ sense: CTC AGT TCC ACC CAC

CTC AG; 5
′
-3′ antisense: GCA AGC ATA TAC ATC GGT CTC

G; 56◦C; NM_012512). The 2−11Ct method (35) was used to
evaluate the relative quantification of amplification products
relative to the control group NFD. At least one sample from each
group was included in each run, and reactions were carried out
in triplicate.

Protein Expression Estimation by
Western Blotting
Epididymal fat pads were removed and immediately
homogenized in 1mL lysis buffer (100mM Tris, pH
7.5, 10mM EDTA, 0.1 mg/mL aprotinin; 2mM PMSF;
10mM sodium orthovanadate; 100mM sodium fluoride;
10mM sodium pyrophosphate; and 10% TritonX-100),
homogenized and centrifuged at 16,000 g for 40min
at 4◦C.

Fifty micrograms of protein were separated in 10% SDS-
PAGE, transferred onto nitrocellulose membranes and incubated
with primary antibody anti-Fatty Acid Synthase (FAS -
Santa Cruz R©– SC20140), anti-phospho-hormone-sensitive
lipase (p-HSL Cell Signaling R© - #4139) and anti-hormone-
sensitive lipase (HSL Cell Signaling R©- #4107). Membranes were
subsequently incubated with peroxidase-conjugated antibody
(Cell Signaling R©- #7074) followed by chemiluminescence
detection. β-tubulin (Cell Signaling R©- #2146) levels were used
as internal standard. Quantitative analysis was performed with
ImageJ software (ImageJ R©, version 2.0, Maryland, USA). In all
experiments, at least one sample from each group was analysed
simultaneously and the results were expressed as percentage
change relative to NFD group levels, as described previously (27).
Representative pictures of Western blotting gels are provided in
the Supplementary Data Sheet 1.

Statistical Analysis
Data were subjected to quality tests such as Shapiro–Wilk
(normality) and/or Levenne (homogeneity). If necessary,
data were standardized according to the log transformation.
Descriptive analysis was performed using mean ± SEM, and
measurements were taken from distinct samples. Comparisons
of body mass, food intake, body weight gain, and food efficiency
between NFD and HFD were assessed by Student’s t-test for
independent samples. One-way ANOVA followed by Tukey post-
hoc test was employed to assess the effects of supplementation
among NFD, HFD, and HFD+GbE. Mann-Whitney test was
performed to analyse acetate incorporation into lipids, since
this was a non-linear parameter compared between HFD and
HFD+GbE groups only. Statistical analysis was performed using
SPSS R©software version 20. The number of samples used in each
experiment is shown in the respective Results section. The level
of significance adopted was set at p ≤ 0.05.

RESULTS

Food, Energy Intake, and Body Weight
Gain During the Obesity Induction Period
Food intake (g/100 g/24 h) was ∼23% higher (p < 0.001)
in the HFD group in the first week of feeding (Figure 1A).
From the third week onwards, HFD rats ingested ∼29%
(p = 0.001) less food in grams, but their energy intake
(kcal/100 g/24 h) remained ∼44% (p = 0.001) higher than
NFD in the same period (Figure 1B). Additionally, food
efficiency [BW gain (g) / food ingestion (g)] was significantly
higher in HFD (10.64 ± 0.37) than in NFD (5.09 ± 0.21)
(p < 0.001) (Figure 1C).

Throughout the 2 months of obesity-induction period, both
groups showed continued body weight increase. From weeks
2 to 9, the HFD group gained around 16% (p < 0.001) more
weight than the NFD group (Figure 2A). The high-fat diet intake
resulted in an extra 153.3 g of body weight gain in relation to the
chow-fed rats (p < 0.001) (Figure 2B).

Food, Energy Intake, and Body Weight Gain
During the GbE Supplementation Period
At the end of the 2 months obesity-induction period (NFD vs.
HFD), the HFD group was randomly sorted into two subsets:
HFD (n = 24) or HFD+GbE (n = 27). For the two following
weeks, both HFD and HFD+GbE groups showed reduced food
intake in comparison to NFD (45.1 and 50.1%, respectively;
p < 0.001), but the HFD+GbE group showed reduced food
intake in comparison to HFD (8.9%, p = 0.014). The energy
intake was statistically similar between NFD and HFD; however,
the HFD+GbE energy intake was significantly lower than NFD
(8.7%, p = 0.001) and HFD (8.9%, p < 0.001) (Figures 3A,B).
Body weight gain (g) and food efficiency [BW gain (g)/ food
ingestion (g)] during the 2 weeks supplementation period were
monitored; however, no statistically significant differences were
found (Figures 4A,B).

Adipocyte Volume and Metabolism
Adipocyte volume was significantly larger in HFD than NFD
(114%, p = 0.01), but GbE supplementation reduced this
parameter by 42.5%, as compared to HFD (p = 0.03). Adipocyte
volume was statistically similar between HFD+GbE and NFD
(Figures 5A,B).

No statistically significant differences were found in lipolysis
rate (nmol/106 cells) or isoproterenol-induced lipolysis rate
(Figures 5C,D) amongst the three groups. However, oleate
incorporation into lipids was 130% higher (p = 0.01) in HFD
(39573.1 nmol/106 cells) than NFD (17189.9 nmol/106 cells).
Additionally, GbE supplementation showed a strong tendency to
reduce this parameter by 43% (p= 0.06) (22412.7 nmol/106 cells)
in relation to HFD (Figure 5E). Acetate incorporation into lipids
(nmol/106 cells) was reduced by 115% (p= 0.003) in HFD+GbE
(19286.5 nmol/106 cells) in relation to HFD (41560.2 nmol/106

cells) (Figure 5F).
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FIGURE 1 | Food intake, energy intake, and food efficiency. Food intake (g/100 g/24 h) (A), energy intake (kcal/100 g/24 h) (B), and food efficiency [BW gain (g)/food

ingestion(g)] (C) of normal-fat diet (NFD; n = 5) and high-fat diet (HFD; n = 13) groups during the obesity induction period. *p < 0.05 vs. NFD (Student’s t-test).

FIGURE 2 | Body composition. Body weight (g) during the obesity induction period (A) and body weight gain (difference between initial and final BW) (g) (B) of

normal-fat diet (NFD; n = 20) and high-fat diet (HFD; n = 29) *p < 0.05 vs. NFD (Student’s t-test).

FIGURE 3 | Accumulated food and energy intake after supplementation. Accumulated food intake (g/100 g/24 h) (A) and energy intake (kcal/100 g/24 h) (B) of

normal-fat diet (NFD; n = 10), high-fat diet (HFD; n = 24) and high-fat diet plus GbE supplementation (HFD+GbE; n = 24). *p < 0.05 vs. NFD and #p < 0.05 vs. HFD

(One-way ANOVA).
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FIGURE 4 | Body composition after supplementation. Body weight gain (g) (A) and food efficiency [BW gain (g)/food ingestion(g)] (B) of normal-fat diet (NFD; n = 10),

high-fat diet (HFD; n = 24) and high-fat diet plus GbE supplementation (HFD+GbE; n = 24). *p < 0.05 vs. NFD (One-way ANOVA).

FIGURE 5 | Adipocyte metabolism. Adipocyte volume (pL) (A), photomicrograph (B), basal lipolysis (nmol/106cells) (C), isoproterenol-stimulated lipolysis (nmol/106

cells) (D), oleate incorporation into lipids (nmol/106 cells) (E), and acetate incorporation into lipids (F) (nmol/106 cells) of normal-fat diet (NFD; n = 16–6), high-fat diet

(HFD; n = 22–9), and high-fat diet plus GbE supplementation (HFD+GbE; n = 26–10) groups. *p < 0.05 vs. NFD and #p < 0.05 vs. HFD (One-way ANOVA and

Mann-Whitney test on acetate incorporation).

Epididymal Adipose Tissue mRNA
Expression and Protein Synthesis
PLIN-1 (perilipin 1), FASN (fatty acid synthase), and HSL
(hormone-sensitive lipase) epididymal adipose tissue mRNA
expression were quantified by real time PCR. PLIN 1 gene
expression (Figure 6A) was increased by 335% (p= 0.06) in HFD
in comparison to NFD but decreased by 95.2% in HFD+GbE
(p= 0.01) in comparison to HFD.

No statistically significant differences were found in
FASN gene expression between HFD and NFD, but GbE
supplementation significantly decreased it by 70.7% in relation
to NFD (Figure 6B, p = 0.03). The FASN gene expression
experiment was followed by tissue FAS protein quantification
by western blotting. We have confirmed that there were
no differences in FAS protein between NFD and HFD, but
GbE supplementation did reduce tissue FAS content by 38%
(p = 0.05) in relation to NFD (Figure 7A). No statistically

significant differences were found in p-HSL and HSL protein
amongst the three groups (Figures 7B–D).

DISCUSSION

GbE is the most widely herbal supplement therapy used
worldwide (36). Its effects have been investigated in a range
of chronic diseases including NAFLD (22, 23), Alzheimer’s
disease (37), memory loss (31), and cancer (38). Recent
investigations from our research group have identified some of
the molecular effects of GbE supplementation in obese rats. We
have previously showed that GbE supplementation significantly
reduced appetite and significantly stimulated hypothalamic
serotonergic activity in obesity-associated ovariectomized rats
(28). Additionally, diet-induced obese rats showed significant
improvement in insulin sensitivity and increased insulin receptor
(IR) and AKT phosphorylation after GbE supplementation (27).
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FIGURE 6 | Gene expression. Effect of GbE supplementation on epididymal adipose tissue gene expression of PLIN1 (A), FASN (B), and HSL (C), normal-fat diet

(NFD; n = 6–4), high-fat diet (HFD; n = 5–3), and high-fat diet plus GbE supplementation (HFD+GbE; n = 6–4) groups. *p < 0.05 vs. NFD and #p < 0.05 vs. HFD

(One-way ANOVA). Gene expression in epididymal WAT depot was evaluated by Real Time PCR.

FIGURE 7 | Epididymal protein expression. Protein synthesis of FAS (A), p-HSL/tubulin (B), p-HSL/HSL (C), and HSL/tubulin (D) of normal fat diet (NFD; n = 9–6),

high-fat diet (HFD; n = 12–7), and high-fat diet +GbE (HFD+GbE; n = 11–8). *p < 0.05 vs. NFD (One-way ANOVA).

Collectively, these results suggest a potentially beneficial effect
of GbE as coadjuvant for the treatment of obesity. In order
to further test this hypothesis, in the current investigation we
examined other markers of lipid metabolism on epididymal
white adipose tissue of diet-induced obese rats supplemented
with GbE.

In the present study, we observed a lower food intake (g/100
g/24 h) but higher relative energy intake (kcal/100 g/24 h) in
HFD-fed rats throughout the 2 months of obesity-induction

period, prior to GbE intervention. The HFD was effective in
inducing obesity; HFD-fed rats showed significantly increased
body weight in comparison to NFD-fed rats, as well as increased
masses of retroperitoneal and epididymal adipose tissue. Such
findings have been described previously, and it is well-known
that lard-based high-fat diets increase body weight and visceral
fat accumulation (26, 39, 40).

Further metabolic manifestations have been observed in lard-
fed obese Wistar rats. Dornellas et al. (41) showed that the
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intake of lard-enriched high fat diet for 8 weeks resulted in
significantly decreased linoleic acid, alpha-linolenic acid and
the respective elongated desaturated omega 6 and 3 PUFAs in
liver, serum, retroperitoneal, epididymal and mesenteric white
adipose tissue lipid extracts. Due to the similarities between the
experimental model used in our study and the one employed
by Dornellas et al., it is reasonable to suggest that the content
of essential fatty acids was decreased in our HFD rats, which
may help to explain the phenotypic disturbances found in
these animals.

We found at the end of the 2 weeks GbE supplementation
period reduced food intake and reduced relative energy intake in
GbE supplemented rats, in comparison to the non-supplemented
obese ones. Similar results were observed in previous studies
from our research group (26, 27). It has been proposed that
Ginkgo biloba may stimulate serotoninergic systems, inducing
hypophagia (28).

The reduced energy intake observed in HFD+GbE did not
lead to significantly reduced body weight gain; both HFD
and HFD+GbE showed statistically similar body weight at
the end of the 2-week supplementation period. However, we
have previously demonstrated that GbE induced a significant
reduction in the mass of retroperitoneal and epididymal fat pads
of obese rats (26). Furthermore, epididymal adipocytes harvested
from HFD rats were significantly larger than those harvested
from NFD rats, but the present data also showed that GbE
supplementation induced a reduction in adipocyte volume of
obese rats, bringing this index down to a volume similar to the
NFD group.

This is, in our opinion, a remarkable effect of GbE
supplementation. Adipocyte hypertrophy is a classical
manifestation of obesity and is directly associated with the
aetiology of macrophage infiltration, hypoxia, secretion of
pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-1β) and
reduced production of adiponectin. Such disturbances induce
low grade inflammation and insulin resistance (11, 42). Not only
that, abnormally expanded adipocytes have a reduced capacity to
further store additional amounts of triacylglycerol, leading to its
ectopic deposition in other organs such as skeletal muscle, heart,
pancreas, and liver (3, 43). A reduction of adipocyte volume
without concomitant losses in body weight, which we did find in
the present study, could well possibly suggest an improvement
in body composition. Further studies are however needed to
further investigate this hypothesis.

The reduced adipocyte volume observed in the HFD+GbE
rats may be associated with their lowered food intake; however,
we do not believe these findings suggest starvation. Calorie
restriction has been associated with starvation signals such as
reduced leptin and insulin (44), but in the opposite direction,
we have previously found increased insulin levels and activity
in obese rats supplemented with GbE submitted to the same
experimental protocol (26).

Increased visceral adiposity and perturbations in adipocyte
volume are only a few of the manifestations seen in adipose
tissue in obesity; lipid uptake and lipolysis rate are also disturbed
(45). In the present study, the lipolysis index was quantified
by the amount of glycerol released from incubated adipocytes
into the incubation medium. Isoproterenol, a sympathomimetic

compound, was added to mimic adrenergic activation upon
lipolysis. We found no statistically significant differences in
either basal or isoproterenol-stimulated lipolysis amongst the
three groups investigated. It is known however that lipolysis
rate is higher in obesity (46). Corroborating this observation,
in the current investigation, despite the absence of statistically
significant differences in lipolysis rate amongst the three
groups, HFD+GbE adipocytes showed basal lipolysis rate ∼45%
lower, and isoproterenol-stimulated lipolysis ∼15% lower than
HFD adipocytes.

We also quantified in ex-vivo epididymal adipocytes the
fatty acid incorporation into TAG, defined as intracellular
accumulation of [3H]-oleate. Our results show that incorporation
was significantly higher in HFD in comparison to NFD
(Figure 5E), and GbE reduced it by 43% in relation to HFD
(Figure 5E).

In the present investigation, lipolysis rate remained
statistically similar between HFD and NFD. Furthermore,
oleate incorporation was significantly higher in HFD. Taken
these results together, it is expected that in the longer term
HFD adipocytes would only expand their volumes further,
deteriorating the molecular consequences of obesity. However,
our results suggest that GbE would be effective in impairing such
deterioration, as lipolysis rate and fatty acid incorporation were
lower in the rats that received it as compared to the ones that
did not. Both biomarkers were also statistically similar between
HFD+GbE and NFD. Our hypothesis is further corroborated
by the findings of intracellular incorporation of [1-14C]-acetate,
presented in Figure 6E. Acetate is a key component in fatty
acid synthesis, and we found significantly reduced acetate
incorporation into lipids in the HFD+GbE group in relation
to HFD.

Ginkgo biloba extract is a rich mixture of polyphenolic
compounds, including ginkgolides, bilobalides, quercetin, and
several others (47). Previous studies showed that 3T3-L1
adipocytes incubated with ginkgolide C showed increased
ATGL and HSL activity and AMPK phosphorylation, as well
as decreased activity of acetyl-CoA carboxylase for fatty acid
synthesis (30). Furthermore, 3T3-L1 cells subjected to hypoxia
and incubated with bilobalide showed reduced pro-inflammatory
biomarkers and improved insulin sensitivity (48). Similarly,
ginkgetin, a biflavone from Ginkgo biloba, has been described as
a STAT5 inhibitor, blocking the differentiation of pre-adipocytes
into adipocytes harvested from high-fat diet-induced obese mice
(49). Moreover, OP9 cells, which differentiate into adipocytes
in vitro, showed reduced adipogenesis, increased HSL and
decreased FAS expression upon treatment with quercetin (50).
Such results confirm previously published findings that 3T3-L1
adipocytes treated with a range of biflavones found in Ginkgo
biloba showed increased lipolysis rate (29), and that biflavones
inhibit cAMP-phosphodiesterase in rat adipose tissue (51).

Perilipin 1 is an intracellular protein that covers the lipid
droplet surface in adipocytes, regulating TAG storage and
mediating stimulated lipolysis (13). Higher perilipin activity (52)
and higher TNF-α levels (53) are observed in obesity. TNF-
α induces lipolysis mediated by the activation of perilipin 1,
promoting its displacement from the lipid droplet, making the
TAG molecule more accessible to HSL (43).
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In the present investigation, we found lower perilipin 1
relative mRNA levels in HFD+GbE as compared to HFD, down
to levels similar to the NFD group. The lower perilipin levels
found in GbE-supplemented rats may suggest that a lower
lipolysis rate will occur in the longer term, further corroborating
the lipolysis findings described above. Also, it further supports
the hypothesis that GbE supplementation may lead to lower fat
accumulation in the long term.

Fatty Acid Synthase (FAS) is another pivotal protein in the
regulation of body adiposity, utilizing malonyl-CoA and acetyl-
CoA for the synthesis and elongation of fatty acid chains, which
are eventually incorporated into lipid droplets (13). Higher levels
of Fasn mRNA and FAS protein have been described in obesity,
in visceral fat accumulation, and in enlarged insulin-resistant
adipocytes (54–56). In the present study, we found decreased
Fasn mRNA gene expression and FAS protein synthesis in the
HFD+GbE group in comparison to the NFD group, which
suggests GbE could have a FAS-inhibiting effect.

FAS has been proposed as a potential therapeutic target for
the treatment of obesity (54, 57), and grape skin extract and
resveratrol have shown FAS enzyme-inhibiting properties. In
3T3-L1 pre-adipocytes, resveratrol reduced lipid accumulation
(58). Furthermore, resveratrol treatment decreased the
epididymal adipose tissue Fasn mRNA expression in high fat
diet-fed mice (59). FAS inhibition is followed by malonyl-CoA,
acetyl-CoA and NADPH accumulation, which is interpreted by
the cell as a signal for abundance of energy (58).

Moreover, FAS may be an important modulator of feeding
regulation. C75 is a synthetic inhibitor of FAS found to
suppress food intake in obese mice mediated by NPY/AgRP
orexigenic neurons, also increasing the expression of Melanin-
Concentrating Hormone and its receptor in the hypothalamus.
C75 reduced body weight and body fat content, and normalized
obesity-associated hyperglycaemia and hyperinsulinemia (55, 57,
60). In the present study, we observed lower food and calorie
intake in the HFD+GbE rats, which may be associated with
decreased levels of FAS gene expression and protein synthesis.

In summary, our study shows that rats fed a high fat diet
for 2 months and subsequently supplemented with GbE for 2
weeks showed significant reduction in several biomarkers of lipid
metabolism, including reduced epididymal adipocyte volume
and [1-14C]-acetate incorporation into fatty acids, Plin 1mRNA,
FasnmRNA, and protein levels, alongside a tendency for reduced
epididymal [3H]-oleate incorporation. Furthermore, the energy
intake of GbE-supplemented rats was significantly lower than
of rats receiving a control diet and of rats received the high fat
diet only.

These findings allow us to suggest that GbE supplementation
might be a promising alternative anti-obesogenic therapeutic
approach. This is of particular relevance for obese patients who

do not successfully engage in nutritional and positive lifestyle re-
education programmes. However, due to the limitations of this
study, as it involves a rodent model, further studies are necessary
to test the validity of our hypothesis.

ETHICS STATEMENT

This study was carried out in strict accordance with the
recommendations of the Guide for the Care and Use of
Laboratory Animals. The Committee on Animal Research
Ethics of the Universidade Federal de São Paulo approved all
procedures for the care of the animals used in this study (Process
number: 8700110814).

AUTHOR CONTRIBUTIONS

BH contributed to conception and design of the work,
acquisition, analysis and interpretation of data for the work,
drafted and revised themanuscript and provided final approval of
the submitted version, responsible for all study aspects including
its accuracy and integrity. MC, RdS, TF, and MM contributed
to the data acquisition, analysis and interpretation, revised the
manuscript and provided final approval of the submitted version,
responsible for all study aspects including its accuracy and
integrity. AB contributed to the data analysis and interpretation;
drafted and revised the manuscript, revised the manuscript and
provided final approval of the submitted version, responsible
for all study aspects including its accuracy and integrity. MA-V
and MT contributed to conception and design of the work,
analysis and interpretation of data for the work, drafted and
revised the manuscript and provided final approval of the
submitted version, responsible for all study aspects including its
accuracy and integrity. All authors approved the final version of
the manuscript.

ACKNOWLEDGMENTS

This research was supported by grants from the Brazilian
agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior - Brazil (CAPES) - Finance Code 001 and PDSE 19/2016
- grant number 88881.133658/2016-01 and by the Fundação de
Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil,
grant number 2014/18929-9). The authors are also grateful for
the University of Worcester for partial financial support.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fendo.
2019.00284/full#supplementary-material

REFERENCES

1. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J

Allergy Clin Immunol. (2005) 115:911–20. doi: 10.1016/j.jaci.2005.

02.023

2. Zhang H, Zhang C. Adipose talks to distant organs to regulate insulin

sensitivity and vascular function.Obesity. (2010) 18:2071–6. doi: 10.1038/oby.

2010.91

3. Vázquez-Vela MEF, Torres N, Tovar AR. White adipose

tissue as endocrine organ and its role in obesity. Arch

Frontiers in Endocrinology | www.frontiersin.org 9 May 2019 | Volume 10 | Article 284

https://www.frontiersin.org/articles/10.3389/fendo.2019.00284/full#supplementary-material
https://doi.org/10.1016/j.jaci.2005.02.023
https://doi.org/10.1038/oby.2010.91
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Hirata et al. Anti-obesogenic Effects of Ginkgo biloba

Med Res. (2008) 39:715–28. doi: 10.1016/j.arcmed.2008.

09.005

4. Choe SS, Huh JY, Hwang IJ, Kim JBJI, Kim JBJI. Adipose tissue remodeling: Its

role in energy metabolism and metabolic disorders. Front Endocrinol. (2016)

7:30. doi: 10.3389/fendo.2016.00030

5. Corbett SW, Stern JS, Keesey RE. Energy expenditure in rats with diet-induced

obesity. Am J Clin Nutr. (1986) 44:173–80.

6. Ruan H, Dong LQ. Adiponectin signaling and function in insulin target

tissues. J Mol Cell Biol. (2016) 8:101–9. doi: 10.1093/jmcb/mjw014

7. Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA. Leptin resistance and

diet-induced obesity: central and peripheral actions of leptin. Metabolism.

(2015) 64:35–46. doi: 10.1016/j.metabol.2014.10.015

8. Stich V, Berlan M. Physiological regulation of NEFA availability:

lipolysis pathway. Proc Nutr Soc. (2004) 63:369–74. doi: 10.1079/PNS20

04350

9. Wueest S, Rapold RA, Rytka JM, Schoenle EJ, Konrad D. Basal lipolysis,

not the degree of insulin resistance, differentiates large from small

isolated adipocytes in high-fat fed mice. Diabetologia. (2009) 52:541–6.

doi: 10.1007/s00125-008-1223-5

10. Frühbeck G, Méndez-Giménez L, Fernández-Formoso J-A, Fernández S,

Rodríguez A. Regulation of adipocyte lipolysis.Nutr Res Rev. (2014) 27:63–93.

doi: 10.1017/S095442241400002X

11. Rutkowski JM, Stern JH, Scherer PE. The cell biology of fat expansion. J Cell

Biol. (2015) 208:501–12. doi: 10.1083/jcb.201409063

12. Lafontan M, Langin D. Lipolysis and lipid mobilization in human

adipose tissue. Prog Lipid Res. (2009) 48:275–97. doi: 10.1016/j.plipres.2009.

05.001

13. Proença ARG, Sertié RAL, Oliveira AC, Campaña AB, Caminhotto RO,

Chimin P, et al. New concepts in white adipose tissue physiology. Braz J Med

Biol Res. (2014) 47:192–205. doi: 10.1590/1414-431X20132911

14. McLaughlin T, Lamendola C, Liu A, Abbasi F. Preferential fat deposition in

subcutaneous versus visceral depots is associated with insulin sensitivity. J Clin

Endocrinol Metab. (2011) 96:E1756–60. doi: 10.1210/jc.2011-0615

15. Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic

syndrome.Mediators Inflamm. (2010) 2010:289645. doi: 10.1155/2010/289645

16. Yamashita AS, Lira FS, Rosa JC, Paulino EC, Brum PC, Negrão CE, et al.

Depot-specific modulation of adipokine levels in rat adipose tissue by diet-

induced obesity: the effect of aerobic training and energy restriction. Cytokine.

(2010) 52:168–74. doi: 10.1016/j.cyto.2010.07.006

17. Martin KA, Mani MV, Mani A. New targets to treat obesity and

the metabolic syndrome. Eur J Pharmacol. (2015) 763:64–74.

doi: 10.1016/j.ejphar.2015.03.093

18. de Freitas Junior LM, de Almeida EB Jr. Medicinal plants for the treatment of

obesity : ethnopharmacological approach and chemical and biological studies.

Am J Transl Res. (2017) 9:2050–64.

19. Singh B, Kaur P, Gopichand, Singh RD, Ahuja PS. Biology and chemistry of

Ginkgo biloba. Fitoterapia. (2008) 79:401–18. doi: 10.1016/j.fitote.2008.05.007

20. Birks J, Grimley Evans J. Ginkgo biloba for cognitive impairment

and dementia. Cochrane Database Syst. Rev. (2009) CD003120.

doi: 10.1002/14651858.CD003120.pub3

21. Zhang H-F, Huang L-B, Zhong Y-B, Zhou Q-H, Wang H-L, Zheng G-Q,

et al. An overview of systematic reviews of Ginkgo biloba extracts for mild

cognitive impairment and dementia. Front Aging Neurosci. (2016) 8:276.

doi: 10.3389/fnagi.2016.00276

22. Wang SD, Xie ZQ, Chen J, Wang K, Wei T, Zhao AH, et al. Inhibitory

effect of Ginkgo biloba extract on fatty liver: regulation of carnitine

palmitoyltransferase 1a and fatty acidmetabolism. J Dig Dis. (2012) 13:525–35.

doi: 10.1111/j.1751-2980.2012.00627.x

23. Yan Z, Fan R, Yin S, Zhao X, Liu J, Li L, et al. Protective effects ofGinkgo biloba

leaf polysaccharide on nonalcoholic fatty liver disease and its mechanisms. Int

J Biol Macromol. (2015) 80:573–80. doi: 10.1016/j.ijbiomac.2015.05.054

24. Kudolo GB, Wang W, Javors M, Blodgett J. The effect of the ingestion of

Ginkgo biloba extract (EGb 761) on the pharmacokinetics of metformin in

non-diabetic and type 2 diabetic subjects–a double blind placebo-controlled,

crossover study. Clin Nutr. (2006) 25:606–16. doi: 10.1016/j.clnu.2005.12.012

25. Rhee K-J, Lee CG, Kim SW, Gim D-H, Kim H-C, Jung BD. Extract of

Ginkgo biloba ameliorates streptozotocin-induced type 1 Diabetes mellitus

and high-fat diet-induced type 2 diabetes mellitus in mice. Int J Med Sci.

(2015) 12:987–94. doi: 10.7150/ijms.13339

26. Banin RM, Hirata BKS, Andrade IS, Zemdegs JCS, Clemente APG, Dornellas

APS, et al. Beneficial effects of Ginkgo biloba extract on insulin signaling

cascade, dyslipidemia, and body adiposity of diet-induced obese rats. Braz J

Med Biol Res. (2014) 47:780–8. doi: 10.1590/1414-431X20142983

27. Hirata BKS, Banin RM, Dornellas APS, De Andrade IS, Zemdegs JCS,

Caperuto LC, et al. Ginkgo biloba extract improves insulin signaling and

attenuates inflammation in retroperitoneal adipose tissue depot of obese rats.

Mediators Inflamm. (2015) 2015:419106. doi: 10.1155/2015/419106

28. Banin RM, de Andrade IS, Cerutti SM, Oyama LM, Telles MM, Ribeiro EB.

Ginkgo biloba Extract (GbE) stimulates the hypothalamic serotonergic system

and attenuates obesity in ovariectomized rats. Front Pharmacol. (2017) 8:605.

doi: 10.3389/fphar.2017.00605

29. Dell’Agli M, Bosisio E. Biflavones of Ginkgo biloba stimulate lipolysis in

3T3-L1 adipocytes. Planta Med. (2002) 68:76–9. doi: 10.1055/s-2002-19876

30. Liou CJ, Lai XY, Chen YL, Wang CL, Wei CH, Huang WC. Ginkgolide C

suppresses adipogenesis in 3T3-L1 adipocytes via the AMPK signaling

pathway. Evid Based Complement Altern Med. (2015) 2015:298635.

doi: 10.1155/2015/298635

31. Oliveira DR, Sanada PF, Saragossa FAC, Innocenti LR, Oler G, Cerutti JM,

et al. Neuromodulatory property of standardized extract Ginkgo biloba L.

(EGb 761) on memory: behavioral and molecular evidence. Brain Res. (2009)

1269:68–89. doi: 10.1016/j.brainres.2008.11.105

32. Bolsoni-Lopes A, Festuccia WT, Chimin P, Farias TS, Torres-Leal FL, Cruz

MM, et al. Palmitoleic acid (n-7) increases white adipocytes GLUT4 content

and glucose uptake in association with AMPK activation. Lipids Health Dis.

(2014) 13:199. doi: 10.1186/1476-511X-13-199

33. de Sá RD, Crisma AR, Cruz MM, Martins AR, Masi LN, do Amaral CL,

et al. Fish oil prevents changes induced by a high-fat diet on metabolism and

adipokine secretion in mice subcutaneous and visceral adipocytes. J Physiol.

(2016) 594:6301–17. doi: 10.1113/JP272541

34. Randle PJ. Fat Cells. Nature. (1972) 237:521. doi: 10.1038/237521b0

35. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-

time quantitative PCR and the 2-11CT method. Methods. (2001) 25:402–8.

doi: 10.1006/meth.2001.1262

36. Lieberman HR, Kellogg MD, Fulgoni VL, Agarwal S. Moderate doses of

commercial preparations of Ginkgo biloba do not alter markers of liver

function but moderate alcohol intake does: a new approach to identify and

quantify biomarkers of ‘adverse effects’ of dietary supplements. Regul Toxicol

Pharmacol. (2017) 84:45–53. doi: 10.1016/j.yrtph.2016.12.010

37. Ramassamy C, Longpré F, Christen Y. Ginkgo biloba extract (EGb

761) in alzheimers disease: is there any evidence? Curr Alzheimer Res.

(2007) 4:253–62. doi: 10.2174/156720507781077304

38. Mahadevan S, Park Y. Multifaceted therapeutic benefits of Ginkgo biloba

L.: chemistry, efficacy, safety, and uses. J Food Sci. (2008) 73:R14–9.

doi: 10.1111/j.1750-3841.2007.00597.x

39. Buettner R, Schölmerich J, Bollheimer LC, Scholmerich J, Bollheimer LC.

High-fat diets : modeling the metabolic disorders of human obesity in rodents.

Obesity. (2007) 15:798–808. doi: 10.1038/oby.2007.608

40. Kubant R, Poon AN, Sánchez-Hernández D, Domenichiello AF, Huot PSP,

Pannia E, et al. A comparison of effects of lard and hydrogenated vegetable

shortening on the development of high-fat diet-induced obesity in rats. Nutr

Diabetes. (2015) 5:1–6. doi: 10.1038/nutd.2015.40

41. Dornellas APS, Watanabe RLH, Pimentel GD, Boldarine VT, Nascimento

CMO, Oyama LM, et al. Deleterious effects of lard-enriched diet on tissues

fatty acids composition and hypothalamic insulin actions. Prostaglandins

Leukot. Essent. Fat. Acids. (2015) 102–3:21–9. doi: 10.1016/j.plefa.2015.

10.003

42. Torres-Leal FL, Fonseca-Alaniz MH, Rogero MM, Tirapegui J. The role of

inflamed adipose tissue in the insulin resistance. Cell Biochem Funct. (2010)

28:623–31. doi: 10.1002/cbf.1706

43. Yu YH, Ginsberg HN. Adipocyte signaling and lipid homeostasis:

sequelae of insulin-resistant adipose tissue. Circ Res. (2005) 96:1042–52.

doi: 10.1161/01.RES.0000165803.47776.38

44. Larson-Meyer E, Heilbronn LK, Redman LM, Newcomer BR, Frisard MI,

Anton S, et al. Effect of calorie restriction with or without exercise on insulin

Frontiers in Endocrinology | www.frontiersin.org 10 May 2019 | Volume 10 | Article 284

https://doi.org/10.1016/j.arcmed.2008.09.005
https://doi.org/10.3389/fendo.2016.00030
https://doi.org/10.1093/jmcb/mjw014
https://doi.org/10.1016/j.metabol.2014.10.015
https://doi.org/10.1079/PNS2004350
https://doi.org/10.1007/s00125-008-1223-5
https://doi.org/10.1017/S095442241400002X
https://doi.org/10.1083/jcb.201409063
https://doi.org/10.1016/j.plipres.2009.05.001
https://doi.org/10.1590/1414-431X20132911
https://doi.org/10.1210/jc.2011-0615
https://doi.org/10.1155/2010/289645
https://doi.org/10.1016/j.cyto.2010.07.006
https://doi.org/10.1016/j.ejphar.2015.03.093
https://doi.org/10.1016/j.fitote.2008.05.007
https://doi.org/10.1002/14651858.CD003120.pub3
https://doi.org/10.3389/fnagi.2016.00276
https://doi.org/10.1111/j.1751-2980.2012.00627.x
https://doi.org/10.1016/j.ijbiomac.2015.05.054
https://doi.org/10.1016/j.clnu.2005.12.012
https://doi.org/10.7150/ijms.13339
https://doi.org/10.1590/1414-431X20142983
https://doi.org/10.1155/2015/419106
https://doi.org/10.3389/fphar.2017.00605
https://doi.org/10.1055/s-2002-19876
https://doi.org/10.1155/2015/298635
https://doi.org/10.1016/j.brainres.2008.11.105
https://doi.org/10.1186/1476-511X-13-199
https://doi.org/10.1113/JP272541
https://doi.org/10.1038/237521b0
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.1016/j.yrtph.2016.12.010
https://doi.org/10.2174/156720507781077304
https://doi.org/10.1111/j.1750-3841.2007.00597.x
https://doi.org/10.1038/oby.2007.608
https://doi.org/10.1038/nutd.2015.40
https://doi.org/10.1016/j.plefa.2015.10.003
https://doi.org/10.1002/cbf.1706
https://doi.org/10.1161/01.RES.0000165803.47776.38
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Hirata et al. Anti-obesogenic Effects of Ginkgo biloba

sensitivity, beta-cell function, fat cell size, and ectopic lipid in overweight

subjects. Diabetes Care. (2006) 29:1337–44. doi: 10.2337/dc05-2565

45. Lee M-J, Wu Y, Fried SK. Adipose tissue heterogeneity: implication of depot

differences in adipose tissue for obesity complications. Mol Aspects Med.

(2013) 34:1–11. doi: 10.1016/j.mam.2012.10.001

46. Andersson D, Löfgren P, Thorell A, Arner P, Hoffstedt J. Visceral fat cell

lipolysis and cardiovascular risk factors in obesity. Horm Metab Res. (2011)

43:809–15. doi: 10.1055/s-0031-1287767

47. Ding S, Dudley E, Plummer S, Tang J, Newton RP, Brenton AG.

Quantitative determination of major active components inGinkgo biloba

dietary supplements by liquid chromatography/mass spectrometry. Rapid

Commun Mass Spectrom. (2006) 20:2753–60. doi: 10.1002/rcm.2646

48. Priyanka A, Sindhu G, Shyni GL, Preetha Rani MR, Nisha VM, Raghu

KG. Bilobalide abates inflammation, insulin resistance and secretion of

angiogenic factors induced by hypoxia in 3T3-L1 adipocytes by controlling

NF-κB and JNK activation. Int Immunopharmacol. (2017) 42:209–17.

doi: 10.1016/j.intimp.2016.11.019

49. Cho Y, Park J, Jin H, Kim W, Ji M, Jang J, et al. Ginkgetin, a biflavone

from Ginkgo biloba leaves, prevents adipogenesis through STAT5-mediated

PPAR γ and C / EBP α regulation. Pharmacol Res. (2019) 139:325–36.

doi: 10.1016/j.phrs.2018.11.027

50. Seo Y, Kang O, Kim S, Mun S, Kang D, Yang D, et al. Quercetin

prevents adipogenesis by regulation of transcriptional factors and lipases

in OP9 cells. Int J Mol Med. (2015) 35:1779–85. doi: 10.3892/ijmm.2015.

2185

51. Saponara R, Bosisio E. Inhibition of cAMP-phosphodiesterase by biflavones

of Ginkgo biloba in rat adipose tissue. J Nat Prod. (1998) 61:1386–7.

doi: 10.1021/np970569m

52. Kern PA, Gregorio GDI, Lu T, Rassouli N, Ranganathan G. Perilipin

expression in human adipose tissue is elevated with obesity. J Clin Endocrinol

Metab. (2004) 89:1352–8. doi: 10.1210/jc.2003-031388

53. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor

necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science.

(1993) 259:87–91. doi: 10.1126/science.7678183

54. Berndt J, Kovacs P, Ruschke K, Klöting N, Fasshauer M, Schön MR,

et al. Fatty acid synthase gene expression in human adipose tissue:

association with obesity and type 2 diabetes. Diabetologia. (2007) 50:1472–80.

doi: 10.1007/s00125-007-0689-x

55. Kumar MV, Shimokawa T, Nagy TR, Lane MD. Differential effects of a

centrally acting fatty acid synthase inhibitor in lean and obese mice. Proc Natl

Acad Sci USA. (2002) 99:1921–5. doi: 10.1073/pnas.042683699

56. Mobbs CV, Makimura H. Block the FAS, lose the fat.NatMed. (2002) 8:335–6.

doi: 10.1038/nm0402-335

57. Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV,

Lane MD, et al. Reduced food intake and body weight in mice

treated with fatty acid synthase inhibitors. Science. (2000) 288:2379–81.

doi: 10.1126/science.288.5475.2379

58. Liang Y, Tian W, Ma X. Inhibitory effects of grape skin extract and

resveratrol on fatty acid synthase. BMC Complement Altern Med. (2013)

13:361. doi: 10.1186/1472-6882-13-361

59. Qiao Y, Sun J, Xia S, Tang X, Shi Y, Le G. Effects of resveratrol on gut

microbiota and fat storage in a mouse model with high-fat-induced obesity.

Food Funct. (2014) 5:1241. doi: 10.1039/c3fo60630a

60. Shimokawa T, Kumar MV, Lane MD. Effect of a fatty acid synthase inhibitor

on food intake and expression of hypothalamic neuropeptides. Proc Natl Acad

Sci USA. (2002) 99:66–71. doi: 10.1073/pnas.012606199

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Hirata, Cruz, de Sá, Farias, Machado, Bueno, Alonso-Vale and

Telles. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Endocrinology | www.frontiersin.org 11 May 2019 | Volume 10 | Article 284

https://doi.org/10.2337/dc05-2565
https://doi.org/10.1016/j.mam.2012.10.001
https://doi.org/10.1055/s-0031-1287767
https://doi.org/10.1002/rcm.2646
https://doi.org/10.1016/j.intimp.2016.11.019
https://doi.org/10.1016/j.phrs.2018.11.027
https://doi.org/10.3892/ijmm.2015.2185
https://doi.org/10.1021/np970569m
https://doi.org/10.1210/jc.2003-031388
https://doi.org/10.1126/science.7678183
https://doi.org/10.1007/s00125-007-0689-x
https://doi.org/10.1073/pnas.042683699
https://doi.org/10.1038/nm0402-335
https://doi.org/10.1126/science.288.5475.2379
https://doi.org/10.1186/1472-6882-13-361
https://doi.org/10.1039/c3fo60630a
https://doi.org/10.1073/pnas.012606199
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles

	Potential Anti-obesogenic Effects of Ginkgo biloba Observed in Epididymal White Adipose Tissue of Obese Rats
	Introduction
	Materials and methods
	Ethical approval
	Animal Care
	GbE Supplementation
	Adipocyte Isolation
	Lipolysis
	Fatty Acid Uptake
	Incorporation of [1-14C]-Acetate Into Triacylglycerol
	RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction (qPCR)
	Protein Expression Estimation by Western Blotting
	Statistical Analysis

	Results
	Food, Energy Intake, and Body Weight Gain During the Obesity Induction Period
	Food, Energy Intake, and Body Weight Gain During the GbE Supplementation Period
	Adipocyte Volume and Metabolism
	Epididymal Adipose Tissue mRNA Expression and Protein Synthesis

	Discussion
	Ethics Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


