
cancers

Article

Sugar Alcohols Have a Key Role in Pathogenesis of
Chronic Liver Disease and Hepatocellular Carcinoma
in Whole Blood and Liver Tissues

Israa T. Ismail 1,2, Oliver Fiehn 2,* , Ashraf Elfert 1, Marwa Helal 1, Ibrahim Salama 1 and
Hala El-Said 1

1 National Liver Institute, Menoufia University, Shebeen El Kom 55955, Egypt; imismail@ucdavis.edu (I.T.I.);
ashraf.yousif@liver.menofia.edu.eg (A.E.); marwa.helal@liver.menofia.edu.eg (M.H.);
ibrahiem.a.alqader11@liver.menofia.edu.eg (I.S.); hala.elsaid@liver.menofia.edu.eg (H.E.-S.)

2 NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
* Correspondence: ofiehn@ucdavis.edu

Received: 30 November 2019; Accepted: 17 February 2020; Published: 19 February 2020
����������
�������

Abstract: The major risk factors for hepatocellular carcinoma (HCC) are hepatitis C and B viral
infections that proceed to Chronic Liver Disease (CLD). Yet, the early diagnosis and treatment of HCC
are challenging because the pathogenesis of HCC is not fully defined. To better understand the onset
and development of HCC, untargeted GC-TOF MS metabolomics data were acquired from resected
human HCC tissues and their paired non-tumor hepatic tissues (n = 46). Blood samples of the same
HCC subjects (n = 23) were compared to CLD (n = 15) and healthy control (n = 15) blood samples.
The participants were recruited from the National Liver Institute in Egypt. The GC-TOF MS data
yielded 194 structurally annotated compounds. The most strikingly significant alteration was found
for the class of sugar alcohols that were up-regulated in blood of HCC patients compared to CLD
subjects (p < 2.4 × 10−12) and CLD compared to healthy controls (p = 4.1 × 10−7). In HCC tissues,
sugar alcohols were the most significant (p < 1 × 10−6) class differentiating resected HCC tissues from
non-malignant hepatic tissues for all HCC patients. Alteration of sugar alcohol levels in liver tissues
also defined early-stage HCC from their paired non-malignant hepatic tissues (p = 2.7 × 10−6). In
blood, sugar alcohols differentiated HCC from CLD subjects with an ROC-curve of 0.875 compared to
0.685 for the classic HCC biomarker alpha-fetoprotein. Blood sugar alcohol levels steadily increased
from healthy controls to CLD to early stages of HCC and finally, to late-stage HCC patients. The
increase in sugar alcohol levels indicates a role of aldo-keto reductases in the pathogenesis of HCC,
possibly opening novel diagnostic and therapeutic options after in-depth validation.

Keywords: sorbitol; cirrhosis; carbohydrates; amino acids; nucleosides; microbial metabolism;
microbiota; cancer

1. Introduction

Hepatocellular carcinoma (HCC) represents about 75% of all liver cancers [1]. Worldwide, liver
cancers belong to the three most common causes of cancer-related deaths [2,3]. The disparity in HCC
prevalence in different areas of the world matches the geographical distribution of risk factors [4].
Hepatitis B (HBV), hepatitis C (HCV), alcohol and non-alcoholic fatty liver disease are the main
risk factors of chronic liver disease (CLD) [5,6]. CLD often progresses to liver cirrhosis, a major risk
factor for HCC. HCV and HBV together with HCC itself have an increasing incidence in the USA [7],
China [8] and Africa [9]. Egypt has the highest incidence of chronic hepatitis C and HCC in the
Middle East [10,11]. Subtle manifestation of HCC in its early stages is responsible for its delayed
diagnosis and poor prognosis [12]. The laboratory diagnosis of HCC by alpha-fetoprotein (AFP)
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lacks sensitivity and specificity with respect to CLD and cirrhotic liver [13,14]. Early HCC can be
treated by liver resections or other treatments, but such options may not be available for cases with a
late-stage diagnosis of HCC [15]. Multiple studies outlined the pathogenesis of HCC in relation to
risk factors [16–18]. However, on the molecular and metabolic level, the pathogenesis of HCC and its
progression from CLD and cirrhosis is not well understood [19].

The liver plays a central role in metabolism and directly impacts levels of many blood metabolites.
Hence, HCC pathogenesis in the tissue should be readily diagnosable by blood metabolomics [15].
Profiling substrates, cofactors, and products of a large diversity of biochemical pathways lead to a better
understanding of disease etiologies, diagnosis, prevention, and, possibly, treatment [20]. Previous
metabolomics studies have been conducted on serum, plasma, urine or tissues of HCC patients using
mass spectrometry [21,22] or nuclear magnetic resonance (NMR) [23,24]. HCC pathogenesis induced
alterations in levels of amino acids [25], lipids [21], bile acids [26] and redox state metabolism [24,27–29].
Gas chromatography/mass spectrometry (GC/MS) provided good coverage of primary metabolism in
HCC ranging from energy metabolism [14] to glycolysis, TCA metabolites, purines, and lipids [30,31].
Specifically, GC/MS revealed alterations in amino acids, sugars, fatty acids, and other macromolecules
in biofluids of HCC patients [22,25,32–36]. However, none of these earlier studies combined analyses of
both tissues and biofluids for detailing the pathogenesis of HCC in patients. We, therefore, focused on
the impact of chronic liver disease and hepatocellular carcinoma on primary metabolism in both liver and
blood. Specifically, we aimed to (1) detail alterations in primary metabolism defined by the progression
of viral CLD to HCC in comparison to healthy subjects and (2) to validate these metabolomic differences
in resected human hepatocellular carcinoma compared to paired non-malignant hepatic tissues.

2. Results

2.1. Characteristics of Subjects

23 HCC and 15 CLD patients with HCV or/and HBV infection were recruited in addition to 15
healthy control subjects. All CLD patients had underlying current viral infections. All HCC patients
had either current viral infection diagnosed by PCR at the time of surgery or a previous infection
ranging up to 2 years prior to surgery. The diagnosis of hepatocellular carcinoma was confirmed by
histopathologic studies after resection. The characteristics of the study subjects are provided in Table 1.
Subjects were well matched, showing no significant differences in age (using ANOVA test) and gender
(using the Chi-square test) between HCC, CLD, and healthy control subjects. In addition, there were
no significant differences in aspartate transaminase (AST), alanine transaminase (ALT), and platelet
count between CLD and HCC groups (using t-test). Similarly, current positive PCR detection of HCV
and HBV infection did not show significant differences between CLD and HCC groups (using the
Chi-square test) (Table 1), excluding these potentially confounding effects. As expected, the HCC
group showed a significant increased Alfa fetoprotein (AFP) level compared to CLD patients (p =

0.02), as well as prothrombin time expressed as an international normalized ratio (INR) (p = 0.005) and
decreased level of hemoglobin (p = 0.011).
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Table 1. Clinical and biochemical characteristics of study subjects.

Parameter HCC
Chronic Liver

Disease
(CLD)

Healthy
Control p-Value

Number 23 15 15
Gender (M/F) 17/6 11/4 10/5 0.877 (1)

Age (Years)
Mean (range)

53
(23–73)

46
(24–67)

50
(23–64) 0.311 (2)

Alanine transaminase (IU/L)
Mean (range)

56
(18–160)

58
(20–134)

27
(16–37)

0.878 (a)

0.003 (2)

Aspartate transaminase (IU/L)
Mean (range)

65
(21–195)

48
(20–119)

26
(18–35)

0.115 (a)

0.001 (2)

Hemoglobin (g/L)
Mean (range)

12.9
(9.3–16.7)

14
(11.9–16.6)

13
(11.8–14.3)

0.011 (a)

0.02 (2)

Platelet count (103/L)
Mean (range)

193
(53–686)

240
(172–355)

217
(166–260)

0.158 (a)

0.370 (2)

International normalized ratio
Mean (range)

1.34
(1–2.8)

1.03
(0.9–1.14)

0.97
(0.9–1.1)

0.005 (a)

0.001 (2)

current HCV infection (Y/N) (c) 13/10 12/3 0/15 3.2 × 10−5 (1)

0.13 (b)

current HBV infection (Y/N) (c) 2/21 3/12 0/15 0.18 (1)

0.25 (b)

Alfa fetoprotein (AFP) (ng/mL)
Mean (range)

268.3
(2.6–2000)

8.9
(1.53–60)

2.6
(1.8–3.5)

0.021 (a)

0.016 (2)

(a) t-test between HCC and CLD patients. (b) Chi-square test between HCC and CLD patients. (c) Remaining eight
HCC patients had recent HCV infection up to 2 years prior to surgery. (1) Chi-square test for healthy controls, HCC,
CLD. (2) ANOVA test for healthy controls, HCC, CLD.

As commonly observed [37–39], HCC cases were dominated by men, with only 26% of the cases
presented by women (Table 2). Single focal lesions represented 65% of the cases, and lesions <5 cm in
size represented 83% of the cases. HCC paired tissue samples were subdivided into two subgroups
(Table 2): 16 tissues were classified as early-stage HCC cases (diagnosed as stage I and II) versus 7
cases of late-stage HCC patients (diagnosed as stage III, IV).

Table 2. Characteristics of hepatocellular carcinoma (HCC) patients and HCC tissues.

Age of the Patients (years)
Mean (range)

53
(23–73)

Gender

Male 17 (74%)
Female 6 (26%)

Tumor stage (TNM)

I (Early) 7 (30%)
II (Early) 9 (39%)
III (Late) 5 (22%)
IV (Late) 2 (9%)

Focal Lesion

Single 15 (65%)
Multiple 8 (35%)

Cirrhosis

Yes 21 (91%)
No 2 (9%)

Tumor Size

<5 cm 19 (83%)
>5 cm 4 (17%)
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2.2. Statistical Metabolic Classes Differentiating HCC, CLD, and Healthy Control Blood Samples

Metabolomics data from 53 blood samples (23 HCC patients, 15 CLD patients, and 15
healthy controls) were acquired by GC/MS analysis and BinBase data processing for compound
identification [40]. Instead of using classic GC/quadrupole mass spectrometry, we employed
GC-time-of-flight MS to double the number of identified metabolites in comparison to previously
published studies [21–29]. A total of 730 GC-MS peaks were detected of which 194 compounds were
reported as identified chemical structures using authentic reference standards. Peak intensities were
normalized to total metabolome abundance, and data were statistically assessed by multivariate and
univariate tests.

We first conducted an unsupervised hierarchical cluster analysis of all 730 GC-MS peaks (Figure 1a)
that yielded three main clusters, dividing all healthy subjects from CLD and HCC patients. Two
CLD cases were found as clear outliers. Yet, these two cases remained in all subsequent statistical
analyses because there were no physiological or pathological differences that warranted excluding
these cases. Two dendrogram clusters consisted solely of HCC cases or were mixed between HCC
and CLD cases (Figure 1a). We did not find discernible clinical phenotypes such as late-stage
versus early-stage HCC that could explain the metabolic difference between these clusters. Next, we
performed supervised multivariate statistics to learn whether metabolic signatures were strong enough
to discriminate between CLD and HCC patients. Figure 1b plots the results of a sparse Partial Least
Squares-Discriminant Analysis (sPLS-DA). The plot confirms that the largest difference between the
groups were among healthy versus diseased subjects. Interestingly, the former two CLD outliers were
now correctly grouped to the CLD subjects, showing that a metabolic signature exists that distinguishes
CLD from HCC patients. Yet, supervised clustering may suffer from statistically overfitting and hence,
such results need to be confirmed in subsequent follow-up studies before using specific metabolites
for a clinical diagnostic test. To test for specific metabolites that distinguished CLD versus HCC
subjects, we performed a Kruskal–Wallis test and found 510 out of 710 metabolites significantly different
between both groups (qFDR < 0.1), including 147 structurally identified metabolites (Supplementary
S1). For two-group comparisons including the healthy controls, the Mann-Whitney U test revealed 111
significant compounds (p < 0.05; qFDR < 0.10) between healthy control versus CLD patients and 90
significant compounds (p < 0.05; qFDR < 0.10) between CLD versus HCC subjects (Supplementary S1).

To understand the magnitude of metabolic differences between healthy subjects, CLD and HCC
patients and to find classes of metabolites that distinguished between these groups, we range-scaled
differences for all compounds and used the group averages for secondary cluster analysis (Figure 1c).
Figure 1c demonstrates significant metabolic differences between the three groups, ranging across
different pathways and compound classes. Supplementary S1 details the contribution of each of these
significant differences to the two main clusters I and II, defined by the first branch in the heatmap
dendrogram. Cluster IA mainly separated healthy controls from both CLD and HCC subjects, whereas
Cluster II showed significant differences between CLD and HCC subjects. Specifically, Cluster IIB
comprised metabolites that were largely increased in HCC subjects in comparison to both CLD and
healthy control subjects. Conversely, Cluster IID consisted of metabolites that were elevated in CLD
patients but neither in HCC subjects nor in healthy controls. Few compounds further highlighted
differences between CLD and HCC subjects but not in healthy subjects, such as succinic acid from Class
IIC. Supplementary S1 details the different compounds found in classes IA-B and IIA-D. Unidentified
compounds can be investigated online using the BinVestigate search tool using the corresponding
BinBase identifiers [41].
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Figure 1. Multivariate clustering of blood-based metabolomics data using GC-TOF mass spectrometry.
(a) Unsupervised hierarchical clustering of all 730 detected metabolites in the studied groups
HCC, Chronic Liver Disease (CLD), and healthy control. (b) Supervised sparse partial least
squares-discriminant analysis of all 730 metabolites to better distinguish metabotypes of study groups.
(c) Clustering of 510 significant metabolites (Mann–Whitney U test p < 0.05 and qFDR < 0.1) across the
three test groups, range-scaled from increased (+1, red) to decreased (−1, blue).

2.3. Chemical Set Enrichment Differences Between HCC, CLD, and Healthy Control Blood Samples

Metabolomics Data

Next, we investigated if there were specific groups of metabolites that differed in blood levels
between HCC, CLD and healthy control subjects. For this purpose, we performed chemical set
enrichment statistics (ChemRICH, [42]). ChemRICH automatically classified all identified compounds
in our metabolomic data into 16 chemically similar sets. Unlike to pathway enrichment software (e.g.,
to KEGG Atlas maps [43]), ChemRICH does not discard any identified metabolite, and it does not
consider any compound in more than one set. Classifying compounds into a few sets largely decreases
the importance of false discovery rate adjustments in comparison to analyzing all 194 identified
compounds in classic univariate statistics. We found 14 significantly altered sets of compounds at p <

0.05 when comparing CLD to healthy control subjects (Figure 2a). Specifically, CLD patients showed
increased levels of branched-chain amino acids, sugar alcohols, monosaccharides, disaccharides, amino
acids, and unsaturated fatty acids. Conversely, dipeptides and monoacylglycerols were found to
be decreased in CLD patients compared to healthy controls subjects. Comparing HCC versus CLD
patients, we found further increases in sugar alcohols, disaccharides, monosaccharides and amino
acids (Figure 2b). Specifically, a range of sugar alcohols were largely increased in HCC subjects with a
p-value of 2 × 10−12 and qFDR of 3.3 × 10−11.

To specify which individual compounds in these metabolic classes different between the three
study groups, we performed univariate statistics using the Mann-Whitney U test. Full data are given in
Supplementary S1, and examples of univariate differences are given in Figure 2c. While most hexitol-
and pentitol-dependent blood sugars were found increased in HCC versus CLD patients, the hexitol
myo-inositol and several hexitol-containing disaccharides were decreased in this comparison. Other
compound classes also showed complex patterns within each metabolic module. For example, while
most amino acid levels increased in CLD patients compared to healthy controls (Figure 2c), some
amino acids decreased when progressing from CLD to HCC disease states (Figure 2c).

Compounds related to nucleobase metabolism also showed complex patterns, with increased
levels of orotic acid (a breakdown product of UMP) but decreased levels in hypoxanthine (an adenine
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catabolite) when comparing CLD to healthy control subjects (Figure 2a,c). Similarly, nucleobase
metabolism was following distinct patterns when comparing HCC to CLD patients, for example, by
exerting a significantly different ratio of the UMP-metabolites uridine/orotic acid (Figure 2b,c). Detailed
differences for all compounds are given in Supplementary S1.
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Figure 2. Significant differences in blood metabolites in HCC versus CLD patients and healthy
controls. (a) Chemical set enrichment statistics (ChemRICH) comparing CLD to healthy control subjects.
(b) ChemRICH statistics comparing HCC to CLD subjects. Colors of chemical sets: red = increased, blue
= decreased, purple = sets with compounds decreased and increased. Ball sizes represent the number
of compounds per metabolic set. X-axes represent median lipophilicity (XlogP) of the metabolic clusters.
(c) Univariate statistics of selected metabolites showing significant differences. Units of all y-axes:
normalized peak intensities in 1000 ion counts/spectrum for each quantification ion (Supplementary
S1).

2.4. Metabolomics of Liver Tissues

Next, we investigated if changes in blood metabolite levels were reflected by changes in resected
HCC tumor tissues compared to paired non-malignant surrounding hepatic tissues. 730 unique
GC-TOF MS peaks including 194 identified metabolites were used to test for multivariate supervised
discriminant analysis (sparse Projections to Latent Structures Discriminant Analysis, sPLS-DA).
Figure 3a shows that sPLS-DA discriminates metabolic phenotypes of paired HCC tumors and
corresponding non-malignant tissue samples for many patients. However, at least three patient tissues
showed only a small variance in this plot and located in the overlapping regions of tumors and
non-malignant tissues. The corresponding volcano plot (Figure 3b) showed that around 1/3 of all
detected metabolites were found differentially regulated at raw p < 0.05 and that most compounds
were higher in intensity in tumors than in non-malignant tissues.

To understand the regulation of metabolic pathways in human liver cancers, we focused on the 64
identified metabolites that showed significant differences in tumors versus non-malignant liver tissues.
39 of these compounds were significant in multiple testing at qFDR < 0.1 (Supplementary S2). All
194 identified metabolites were used to test for significance in ChemRICH chemical set enrichment
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analysis (Figure 4a). Interestingly, just as in blood analyses, sugar alcohols were found as the most
significant chemical set that differentiated HCC malignant tissues from non-malignant tissues (p < 1 ×
10−6). In addition, sugar acids, nucleobases, hexose phosphates, saturated and unsaturated fatty acids
were increased in HCC liver tissues. Only disaccharides were found to be decreased in HCC tumors
versus non-tumor tissues, for example, trehalose and sophorose (Supplementary 2). Such uncommon
metabolites are detected in patients with liver disease due to dysfunction of the intestinal barrier
and bacterial overgrowth [44]. Examples of individual compounds are given in boxplots (Figure 4b),
showing that specific amino acids such as proline, valine, and phenylalanine were decreased in HCC
tumors while most other metabolites were found increased (Figure 4b), including nucleobases that
are needed for cell division. Similarly, both saturated and unsaturated free fatty acids were increased
(Figure 4b, Supplementary 2).
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give the total explained variance for vectors 1 and 2. (b) Volcano plot for differential regulation of
metabolites. Blue: not significant at raw p < 0.05, red: significant changes at p < 0.05.
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Figure 4. Differential regulation of liver metabolites in HCC tumors versus non-malignant tissues.
(a) Chemical set enrichment statistics of significantly regulated metabolites. Colors of chemical sets:
red = increased, blue = decreased, purple = sets with compounds decreased and increased. Ball sizes
represent the number of compounds per metabolic set. XlogP represents the median lipophilicity
of the metabolic clusters. (b) Examples of boxplots (medians and interquartile ranges) of individual
compounds that showed univariate significant differences. Units of all y-axes: normalized peak
intensities in 10,000 ion counts/spectrum for each quantification ion (Supplementary S1).
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2.5. Sugar Alcohols are Highly Discriminant Metabolites Differentiating HCC from Non-HCC Subjects and
HCC-Subjects from CLD Patients

In blood analyses, we found sugar alcohols as a main metabolic class differentiating HCC from
CLD subjects, and CLD from healthy controls (Figure 2a,b). Importantly, we confirmed sugar alcohols
also to be the main class differentiating HCC tissues from non-malignant hepatic tissues (Figure 4a).
Therefore, we performed detailed analyses of these sugar alcohols and their precursor metabolites
(Figure 5). Clinically, the most important question is to distinguish HCC subjects from CLD patients
using blood analyses. We, therefore, searched for compounds that were found differentially regulated
in blood levels as well as in HCC tumors. Interestingly, we found a huge shift between CLD and
HCC subjects for the direct products of aldose reductase, sorbitol, and mannitol. These compounds
were significantly down-regulated in CLD but strongly up-regulated in HCC subjects. Interestingly,
we found only trends towards a significant increase in sorbitol in HCC tumors versus its paired
nontumor hepatic tissues (Supplementary S2). Other sugar alcohols were either up-regulated in
all comparisons (such as xylitol) or indicative of liver disease itself such as lactitol that was found
heavily upregulated in CLD patient blood compared to healthy controls but downregulated in HCC
blood as well as in HCC tumors. Conversely, 2-dexoypentitol was found in opposite directions: it
was clearly down-regulated in blood samples of CLD patients, but up-regulated in blood levels of
HCC subjects as well as in HCC tumors. The classic tumor-driven primary metabolites citric acid,
α-ketoglutarate, pyruvate, and lactate were all significantly up-regulated in HCC tumors as well as in
the blood of HCC patients, but down-regulated in the direct comparison of CLD subjects and healthy
controls. These examples show that whole blood metabolomic analyses can be very informative in
distinguishing patient groups, including compounds that belong to classic tumor metabolism. These
examples further show that different types of sugar alcohols show distinct patterns and do not follow
a simple explanatory rule. Instead, we noted that a range of compounds may stem from microbial
and food metabolism. For example, trehalose and sophorose were found in significantly higher levels
in HCC patient blood samples, but at lower concentrations in HCC tumors. These compounds are
typical microbial metabolites that may originate from increased intestinal permeability for microbiota
and its related metabolites during HCC progression [45]. Other blood metabolites such as maltose,
a starch degradation compound, are indicative of liver dysfunction but do not reflect HCC tumor
metabolism itself.

Next, we tested how well sets of individual metabolites might better discriminate patient groups
than the classic HCC laboratory diagnosis by alpha-fetoprotein, AFP. Here, we first used a panel
consisting of only the six most discriminant metabolites between the blood of HCC and CLD patients.
With a combination of GC-MS data for maltose, isomaltose, glucose, a-ketoglutarate, lactate and
pyruvate, a Receiver Operating Characteristic (ROC) curve and corresponding areas under the curve
(AUC) clearly outperformed the classic AFP test (Figure 6). The six-compound panel yielded an
AUC of 0.891 with an accuracy of 77.4% while AFP only gave an AUC of 0.685 with an accuracy of
49.4%. When using a panel that only consisted of six discriminating sugar alcohols (sorbitol, arabitol,
2-deoxypentitol, butane-2,3 diol, glycerol-3-galactoside, and lactitol), we received an AUC of 0.883
with an accuracy of 80.2%. When adding the classic AFP marker to those two panels, we did not obtain
any significant improvement in AUC or accuracy.
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Figure 5. Sugar alcohols and carbohydrate metabolites in Chronic Liver Disease (CLD) and HCC.
Heatmap indicating significant differences in blood of CLD versus healthy control (CLD versus healthy
controls), HCC versus CLD (HCC Vs CLD) and HCC tissues versus its paired non- malignant hepatic
tissues. Non-significant comparisons are left blank. Significant up-regulation yellow, down-regulation
green. Stars give significance levels (*** p < 0.001, ** p < 0.01, * p < 0.05). Details in Supplementary S1
and S2.
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Figure 6. Receiver operating characteristic (ROC) curve analysis of a 6-metabolite panel of discriminating
metabolites, a panel of blood sugar alcohols, and AFP to differentiate HCC from chronic liver disease
(CLD). (a) ROC curve of AFP, 6-metabolite panel, and sugar alcohols to differentiate HCC from CLD
and associated accuracy of each comparison. (b) ROC curve of combined AFP with the 6-metabolite
panel, and sugar alcohols to differentiate HCC from CLD and associated accuracy of each comparison.

2.6. Metabolite Clusters Enable Early Detection of HCC but not Differentiation of HCC Stage Subgroups

Last, we stratified subgroups of patients to deepen our understanding of the pathogenesis of
the disease on a metabolic level. For blood analyses, we found that early-stage HCC patients (stage I
and II) could successfully discriminate the disease metabolic phenotypes from CLD patients using
ChemRICH metabolite set enrichment statistics (Figure 7a). Seven metabolite sets showed raw p-values
<0.05 and nine sets showed qFDR < 0.1 in ChemRICH analyses (Figure 7a and Supplementary S1).
Here, sugar alcohols were by far the most discriminant group with p = 5.8 × 10−12 significance. This
analysis showed that ChemRICH discrimination of patient groups in overall blood analysis (Figure 2)
was not just based on late-stage HCC patients (stage III and IV). In fact, few blood metabolite sets were
different between late-stage and early-stage HCC patients (Figure 7a, Supplementary S1). Specifically,
hexose phosphates were differentially regulated between late and early-stage HCC patients (p = 0.004,
qFDR = 0.07) while sugar alcohols were not significant in qFDR analysis (Supplementary 1). Univariate
statistical analysis using the Mann–Whitney U test showed 75 known significant blood metabolites
(qFDR < 0.1) when comparing early-stage HCC patients against CLD subjects. When comparing
late-stage HCC patients to early-stage HCC patients, we did not find any significant difference at qFDR
< 0.1 while at raw p-value < 0.05, 20 compounds were significant.
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We also analyzed HCC subgroup differences based on tumor metabolism and non-malignant
tissues. ChemRICH set enrichment statistics found 5 significant chemical clusters in early HCC hepatic
tissues compared to its paired nonmalignant tissues, on the level of both raw-p values and qFDR
corrected significance levels. Sugar alcohols were found as the most significant set of metabolites with
p = 2.7 × 10−6 and qFDR = 4.3 × 10−5 (Figure 7b and Supplementary S2). In univariate analyses by
the Wilcoxon signed rank test we found 26 compounds at qFDR < 0.1 for early HCC stage tumors
compared to non-malignant tissue and none for late HCC stage tumors to paired non-malignant tissues
(Supplementary S2). In ChemRICH set enrichment statistics, only amino acids showed significant
differences at raw p = 0.02 but no differences in qFDR correction. These results indicate that for
late-stage HCC, the overall hepatic metabolic function was affected, while for early-stage HCC, the
surrounding (non-malignant) hepatic tissue was still mostly functioning at a normal level.

3. Discussion

While our study was small with respect to the number of patients, we here present the first
metabolomics study comparing HCC to CLD and healthy controls that used both blood and tissue
samples. We used gas chromatography-time of flight mass spectrometry to study metabolic differences
for two main reasons: (a) it is known that tumors largely reprogram primary metabolism. GC-MS is
particularly well suited to test for a large variety of primary metabolites in a single-assay analysis. (b)
GC-MS instruments are installed in over 100,000 laboratories worldwide, including in many clinical
chemistry laboratories. Hence, discriminating metabolites discovered here might be further validated
and used in clinical practice without expensive changes in laboratory routines or equipment. We first
used multivariate analyses (such as heatmaps, sPLS-DA, and ChemRICH plots) to gain overviews on
which metabolic pathways were dysregulated, how well metabolic phenotypes distinguish cases from
controls, and how much in-group variance contributed to outlier cases (Figure 1, Figure 2a,b, Figures
3a and 4a). These discovery-driven statistics were followed by classic univariate analyses to attempt
finding small panels of (blood-based) discriminatory biomarkers. Such small sets of diagnostic markers
could be readily developed into routine clinical assays with classic quadrupole GC-MS instruments
and single-ion quantifications using authentic internal standards. The idea is that such panels could be
further validated as novel kits in clinical diagnostics for early diagnosis of HCC (Figure 6).

Hepatocellular carcinoma (HCC) is the third most prevalent cause of cancer-related mortality
worldwide [46,47]. HCC has various risk factors in different regions in the world [6]. In countries
with a high incidence of HCC such as Egypt and China, the primary risk factors are HBV and HCV
infections [48]. Chronic HCV infection also continues to be a principal risk factor of HCC in the USA
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together with non-alcoholic fatty liver disease [46]. HCC manifests with subtle clinical phenotypes
that impede HCC diagnosis especially in early stages of the disease [49]. Yet, late diagnosis of HCC
correlates negatively with disease outcome prognosis [50]. Hence, we need to establish and validate
new assays to better understand HCC pathophysiology and to diagnose HCC in its early stage in
comparison to chronic liver disease. Alpha-fetoprotein (AFP) is routinely used as a noninvasive
laboratory test, but it has shown poor sensitivity and specificity as a biomarker for HCC [49,51,52].
In accordance with these studies, AFP in our study showed poor power to discriminate HCC from
CLD patients. In contrast to these reports, Mehinovic et al. [53] found that AFP is a good biomarker
to diagnose HCC patients. AFP specificity is affected by patient sex and race [54] which may partly
explain this discrepancy in findings. Moreover, AFP accuracy is higher for HCC in patients without
prior HCV infection [55]. Yet, in our study, HCC patients presented with >60% current HCV infection
or 91% combined current or prior HCV infection (21/23 patients, Table 1).

We set out to probe primary metabolism at the level of biochemical pathways and chemical sets
by study blood and tissue metabolomics regarding possible pathogenesis and potential diagnostics.
Cellular metabolism differs from compounds excreted from cells into the circulatory system. Hence,
we designed our study to use both tissues and whole blood instead of serum or plasma, to avoid biases
with respect to metabolite detections [56]. Indeed, we found a range of pathway-based metabolites
(such as glycolytic intermediates and classic cancer metabolites) that were differentially regulated in
whole blood of HCC patients and corresponding HCC tumors. For example, it is well established that
many tumor cells consume more glucose than surrounding tissues, converting it to lactate regardless
of oxygen availability [57]. This Warburg effect is reflected in our study by detecting increased levels
of pyruvate and lactate in both whole blood and HCC tumors. In addition, we confirmed a range
of known cancer-related metabolic regulations, for example, increased citrate levels in blood and
HCC tumors. Citrate is the substrate of citrate lyase-dependent formation of acetyl-CoA for fatty
acid metabolism inside the cells. Similarly, we found a range of further altered cancer metabolic
pathways, from fatty acids to nucleotides and proteinogenic amino acids [58]. The increase of these
fatty acids in HCC tissues compared to paired non-malignant hepatic tissues is consistent with earlier
studies [59–61], confirming aberrant lipid metabolism in HCC tissues. Fatty acids are important
for cancer cell proliferation [62]. Similarly, we found important differences in nitrogen metabolism,
specifically branched-chain amino acids and non-essential amino acids. Our results confirm earlier
studies reporting increased blood levels in these amino acids in CLD patients and subsequent decreased
levels in HCC patients [63]. These metabolic shifts from CLD to HCC can be explained by an increased
expression of branched-chain amino acid enzymes to enhance tumor proliferation and may reflect
chemotherapy resistance [63–65]. Non-essential amino acids such as aspartate and proline have diverse
functions in cancer metabolism, including as antioxidants in redox status metabolism but also as
substrates for post-translational and epigenetic modifications [66].

The liver is the primary organ for the metabolism of carbohydrates, specifically to maintain
glucose homeostasis through glycogenolysis and gluconeogenesis [67]. Accordingly, large alterations
in monosaccharides, disaccharides, and hexose phosphates were detected in our study and confirmed
in earlier studies [68–73]. In tumor cells, a high glycolytic flux spills over into adjacent metabolic
pathways such as the pentose phosphate and hexsoamine pathways [74] which may explain the
activation of alternative pathways for glucose metabolism such as the production of sugar alcohols [75].
Sugar alcohols are derived through the polyol pathway [76]. The principle reaction of this pathway is
converting glucose to sorbitol by aldo-keto reductases, catalyzed by a group of reductases including
aldehyde reductases (EC 1.1.1.2) and aldose reductases (EC 1.1. 1.21). Subsequently, sorbitol may
convert to fructose by sorbitol dehydrogenase [77]. A similar spill-over effect of glycolysis has been
established as an ancillary pathway in type 2 diabetes mellitus [77–80]. Increased activity of the polyol
pathway was also reported in other liver diseases such as Wilson’s disease that is characterized by
copper accumulation in the liver and other organs [81]. Activation of the polyol pathway was also
reported in ovarian and cervical cancer cell lines [82,83], lung tumors [75], and colon [75,84], breast,
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ovary, cervix, and rectum cancers [85]. Recently, the sugar alcohol maltitol was studied as imaging
contrast agent in brain tumors [86]. In liver diseases, dysregulation of sugar alcohols was reported in
mice and liver cell lines in fatty liver [87] and in mouse cell lines induced hepatoma [88–91].

The enzymes of the polyol pathway are not expressed in all organs, and the specific physiological
roles of the pathway are not yet well understood [82]. For example, expression of the aldo-keto
reductase enzyme superfamily [92] disappeared from fetal liver and brain by the 16th week of gestation
while sorbitol dehydrogenase expression continued to increase [93]. In rat hepatoma, the role of sugar
alcohols was suggested to detoxify harmful aldehydes into inactive alcohols [90]. Gene expression
of aldose reductase was increased in rats livers during the development of hereditary hepatitis
and hepatoma with aging [88]. This finding was also observed in cancerous lesions compared to
non-pathogenic surrounding liver regions [94]. Overexpression of mRNA for aldo-keto reductases
was detected in HCC tissues compared to minimal expression in non-malignant liver tissues [95]. The
authors interpreted this finding as detoxification of aldehydes by immortal cancer cells to render them
resistant to cytotoxic drugs [88,94,95].

The functional role of aldo-keto reductases in cancer metabolism is not fully determined [96–100].
This reductase superfamily is associated with oxidative stress and inflammation initiated
carcinogenesis [96]. The consumption of cellular NADPH by aldo-keto reductases reduces its availability
for the regeneration of the main antioxidant glutathione (GSH), hence, may weaken intracellular
antioxidant defenses [101]. The role of aldo-keto reductases in the mediation of cell signals initiated
by cytokines, growth factors and chemokines has been also demonstrated in tumorigenesis [102]. In
addition, inhibition of aldo-keto reductases prevents epidermal- and fibroblast growth factor-induced
migration and invasion of cancer cells [103].

Glycolysis, gluconeogenesis, glycogen metabolism and the tricarboxylic acid cycle (TCA) are the
main metabolic pathways in the healthy liver to control normal glucose homeostasis in the human
body (Figure 8). Liver diseases, including HCC, lead to dysregulation of glucose homeostasis [104]
and activate minor pathways such as polyol biosynthesis. Hyperglycemia leads to the consumption of
more than 30% of glucose by producing sugar alcohols [76,98]. In addition, sugar alcohols may also
originate from microbiota and food metabolism in the gut due to disrupted gut barrier function and
bacterial translocation in liver disease [105] (Figure 8).
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4. Materials and Methods

4.1. Participants and Collection of Clinical Samples

Liver tissue and whole blood samples were obtained from 53 participants recruited between
February 2011 and October 2012. Written informed consent was obtained from each participant.
The study protocol (Code 00185/2019) was approved by the ethics committee of the National Liver
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Institute at Menoufia University, Menoufia, Egypt. Liver tissues were collected during surgery from 23
patients diagnosed with HCC. Two types of liver tissues were obtained from each patient as surgical
specimens during the operation including HCC liver tissues and adjacent non-malignant liver tissues.
Whole blood samples were obtained as venipuncture from 53 participants from the lower left arm
including 15 healthy individuals, 15 CLD patients (HCV ±HBV infected subjects), and the same 23
patients who were diagnosed with HCC. Diagnosis of HCC was initially based on AFP > 200 ng/mL,
ultrasound imaging and triphasic spiral computed tomography for focal lesions. This diagnosis was
later confirmed histopathologically after surgical resection for all HCC cases.

All CLD cohort diagnosis was performed by PCR testing for hepatitis C virus infection and
hepatitis B virus infection [106,107] clinically validated for positive chronic infection for more than 6
months. Secondly, all subjects were tested by diagnostic ultrasonography (U/S) examination to exclude
cirrhosis. While the U/S test is operator dependent, it can still reliably exclude cirrhosis in combination
with other laboratory tests that were performed for serum biochemical parameters, including bilirubin,
albumin and prothrombin time. HCC diagnosis was confirmed histopathologically after resection. All
blood samples underwent laboratory investigation for liver function tests: Alanine transaminase (ALT)
and Aspartate transaminase (AST), Alpha-fetoprotein (AFP) were performed using a Beckman Coulter
(Synchron CX 9 ALX) Clinical Auto analyzer (Beckman Instruments, Fullerton, CA, USA). Hemoglobin
and platelet count were performed by a Coulter Counter T660 (Coulter Electronics, Hielaeh, Fl, USA).
International Normalized ratio (INR) was calculated from prothrombin time measured by an STA-Stago
Compact CT auto analyzer using reagents supplied by Dade-Behring. Tissue specimens and blood
samples were stored at −80 ◦C prior to analysis. Samples were shipped on dry ice to the West Coast
Metabolomics Center at UC Davis.

4.2. Sample Pretreatment

About 4 mg of frozen liver tissues were weighted and placed into a 1.5 mL Eppendorf tube, in
addition to 3 small stainless-steel grinding balls. Samples were then placed into a GenoGrinder 2010
(Spex SamplePrep, Metuchen, NJ, USA) for 2 min at 1350 Hz. Homogenized tissue samples were
subsequently prepared for metabolomic analyses in the same way as plasma samples.

Whole blood samples were aliquoted into 1.5 mL Eppendorf tubes, stored at −80 ◦C and shipped
on dry ice. After thawing for 30 min at room temperature, samples were centrifuged for 30 min at
14,000× g. 20 µL of the supernatant was used for extraction. 1 mL of a degassed, −20 ◦C mixture of
acetonitrile (ACN): isopropanol (IPA): water (H2O) (3:3:2, v/v/v) was added, samples were vortexed,
shaken for 5 min and then centrifuged at 14,000× g for 2 min. 450 µL of supernatant was transferred
to a new tube. After concentrating to complete dryness, the pellet was extracted with 500 µL 1:1
acetonitrile: water, vortexed and centrifuged for 2 min at 14,000× g to remove any residual proteins or
triacylglycerides. The supernatant was concentrated to complete dryness, metabolites were derivatized
by 10 µL of methoxyamine hydrochloride in pyridine (40 mg/mL) at 30 ◦C for 90 min, followed by
trimethylsilylation of acidic protons using 90 µL of N-methyl-N-(trimethylsilyl) trifluoroacetamide
(MSTFA, Sigma-Aldrich, St. Louis, MO, USA) for 30 min at 37 ◦C.

4.3. Metabolomics Data Acquisition and Data Processing

For retention time correction, C8–C30 fatty acid methyl esters (FAMEs) were added as internal
standards. Samples were analyzed by a Leco Pegasus IV time of flight mass spectrometer using
splitless injection into an Agilent gas chromatograph (for details, see [108]). Both plasma and tissue
samples were randomized and analyzed along with quality control and method blank samples. Raw
spectra for plasma and tissue metabolites were processed by BinBase software [40]. The BinBase
algorithm matches each sample mass spectrum data and retention index against the FiehnLib mass
spectral library [40] and the NIST17 commercial library. The reported metabolites were quantified
using ion peak heights of deconvoluted unique ions and were normalized by the sum of all annotated
metabolites intensity across the entire study.
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4.4. Statistical Analysis

Statistical analysis of clinical and biochemical data was performed for two group-comparisons
by t-tests. The Chi-square test was used to test the null hypothesis in the relation between two or
more variables. For metabolite data, non-parametric univariate statistical tests were used to test
for significantly altered compounds between the studied groups. Non-parametric paired Wilcoxon
Signed Rank test was used for data from liver tissues. For blood metabolomics, Kruskal–Wallis
and Mann–Whitney U tests were used to detect significant features among the three studied
groups and between paired comparisons. Raw p-values < 0.05 and adjusted p-value using the
Benjamini-Hochberg’s False Discovery Rate (FDR) q < 0.10 were considered significant. Statistical
analyses were calculated using R software version 3.5.3 (R Foundation for Statistical Computing,
Vienna, Austria) and MetaboAnalyst R 4.0 [109]. Multivariate and univariate statistical analyses were
used for metabolomics data to detect groups of samples that align with clinical descriptors, and to
detect groups of metabolites (“pathways”) that are regulated by the disease progression. Unsupervised
multivariate analyses were used mainly for quality control to study unrelated factors such as machine
drifts or hidden bias in analytical procedures. We used sparse partial least squares—discrimination
analysis (sPLS-DA) as a multivariate statistical method for sparse data to reflect the use of a few
samples in comparison to a high number of variables [110]. Heat map hierarchical clustering was
performed to provide a graphical summary of differentially regulated metabolites, using a clustering
Euclidian for distance measurement and ward clustering algorithm to assort data by similarity patterns.
In addition, chemical set enrichment analysis was performed by ChemRICH software to highlight
chemical classes that were significantly altered in HCC pathogenesis [42].

5. Conclusions

At current, HCC patients are diagnosed too late, delaying interventions and impairing therapeutic
success. Focusing on primary metabolites, we here established clear blood-based metabolic differences
between healthy controls, CLD patients and HCC patients that were reflected in altered metabolic
phenotypes in early-stage HCC tumors and paired non-malignant liver tissue biopsies. Importantly, we
solidified large differences in carbohydrate metabolism between these study groups and distinguished
differences in liver metabolism of endogenous enzymes from the differential utilization of microbial and
food metabolites. Our findings are consistent with earlier reports on the pathogenic role of aldo-keto
reductases in HCC, possibly opening novel therapeutic options. In addition, we showed that screening
for small panels of metabolites by GC-MS drastically improves HCC diagnosis in comparison to the
classic biomarker alpha-fetoprotein. This finding may lead to new efforts to validate and solidify the
accuracy of these biomarkers in HCC diagnosis and treatment.
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