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ABSTRACT
The fms-related tyrosine kinase 3 (FLT3) ligand (FLT3LG) binds to FLT3 on dendritic cells to stimulate
their differentiation and expansion, hence facilitating tumor antigen cross-presentation and anticancer
immune responses. A recent study by Abrahamsson et al. demonstrates that, in patients receiving
a hepatic arterial infusion of oxaliplatin for the treatment of colorectal cancer metastases, an increase
in circulating FLT3LG predicts long-term survival of those individuals whose metastases have been
rendered resectable. Thus, FLT3LG constitutes a potential biomarker of immune activation by immuno-
genic cell death-inducing chemotherapeutics such as oxaliplatin.

Abbreviations: DC, dendritic cell; FLT3, fms-related tyrosine kinase 3; FLT3LG, FLT3 ligand; ICI, immune
checkpoint inhibitor; OXA, oxaliplatin

ARTICLE HISTORY
Received 17 March 2020
Accepted 9 April 2020

KEYWORDS
Immunogenic cell death;
flt3g; biomarker; colorectal
cancer; dendritic cells

Editorial

Immunogenic cell death (ICD) refers to a type of cellular
demise (usually by apoptosis), that, rather than being tolero-
genic, elicits an adaptive immune response against antigens of
the dying entity. ICD has been described in cancer cells
following cytotoxic or cytolytic interventions such as che-
motherapy, radiotherapy or oncolytic virotherapy.1 The
mechanisms of ICD involve the release and surface exposure
of danger-associated molecular patterns (DAMPs) that attract
antigen-capturing immune sentinels such as dendritic cells
(DCs). Activation of recruited DCs within the tumor bed
ignites their migration to the secondary lymphoid organs (or
alternatively their movement to tertiary lymphoid structures
within the tumor) where they cross-present tumor antigens to
T lymphocytes, thus priming an antitumor response. Not only
tumor-specific CD8+ T cells can eliminate residual cancer
cells spared by the treatment, but they also generate an
immune memory compartment that can protect from tumor
recurrence.1–3

A series of DAMPs and cytokines has been characterized
upon chemotherapy as hallmarks of ICD. They include calreti-
culin (CALR) exposure on the outer layer of the plasma mem-
brane, the release of the nucleotide ATP and of the proteins
high–mobility group box 1 (HMGB1) and annexin A1 (ANXA1)
into the tumor microenvironment, as well as the production of
type I interferons (IFN) and of chemokines like C-X-C motif
chemokine ligand 10 (CXCL10).1–4 In vitro screening for these
hallmarks, in vivo vaccination experiments, as well as

comparisons of anticancer drug effects in immunocompetent
versus immunodeficient hosts, led to the identification of several
pharmaceutical agents capable of inducing ICD.5–7 Such ICD
inducers include the platinum salt oxaliplatin (OXA), anthracy-
clines such as doxorubicin (DOX) or daunorubicin (DAU), as
well as the alkylating agent cyclophosphamide.4 Of note, certain
chemotherapies that do not produce the whole spectrum of ICD
hallmarks can complement each other to stimulate bona fide
ICD. For instance, cisplatin (CDDP) fails to elicit ICD as it is
unable to trigger the endoplasmic reticulum stress module
responsible for CALR translocation to the plasma membrane.
However, a combination of CDDP with the ER stress inducers
thapsigargin or tunicamycin facilitated CRT exposure at the
cancer cell surface, resulting in the induction of full-blown
ICD and superior therapeutic efficacy.8 Thus, preclinical studies
have proven the that ICD-inducing chemotherapeutics are de
facto immunotherapeutics and that the induction of anticancer
immune responses is indispensable for the long-term efficacy of
any kind of antineoplastic treatment.

Cumulative evidence supports the translation of the con-
cept of ICD to the clinics. First, variations of the expression
level of ICD-related DAMPs and receptors, as well as loss-of-
function mutations affecting the corresponding signaling cas-
cades, have prognostic and predictive impact.9,10 For example,
formyl peptide receptor 1 (FPR1) is expressed on DCs and
detects the DAMP ANXA1. Upon OXA-based chemotherapy,
colorectal cancer (CRC) patients that are homozygous for
a loss-of-function allele of FPR1 exhibit shorter progression-
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free and overall survival than subjects harboring one or two
copies of the wild-type allele. Similarly, breast cancer patients
receiving an anthracycline-based adjuvant chemotherapy have
a poor prognosis when they bear one or two copies of the
FPR1 loss-of-function allele.10

Second, ICD-inducing chemotherapies have demon-
strated a positive interaction with immunotherapies. T cell
activation consecutive to ICD sensitizes to immunotherapy
with checkpoint blockade or interleukin (IL)-2.11–14

A clinical trial compared two consolidation treatments in
acute myeloid leukemia. These regimens consisted of dual
immunotherapy with IL-2 + histamine dihydrochloride
after cytarabine-based chemotherapy comprising or not
the ICD inducer DAU. Interestingly, higher levels of circu-
lating effector memory CD8+ T cells at the beginning of
immunotherapy, together with extended survival, were
observed in subjects that received the anthracycline
DAU.11 Moreover, a Phase II trial enrolling patients with
triple-negative breast cancer revealed an improved objective
response rate in a cohort co-infused with the ICD inducer
DOX + the immune checkpoint inhibitor (ICI) nivolumab
(anti-PD-1) over individuals treated with the same ICI +
the non ICD chemotherapeutic CDDP.12

Finally, A.H. Ree’s group recently reported on the prog-
nostic value of circulating levels of the hematopoietic cytokine
fms-related tyrosine kinase 3 (FLT3) ligand (FLT3LG) in CRC
after OXA-based chemotherapy.15,16 FLT3LG is produced by
stromal cells in the bone marrow and by lymphocytes in the
tumor microenvironment.17,18 FLT3LG regulates the differen-
tiation and expansion of conventional and plasmacytoid DCs
from most FLT3+ bone marrow progenitors, including both
lymphoid and myeloid common progenitors. Moreover,
mature DCs express FLT3 and proliferate in the presence of
FLT3LG.19,20 In the clinic, elevation of serum FLT3 has been
described as a marker of recovery from chemotherapy-
induced myelosuppression.21,22 In locally advanced CRC,
Kalanxhi E. et al observed higher levels of serum FLT3LG at
baseline and post-neoadjuvant therapy with OXA in patients
with signs of a histologic tumor response.15 Moreover, ele-
vated levels of circulating FLT3LG post-neoadjuvant treat-
ment strongly correlated with better progression-free
survival, mostly due to a reduced risk of metastatic events.
In their latest study, Abrahamsson H. et al measured circulat-
ing FLT3LG first at baseline and then along the course of 1st-
line chemotherapy with OXA in individuals with CRC liver
metastases.16 Treatment consisted of 1 to 3 sequences, each
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Figure 1. Serum FLT3LG as a prognostic biomarker of ICD-induced systemic anticancer immunity in colorectal cancer.
The level of circulating FLT3LG reflects a tumor-specific immune response invoked by first-line chemotherapy with oxaliplatin (OXA) in patients with colorectal cancer
liver metastasis (CLM). Subjects could be segregated in 3 groups. First, patients in which OXA failed to convert CLM to resectable disease showed a limited (<2 fold
baseline), slow and transient increase of serum FLT3LG. Second, some patients with technically resectable CLM presented a limited (<2 fold baseline), slow but
gradual rise of FLT3LG. These two kinetics of serum FLT3LG reflected a bad prognosis with no survivors at censoring. In contrast, all patients of the third group, who
remained alive after 8 to 12 years of follow-up after successful resection of CML exhibited a strong (>2 fold baseline), rapid and sustained elevation of serum FLT3LG.
Thus, assessment of serum FLT3LG may be used to improve the selection of OXA-treated CLM patients for a curative-intent ablation procedure. FLT3LG, fms-related
tyrosine kinase 3 ligand; ICD, immunogenic cell death.
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sequence consisting of one hepatic arterial infusion of OXA
(complemented with oral capecitabine) every 2 weeks over an
8-week period. Liver metastases that responded to treatment
underwent surgical resection. Interestingly, the mean serum
level of FLT3LG rose following the 1st sequence of OXA in all
patients. This increase of circulating FLT3LG was similar
between the two groups of patients stratified according to
resectability of CRC liver metastases. Of note, eligibility for
surgical removal was associated with wild-type RAS status,
rather than the more aggressive RAS mutation. Remarkably,
within the resectable category (n = 33/55; 60%), patients that
remained alive at the end of the 8 to 12-year follow-up (n = 9/
33; 27.7%) demonstrated an immediate and prolonged 2-fold
increase of circulating FLT3LG (from 76.5 pg/ml at baseline
to 159 pg/ml post-1st sequence of OXA on average). In con-
trast, mean FLT3LG levels were lower by 40 pg/ml in resected
individuals that ultimately succumbed to the disease (n = 24/
33; 72.3%).16 Further investigations should confirm FLT3LG
as a prognosis biomarker in CRC. Collectively, accretion of
serum FLT3LG reflected the establishment of a systemic
anticancer immune response consecutive to OXA-mediated
ICD and to supportive DC expansion.

Some preclinical investigations have comforted the benefi-
cial role of systemic FLT3LG in sensitizing cancer to immu-
notherapeutic approaches.23,24 Nowadays, ICIs targeting the
immune checkpoints PD-1, PD-L1 or CTLA-4 represent the
most transversal cancer treatment. Nevertheless, only a fraction
of patients do benefit from ICI monotherapies due to primary
or acquired cancer resistance. Such resistance mechanisms
include DC dysfunction or reduced DC recruitment, as well
as decreased T cell priming and/or infiltration.25 These
mechanisms of resistance can be overcome by therapeutic
agents that induce cancer ICD or facilitate DC recruitment/
activation.23,24,26–36 The main DC subsets involved in cancer
immunity are Ly6ChiCD11b+ monocyte-derived DCs and
Clec9A+ conventional DCs.23,24,26,35,37 M. Merad and colleagues
showed limited efficacy of anti-PD-L1 therapy in a murine
model of melanoma (B16).23 However, when anti-PD-L1 was
combined with repeated infusions of FLT3LG, together with
intratumoral administrations of the toll-like receptor 3 agonist
poly I:C, tumor growth control was achieved. Mechanistically,
systemic FLT3LG triggers the differentiation of CD103+ con-
ventional DCs from bone marrow progenitors, followed by DC
expansion and accumulation in the tumor bed. These events
favor DC activation upon the capture of tumor antigens and
initiate their migration to the draining lymph nodes, where
mature DCs efficiently prime CD8+ T cells. Remarkably, the
tumor enrichment of DCs not only led to an expansion of
effector T lymphocytes but also facilitated their access to the
neoplastic core. Interestingly, this tritherapy of anti-PD-L1
+ FLT3LG + poly I:C could synergize with BRAF inhibitors
for efficient treatment of BRAF mutated melanoma.23

Furthermore, FLT3LG + poly I:C can be advantageously com-
bined with ICD-inducing radiotherapy to treat murine A20
lymphomas. This triple combination also sensitized the neo-
plasm to anti-PD-1 ICI, leading to complete and durable remis-
sion in most animals.23 In a clinical trial, the combination of
FLT3LG + poly I:C + radiotherapy was evaluated in 11 patients
with indolent B cell lymphoma. The treatment promoted the

peripheral expansion of CD8+ T cells, particularly of the naive
and exhausted effector memory subsets. At censoring, the best
overall responses recorded consisted of one complete and one
partial responses, 6 stable and 2 progressive diseases. One more
patient with a partial response remained under monitoring. In
one subject with a systemic partial response, untreated (absco-
pal) lesions exhibited an increased infiltration by myeloid cells
(mainly DCs and monocytes), as well as by lymphoid cells
(notably exhausted CD8+ T cells, as well as naive and memory
B cells).24

In sum, there is overwhelming preclinical and clinical
evidence that FLT3LG may be useful for stimulating the
anticancer effects of DCs. Whether FLT3LG can overcome
stress-induced (glucocorticoid-mediated) DC defects that
negatively affect tumor immunosurveillance38 remains to be
determined, it appears that, at least in specific circumstances,
circulating FLT3LG levels may constitute a proxy for the
assessment of incipient anticancer immune responses ignited
by immunogenic chemotherapy. Future studies will have to
evaluate whether the assessment of fluctuations in plasma
FLT3LG concentrations, alone or in combination with other
immune parameters, will yield a clinically useful biomarker
for predicting the outcome of anticancer treatments.
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