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Clioquinol as an inhibitor of JmjC-histone
demethylase exhibits common and unique histone
methylome and transcriptome between clioquinol
and hypoxia

Yunwon Moon,1,6,7 Sehyun Chae,2,6 Sujin Yim,1,6 Eun Gyeong Yang,3 Jungwoo Choe,1,4 Jiyeon Hyun,4

Rakwoo Chang,4 Daehee Hwang,5,* and Hyunsung Park1,4,8,*

SUMMARY

Clioquinol (CQ) is a hypoxicmimicker to activate hypoxia-inducible factor-1a (HIF-
1a) by inhibiting HIF-1a specific asparaginyl hypoxylase (FIH-1). The structural
similarity of the Jumonji C (JmjC) domain between FIH-1 and JmjC domain-con-
taining histone lysine demethylases (JmjC-KDMs) led us to investigate whether
CQ could inhibit the catalytic activities of JmjC-KDMs. Herein, we showed
that CQ inhibits KDM4A/C, KDM5A/B, and KDM6B and affects H3K4me3,
H3K9me3, and H3K27me3marks, respectively. An integrative analysis of the his-
tone methylome and transcriptome data revealed that CQ-mediated JmjC-KDM
inhibition altered the transcription of target genes through differential combina-
tions of KDMs and transcription factors. Notably, functional enrichment of target
genes showed that CQ and hypoxia commonly affected the response to hypoxia,
VEGF signaling, and glycolysis, whereas CQ uniquely altered apoptosis/auto-
phagy and cytoskeleton/extracellular matrix organization. Our results suggest
that CQ can be used as a JmjC-KDM inhibitor, HIF-a activator, and an alternative
therapeutic agent in hypoxia-based diseases.

INTRODUCTION

The enzymes 2-oxoglutarate (2OG)-dependent dioxygenases (2OGXs) play important roles in the regula-

tion of gene expression through their effects on transcription or histone/DNA demethylation. 2OGXs

require O2, 2OG, Fe(II), and vitamin C for hydroxylation, releasing CO2, succinate, and Fe(III) in the process

(Loenarz and Schofield, 2011). These 2OGXs include hypoxia inducible factor (HIF)-prolyl hydroxylases

(PHDs), HIF-1a asparaginyl hydroxylase (factor inhibiting HIF-1, FIH-1), Jumonji C (JmjC) domain-contain-

ing histone lysine demethylases (JmjC-KDMs) (Islam et al., 2018), and ten-eleven translocation (TET) meth-

ylcytosine dioxygenases. PHD2 and FIH-1 modulate the transcriptional regulation of target genes under

hypoxia through their interactions with HIF-1a, a major transcription factor (TF) activated by hypoxia.

The hydroxylation of Pro402 and Pro564 of HIF-1a by PHD2 promotes the interaction between HIF-1a

and the von Hippel-Lindau (VHL)-elongin C-B E3 ubiquitin-ligase complex, resulting in the degradation

of HIF-1a (Kamura et al., 2000). The hydroxylation of HIF-1a at 803rd asparagine by FIH-1 prevents the bind-

ing of HIF-1a to CREB-binding protein (CBP)/p300 coactivators, thereby inhibiting the transactivation of

HIF-1a (Lando et al., 2002). Moreover, JmjC-KDMs and TET enzymes modulate the transcription of their

target genes by removing a methyl group from methylated lysines in histones and methylcytosine in

DNA, respectively.

JmjC-KDMs have been identified as the largest family of 2OGXs, includingmore than 20 different members

with distinctive and shared specificity for their substrates (Chang et al., 2019) as follows: KDM5A-D deme-

thylates H3K4me1-3; KDM4A-D demethylates H3K9me1-3, H3K36me1-3, or H1.4K26me1-3; and KDM6A-C

demethylates H3K27me1-3. JmjC-KDMs have been demonstrated to play important roles in the pathogen-

esis of various diseases. For example, the loss of KDM3A or KDM4B in mice results in obesity and hyper-

lipidemia (Tateishi et al., 2009), KDM3A promotes cardiac hypertrophy and fibrosis (Zhang et al., 2018), a

deficiency of KDM3A in mice causes infertility via dysregulation of spermatogenesis (Okada et al., 2010),

and the expression of KDM6B lacking the JmjC domain leads to delayed puberty and impaired fertility
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(Song et al., 2017). Moreover, the Cancer Genome Atlas (TCGA) project identified KDM5C and KDM6A as

driver genes in various cancers, such as pancreatic, breast, lung, and prostate cancers (Bailey et al., 2018).

These studies suggest that KDMs can serve as therapeutic targets for different diseases.

To suppress the activity of KDMs in pathological conditions, many inhibitors of 2OGXs have been intro-

duced based on their structures or activities as evaluated using screening assays. These inhibitors can

be categorized into two groups: those that compete with either 2OG or substrates of 2OGXs, and those

that compete with both 2OG and its substrates (Islam et al., 2018). Growing evidence indicates that these

inhibitors have poor cell permeability and present cellular toxicity and off-target effects. Thus, there is a

need to discover improved inhibitors of JmjC-KDMs. We had found that clioquinol (CQ) inhibited the bind-

ing of 2OG to the JmjC domain of FIH-1 (Moon et al., 2010), thereby enhancing the activity of HIF-1a (Chen

et al., 2007; Choi et al., 2006; Ding et al., 2005; Chen et al., 2007).

The structural similarity of the JmjC domain between FIH-1 and KDM4A (Chen et al., 2006b) prompted us to

investigate whether CQ could inhibit the catalytic activities of KDM4A and other JmjC-KDMs. CQ has been

identified as a membrane-permeable and hydrophobic metal chelator with favorable toxicity profiles

(Cherny et al., 2001; Padmanabhan et al., 1990; Schimmer et al., 2012). Here, we investigated the CQ-medi-

ated inhibition of KDM4A/C, KDM5A/B, and KDM6B by characterizing the effects of CQ on H3K4me3,

H3K9me3, and H3K27me3, respectively, using chromatin immunoprecipitation sequencing (ChIP-seq).

We further examined the effects of the CQ-mediated regulation of the methylation of these three

histones on the transcription of target genes and cellular processes associated with these target

genes by integrating ChIP-seq and gene expression data. We previously showed that hypoxia inhibited

the activity of JmjC-KDMs in human adipocyte-derived stem cells (hADSCs) (Lee et al., 2017). We also

used hADSCs in this study to examine whether CQ can have similar effects to hypoxia on histone methyl-

ation and the transcription of its target genes. Our results provide evidence that CQ is a novel inhibitor of

JmjC-KDMs, including the molecular and functional characteristics of the CQ-mediated inhibition of JmjC-

KDMs.

RESULTS

CQ inhibits the activity of histone demethylases

To examine the effect of CQ on histone methylation, we treated human adipocyte-derived stem cells

(hADSCs) with two different doses (25 and 50 mM) of CQ and a pan-inhibitor of histone demethylases —

JIB-04 (0.1 mM) — under normoxic conditions (20% O2) and then measured the total amount of methylated

histones in the CQ-treated hADSCs. CQ treatment increased total H3K4me3, H3K9me3, and H3K27me3

under normoxia, as well as under hypoxia (0.5% O2) and JIB-04 treatment (Figure 1A). Similar increases

in the total amounts of H3K4me3, H3K9me3, and H3K27me3 were observed in human glioblastoma

(U87) and cervical cancer (HeLa) cells (Figures S1A and S1E), suggesting that the CQ-induced increase in

methylated histones is common in different cell types. Moreover, CQ also increased the protein levels of

HIF-1a and the mRNA levels of its target genes, BCL2/adenovirus E1B 19kDa interacting protein 3

(BNIP3) and carbonic anhydrase IX (CA9), similar to hypoxia and JIB-04 treatment (Figures S1B and S1C).

Figure 1. CQ inhibits the activity of histone demethylases

(A) Western blot analyses of histone extracts from hADSCs cultured under hypoxia (1.5%, 0.5% O2), treated with CQ (25 and 50 mM) or JIB-04 (0.1 mM) for 16 h

using the indicated antibodies. H3 was detected as a loading control.

(B–F) Effects of CQ on the catalytic activities of histone demethylases. HeLa cells were transfected with the indicated KDMs. The transfected cells were

exposed to hypoxia (0.5%O2) or CQ (50 mM) for 16 h, then immunostained using the indicated tag-antibodies (red) and indicated histone antibodies (green).

The nuclei were stained with DAPI (blue). Arrows indicate cells transfected with the indicated histone demethylases. Using a pseudo-color 3D confocal

fluorescence microscope, the fluorescence intensities of H3K4me3, H3K9me3, and H3K27me3 were estimated as shown in the contour maps (right columns)

(Lee et al., 2013). The representative images of cells transfected with HA-tagged KDM5A among 20 cells (20% O2), 10 cells (0.5% O2), and six cells (CQ) (B);

with Myc-tagged KDM5B among 16 cells (20% O2), 10 cells (0.5% O2), and 15 cells (CQ) (C); with HA-tagged KDM4A among 35 cells (20% O2), 17 cells (0.5%

O2), and 16 cells (CQ) (D); with Myc-tagged KDM4C among 18 cells (20%O2), 15 cells (0.5%O2), and 21 cells (CQ) (E); with Myc-tagged KDM6B among 14 cells

(20% O2), 29 cells (0.5% O2), and 13 cells (CQ) (F).

(G) The estimated activities of histone demethylases were visualized via immunofluorescence. For each histone demethylase, catalytic activity was defined as

the difference in the estimated fluorescence intensity of its corresponding trimethylated histone between untransfected and transfected cells. The catalytic

activity under hypoxia was normalized by that under normoxia. Data represent the average and standard deviations of the estimated activities of histone

demethylases from 6 to 35 transfected cells. *** indicates p < 0.001 via one-way ANOVA with Tukey’s correction.

(H) Mass spectrometric analyses for measuring histone demethylase activity. Biotinylated histone H3K9me3 peptide (MW = 2,765 Da) was incubated with

5 mg of recombinant KDM4A protein (1–350 amino acids), vitamin C (2 mM), and 2-oxoglutarate (2-OG) (100 mM) in the absence or presence of CQ (50 mM) for

4 h then analyzed via MALDI-TOF. The detected mass of the major peptide is indicated above the associated peak.

ll
OPEN ACCESS

iScience 25, 104517, July 15, 2022 3

iScience
Article



The increase in methylated histones can be caused by the increased activity of methyltransferases or

decreased activity of demethylases. To examine this, we measured the levels of H3K4me3, H3K9me3,

and H3K27me3 after depleting methionine — a substrate of methyltransferases — in hADSCs and HeLa

cells. The methylated histones were similarly increased after CQ treatment, regardless of the presence

of methionine (Figures S1D and S1E) (Chen et al., 2006a), indicating that the increase of methylated

histones was because of decreased demethylase activity. Next, we examined CQ-induced changes in

the catalytic activities of JmjC-KDMs (KDM5A/B for H3K4me3, KDM4A/C for H3K9me3, and KDM6B for

H3K27me3) using an immunofluorescence assay in cells overexpressing JmjC-KDMs. H3K4me3,

H3K9me3, and H3K27me3 disappeared in JmjC-KDM-overexpressing cells under normoxia, despite the

overexpression of JmjC-KDMs but were present under hypoxia and CQ treatment (Figures 1B–1F). Quan-

tification of immunofluorescence intensity of the trimethylated histones confirmed that CQ significantly

(p < 0.05) decreased the catalytic activity of JmjC-KDMs (Figure 1G).

To confirm this finding, we performed an in vitro demethylation assay using mass spectrometry. When

recombinant KDM4A proteins were added to a solution containing vitamin C and 2OG, H3K9me3 peptides

(m/z = 2,765, Figure 1H) were demethylated to H3K9me2 (m/z = 2,751, Figure 1H); however, they were not de-

methylated when CQ (50 mM) was added. Based on a known structure of the KDM4A-pyridine-2,4-dicarboxylic

acid complex (PDB ID: 2VD7; Figure S1F, top), we performedmolecular modeling of the KDM4A-CQ complex

structure by matching the interactions of the rings in both CQ and pyridine-2, 4-dicarboxylic acid with Fe

(Figure S1F, middle). In the modeled structure, CQ overlapped with the position of 2OG according to the

KDM4A-2OG complex structure (PDB ID: 2Q8C), suggesting the competitive inhibition of KDM4A by CQ (Fig-

ure S1F, bottom). Furthermore, we performed molecular dynamics (MD) simulations of the KDMA4A-PDCA

and KDM4A-CQ complex structures, which were obtained by matching the positions of the pyridine ring in

both CQ and PDCA with Fe(II) (Figure S1G). During the 200-ns MD simulations, both complexes maintained

a stable coordination structure, as shown in the representative snapshots and the distances between Fe(II)

and the coordinating atoms, suggesting a competitive inhibition of KDM4A by CQ. We estimated the ratio

(r = Kb(CQ)/Kb(PDCA)) of the binding constants from the MD simulation trajectory as follows:

KbðiÞz Ni
bound

Ni
unbound

;

where Kb(i) is the binding constant of substrate i (CQ or PDCA) andNbound(unbound)
i is the number of bound

(unbound) states of substrate i during the MD simulation. We assumed that the substrate was bound to the

enzyme if the distances between Fe(II) and both N and O atoms of the substrate were within 3 Å. From the

MD simulation, we obtained rz 1.1 (Kb(CQ) = 62.90 and Kb(PDCA) = 57.0), which implies that CQ can be a

slightly better inhibitor than PDCA. Notably, analogs of CQ, such as broxyquinoline (BQ), hydroquinone

(HQ), chloroacetoxyquinoline (CAQ), and iodoquinol (IQ), also inhibited the demethylation of H3K9me3,

similar to CQ (Figure S1H). Overall, these data suggest that CQ inhibits the demethylation activities of

JmjC-KDMs, increasing the methylated histones.

CQ affects the genomic distributions of methylated histones

To examine the genome-wide landscape of methylated histones affected by CQ, we performed ChIP-seq

for H3K4me3, H3K9me3, and H3K27me3 in hADSCs under normoxia (N), hypoxia (H), or with CQ treatment

(CQ). ChIP-seq yielded a total of 588.2 million reads for the three histone methylations in N, H, and CQ.

These reads were aligned to the human genome (UCSC GRCh.38.91) using BOWTIE2, resulting in total

mapped reads of 54.3 Giga base-pairs (16.5-fold coverage of the human genome) (Table S2). To investigate

the changes in methylated histones by CQ, we first identified the peaks consistently detected in N, H, and

CQ— called consensus peaks — and then examined the distribution of mapped reads across the genome

or gene structure. Consistent with previous findings (Kooistra and Helin, 2012; Lee et al., 2017), the

consensus peaks of H3K4me3 were enriched in gene bodies (Figure S2A) and near transcription start sites

(TSS) (Figure 2A) under N, H, and CQ conditions. In contrast, the peaks of H3K9me3 and H3K27me3 were

enriched in the intergenic regions (distal promoters) and gene bodies (Figures S2A and S2B). The gene

body peaks of the three methylations were predominantly located in introns (Figure 2B).

CQ and H strongly altered the read counts of H3K4me3, H3K9me3, and H3K27me3 peaks in many genes

(�5 kb from the TSS and +5kb from the TES [transcription end site]; Figures 2C and S2C), as well as in their

neighboring regions (Figures 2D and S2D), compared to N. We then identified 4,829 differentially methyl-

ated genes (DMGs) between N and CQ, which had altered peaks with average fold-changes larger than 1.5,
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Figure 2. CQ affects histone trimethylation at the genomic level

(A) Distributions of H3K4me3 within the gene structures in hADSCs. The gene structure (�5 kb-TSS-TES-+5 kb) was parsed into 45 bins for each gene. The

average RPKM read density profiles (y axis) of H3K4me3 for all the genes in individual bins (x axis) were plotted. Yellow, red, and blue lines represent profiles

of the read densities under normoxia (N), hypoxia (H), and CQ (C), respectively.

(B) Numbers of consensus peaks of each histone methylation within the indicated regions. In this analysis, the gene body is further split into the coding

sequence (CDS) and intron.

(C) Scatterplot showing the relationship of the log2-fold-changes of H3K4me3 levels in consensus peaks between CQ versus N (x axis) and H versus N (y axis).

Red and green dots correspond to consensus peaks with increased and decreased H3K4me3 levels in both CQ and H compared to N, respectively.

(D) Distributions of the read counts in the neighboring regions of consensus peaks (�2 kb and +2 kb from the consensus peak centers). Red and blue bars

indicate consensus peaks with increased and decreased H3K4me3 levels in both CQ and H compared to N, respectively. Color bar, gradient of the read

counts at individual bases.

(E) Relationships of the DMGs identified for H3K4me3, H3K9me3, and H3K27me3. The numbers in parentheses denote the total numbers of DMGs identified

for individual histone methylations.

(F) Relationship between the DMGs by CQ and hypoxia. The numbers in parentheses denote the total numbers of DMGs with alterations in at least one type

of histone modification by CQ or hypoxia.

(G) GOBPs represented by the DMGs in CQ or hypoxia. x axis, -log10(p), where p is the enrichment p value obtained using DAVID software.
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including 1,147, 2,342, and 1939 genes with altered H3K4me3, H3K9me3, and H3K27me3 peaks, respec-

tively (Figure 2E, top; Table S3). The number of DMGs by CQ (4,829 genes) (Figure 2E, top Venn diagram)

was found comparable to that of the DMGs (4,921 genes) by hypoxia (Figure 2E, bottom Venn diagram).

Among these DMGs, 51.2% (2,472 of 4,829 DMGs) was shared with those in hypoxia (Figure 2F and

Table S4). Subsequently, we performed an enrichment analysis of gene ontology biological processes

(GOBPs) for the DMGs under CQ or hypoxia (Figure 2G). CQ primarily affected cell adhesion/migration,

cytoskeleton organization, angiogenesis, response to hypoxia, carbohydrate metabolism, and cell

proliferation, which were consistently enriched in the DMGs by hypoxia (Figure 2G). In contrast, CQ

predominantly affected apoptosis, whereas hypoxia affected fatty acid metabolism. Despite this

difference, CQ and hypoxia generally have similar effects on the genomic landscapes of methylated

histones and target genes.

CQ affects the expression of target genes and their associated cellular processes

To examine the target genes of CQ, we performed gene expression profiling of hADSCs under N, H, and

CQ conditions. H3K4me3 levels in CQ were positively correlated with mRNA expression levels, whereas

H3K9me3 and H3K27me3 levels were negatively correlated (Figure S3A). We next identified 3,818 differen-

tially expressed genes (DEGs; 1747 upregulated, 2071 downregulated) between CQ andN and 2,492 DEGs

between H and N (Figures 3A and S3B; Table S5). Of the DEGs, 35.4% (1,352 of 3,818 DEGs) overlapped

with those by hypoxia, consistent with a high overlap between the DMGs by CQ and hypoxia (Figure 2F).

To examine the cellular processes affected by CQ, we performed the GOBP enrichment analyses of the

upregulated or downregulated genes. The upregulated genes were mainly associated with responses to

hypoxia, angiogenesis, glycolysis, apoptosis/cell cycle arrest, and autophagy, similar to those upregulated

by hypoxia (Figure 3B, left, Table S6). However, CQ more potently upregulated the genes associated with

apoptosis, cell cycle arrest, and autophagy, which was consistent with the findings from the DMGs (Fig-

ure 2G). We also confirmed that CQ increased the mRNA and H3K9me3 levels of the TRAILR1 gene (Fig-

ure 3C) and protein levels of BCL2L11— a proapoptotic marker — compared to hypoxia. On the other

hand, CQ decreased the protein levels of the antiapoptotic markers BIRC2 and XIAP compared to hypoxia

(Figure 3D). Moreover, CQ treatment increased the levels of CDKN1A and p53, which induce cell cycle ar-

rest and apoptosis, respectively (Figures 3E and 3F), and increased the expression of the autophagy

markers p62 and LC3B (Figure 3G) to a greater extent than in hypoxia. Overall, these results indicated

that CQ and hypoxia share many target genes; however, CQ induced the expression of genes involved

in apoptosis, cell cycle arrest, and autophagy considerably greater than hypoxia. Consistent with these re-

sults, MTT assays showed that CQ (50 mM, 16 h) significantly reduced the viability of both hADSC and U87

cells by 59.12 and 69.64%, respectively (Figures S3C and S3D). Notably, FACS analyses showed that both

Figure 3. CQ affects the expression of target genes and their associated cellular processes

(A) Comparison of the DEGs in hADSCs after CQ treatment and hypoxia. The numbers in the parentheses denote the total number of DEGs by CQ or

hypoxia.

(B) GOBPs represented by the upregulated (left) and downregulated (right) genes by CQ or hypoxia. x axis, -log10(p), where p is the enrichment p value

obtained using DAVID software. Dotted line, the cutoff value used to select the enriched GOBPs.

(C) Relative mRNA expression levels (left) and H3K9me3 levels (right) of the TRAILR1 gene in hADSCs, as measured using qRT-PCR and ChIP-PCR analyses,

respectively, under N, H, or CQ. Data are shown as the mean G SEM (n = 6 per condition).

(D) Representative western blot images showing the amounts of pro-apoptotic (BCL2L11) and anti-apoptotic (BIRC2 and XIAP) markers in hADSCs under N,

H, or CQ (50 mM, 72 h).

(E and F) Relative mRNA expression levels of CDK1A. Western blot of p53 in hADSCs under N, H, or CQ. Data are shown as the mean G SEM (n = 4 per

condition). Statistical differences were assessed using a two-tailed paired Student’s t-test. ***p < 0.001.

(G) Representative western blot images showing the amounts of an autophagy marker (p62/SQSTM1), LC3B, in hADSCs under N, H, and CQ (50 mM, 72 h).

(H) Percentages of non-apoptotic (AP), early-apoptotic, late-apoptotic, and necrotic hADSCs as measured via flow cytometry after annexin V/PI staining

under normoxia (N), hypoxia (H) (0.5% O2, 48 h), or after treatment with CQ (CQ) (50 mM, 16 h). Data are presented as the mean G SEM (n = 5 per condition).

(I) Correlation of log2-fold-changes in histonemodifications with gene expression in individual histonemethylations. The expressed genes were sorted using

their log2-fold-changes and binned such that each bin includes 100 genes. For each type of histone methylation, the averaged log2-fold-changes of the

RPKMs of the histone modification (y1-axis) and the averaged log2-fold-changes of gene expression levels (y2-axis) in individual bins (x axis) were plotted.

Black lines represent the averaged log2-fold-changes of gene expression. Blue and red lines represent the averaged log2-fold-changes of histone

methylation levels by CQ and hypoxia, respectively. Upregulated and downregulated genes (red and green backgrounds, respectively) were defined as

those with fold-changes >1.5.

(J) The aligned reads of three representative genes (TCEA3, RECK, and CPOX) for the three histone methylations. The regions that include the differentially

methylated peaks for H3K4me3, H3K9me3, and H3K27me3 were indicated by gray backgrounds. **p < 0.01 and ***p < 0.001 by one-way ANOVA with

Tukey’s correction (C and H).
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CQ treatment (50 mM, 16 h) and hypoxia barely increased the number of apoptotic cells (Annexin

V-positive/PI-negative cells) from 2.62% to 4.86 and 3.34%, respectively (Figures 3H, S3E, and S3F). These

data suggest that CQ (50 mM) reduces cell viability not only by increasing apoptosis but also through other

mechanisms, such as autophagy-related cell death, as previously reported (Mizutani et al., 2021). In

contrast, the downregulated genes were associated with ribosome biogenesis/translation, DNA repair,

and mitochondrion organization, similar to those downregulated by hypoxia (Figure 3B, right, Table S6).

Notably, compared with hypoxia, CQ downregulated oxidative phosphorylation, the tricarboxylic acid

cycle, and fatty acid oxidation (Table S6).

To explore the link between methylated histones and the mRNA expression of CQ target genes, we next

analyzed the correlations between their histone methylation and mRNA expression changes (log2-fold-

changes). For the upregulated genes (Figure 3I, red regions), there was a positive correlation (r = 0.99;

p = 3.95 3 10�10) between the log2-fold-changes of H3K4me3 and mRNA expression levels (Figure 3I,

left). In contrast, the downregulated genes (Figure 3I, green regions) showed increased levels (i.e., positive

log2-fold-changes) of H3K9me3 (Figure 3I, middle) or H3K27me3 (Figure 3I, right). Unexpectedly, however,

for the upregulated genes, the log2-fold-changes of H3K9me3 and mRNA levels showed a positive corre-

lation (r = 0.69; p = 1.813 10�2), indicating the possibility that the upregulated genes could have increased

H3K9me3 levels (Figure 3I, middle). The alteration patterns for the three trimethylations were consistent

with those observed under hypoxic conditions. Moreover, an increased level of each trimethylation was

observed in a representative gene in CQ compared to that in N (Figure 3J). Overall, these results suggest

that CQ-induced alterations in H3K4me3, H3K9me3, and H3K27me3 are closely correlated with the

changes in the expression of target genes, affecting cellular processes associated with the target genes.

Target genes show a differential association between histone methylation and mRNA

expression

Next, we examined the relationship between CQ-induced alterations in histone methylation and mRNA

expression at the individual gene level. A comparison of the DMGs and DEGs revealed that 789 DEGs

(409 upregulated and 380 downregulated genes) had peaks with CQ-induced alterations of H3K4me3,

H3K9me3, or H3K27me3 (Figure 4A). To systematically explore this relationship, we further categorized

these 789 shared genes between the DEGs and DMGs into 29 groups based on their upregulation and

downregulation patterns of histone methylation and mRNA expression by CQ (Figure S4A). Of the 29

groups, we focused on the top four major groups (G1-4 in Figure 4B), each of which included more than

5% (40 genes) of the 789 shared genes in both CQ and H for the subsequent comparison between CQ

and H. Groups 1–4 included 63.6% of the 789 shared genes (Figure 4B; Table S7).

G3 included genes with increased mRNA expression and H3K4me3 levels, which are consistent with the

role of H3K4me3 as an active marker (Figure 4B). G1 included genes with decreased mRNA expression

and increased H3K9me3 levels. Unlike the changes in the opposite direction, G2 and G4 included genes

with changes in mRNA expression and H3K9me3 levels in the same direction. Next, we examined the local-

ization of H3K9me3 marks in the gene structures of G1, G2, and G4. It was revealed that G1 showed the

highest increase in H3K9me3 in the gene body but a relatively weak increase in the promoter region. In

contrast, G4 showed decreased H3K9me3, predominantly in the promoter region, whereas G2 tended

to show the most substantial increase in H3K9me3 in the promoter region and a comparable increase in

the gene body (Figure S4B). These enrichments in the promoter or gene body of H3K9me3 may account

for the difference in mRNA-H3K9me3 alteration patterns in G1, G2, and G4. Moreover, although many

Figure 4. Target genes show differential associations between histone methylation and mRNA expression in CQ-treated hADSCs

(A) Comparison of the DMGs and DEGs by CQ treatment. Total numbers of DEGs and DMGs, as well as the numbers of upregulated (U) and downregulated

(D) genes are shown in parentheses.

(B) Four major groups (G1-4) of the shared genes between the DMGs and DEGs. The heatmap was generated after hierarchical clustering of the log2-fold-

changes of gene expression and histone methylation levels (RPKMs) using the average linkage method and Euclidean distance as a dissimilarity measure.

Colors in the heatmap represent upregulated (red) and downregulated (green) genes in CQ compared to normoxia. Color bar, gradient of the log2-fold

changes in gene expression and histone methylation levels. The number of genes in each group is shown in parentheses.

(C) GOBPs represented by the genes in G1–4. Color bar, gradient of –log10(p), where p is the enrichment p value for individual GOBPs obtained using DAVID

software.

(D) Relative methylated histone (left) and mRNA expression (right) levels of the indicated representative genes in G1-4 measured using ChIP-PCR and qRT-

PCR analyses, respectively, under N and CQ. Data are shown as the mean G SEM (n = 6 per condition, exceptionally for TMX4 gene n = 9 per condition of

qRT-PCR, for ELOVL6 gene n = 3 per condition of H3K9me3 ChIP-PCR). *p < 0.05, **p < 0.01 and ***p < 0.001 using Students’ t-test.
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genes hadmultiple types of histone trimethylations under N (4,969 genes) or CQ (5,868 genes; Figure S4C),

notably, the DEGs in G1–G4 showed changes in only one type of histone trimethylation, as reported in hyp-

oxia (Lee et al., 2017).

Subsequently, we performed GOBP enrichment to examine whether the genes in G1-G4 were involved in

different cellular processes (Figure 4C). Both upregulated G2 andG3 genes in CQ consistently represented

a response to hypoxia. In contrast, G2 predominantly represented histone modification, whereas G3 pre-

dominantly represented VEGF signaling, autophagy/apoptosis, and glycolysis (Figure 4C). On the other

hand, the downregulated G1 genes represented cell adhesion/migration, cytoskeleton organization,

and extracellular matrix organization, whereas the downregulated G4 genes represented transcription,

RNA processing, translation, and cell cycle. Of note, these processes were consistent with the upregulated

and downregulated processes in CQ (Figure 3B), suggesting that G1-G4 encapsulates CQ-induced mRNA

expression changes at the cellular process level. Notably, a comparison of the cellular processes repre-

sented by G1-G4 revealed that CQ and H consistently affected many of these processes, including extra-

cellular matrix organization by G1, response to hypoxia by G2, and glycolysis by G3. CQ, but not H,

uniquely regulated several processes (cytoskeleton organization by G1 and apoptosis by G3) (Figure S4D).

We also confirmed CQ-induced alterations in mRNA expression and histone methylation for two represen-

tative genes in each group using qRT-PCR and ChIP-PCR analyses (Figure 4D). Overall, these data suggest

that G1-4 represent four different CQ-induced alteration modes of histone methylation and mRNA

expression, which define different target cellular processes.

Different TFs are associated with CQ-induced changes in mRNA expression

CQ regulates histone methylation through JmjC-KDMs without directly binding to DNA. KDMs are

recruited to methylated histones for target genes by TFs, thereby regulating their mRNA expression

(Benveniste et al., 2014). We then examined the TFs that could be involved in the recruitment of

JmjC-KDMs to the differentially methylated histones for the genes in G1-4 as described previously (Lee

et al., 2017). We identified a total of 62 TFs (45, 42, 46, and 31 TFs for G1-4, respectively) whose binding

motifs were significantly (p < 0.01) enriched in the differentially methylated regions (peaks) for the genes

in G1-4 (Figure 5A; Table S8). Of these, 45 TFs were shared in at least two groups between G1-4. In com-

parison, 17 TFs were uniquely identified in individual groups, suggesting that different sets of TFs could be

associated with the recruitment of JmjC-KDMs to the differential trimethylation of histone three in G1-4.

Of these enriched TFs, we focusedon 60 TFs forG1-3 in the following analyses as there are fewer genes inG4

compared to G1-3. Among them, we selected the following representative TFs based on previously

described criteria (Lee et al., 2017): RELA and RUNX2 for G1, JUN and STAT1 for G2, and ARNT/HIF1A

and STAT1 for G3. The enriched bindingmotifs of these TFs are shown in Figure 5B. To understand the func-

tional roles of these representative TFs, we performed GOBP enrichment analysis for their target genes in

G1-3 (Figure 5C). We found that these target genes also represented most of the cellular processes in G1-3

(Figure 4C). To examine the collective associations of these TFs with these processes, we constructed a

network model describing the interactions among their target genes (Figure 5D). The network model

Figure 5. Different TFs are associated with CQ-induced changes in mRNA expression

(A) Relationships among the TFs whose binding motifs were significantly enriched in the methylated regions of the genes in G1-4 in hADSCs. Numbers in

parentheses denote the numbers of TFs identified for G1-4.

(B) Binding motifs of the five representative TFs for the predicted target genes in G1-3. HIF1A and ARNT have a shared binding motif.

(C) GOBPs represented by the target genes of the five representative TFs in G1-3 (B). Color bar, gradient of –log10(p), where p is the enrichment p value for

individual GOBPs obtained using DAVID software.

(D) Network model describing the interactions among the target genes of the five representative TFs. Node colors represent upregulation (red) and

downregulation (green) in CQ, compared to normoxia. Green circles, red circles, and square nodes represent the target genes in G1-3, respectively. Large

nodes denote the genes for which binding of the five representative TFs to their differentially methylated regions was experimentally confirmed. Arrows and

inhibition symbols represent activation and inhibition information, respectively, as obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway database. Solid and dotted lines denote direct and indirect activation/inhibition, respectively.

(E) Relative mRNA expression levels (left), methylated histone levels (middle), and TF-bound DNA amounts (right) of the indicated target genes in G1-3 as

measured using qRT-PCR, histone ChIP-PCR, and TF ChIP-PCR analyses under N and CQ, respectively. Data are shown as the mean G SEM (n = 6 per

condition, exceptionally for TRIM39 gene n = 8 per condition of H3K9me3 ChIP-PCR, for MT3 gene n = 3 per condition of H3K4me3 ChIP-PCR).

(F) Effect of ARNT and HIF-1a knockdown. qRT-PCR analyses of ARNT and HIF-1a in hADSCs infected with lentiviruses encoding shRNAs against ARNT and

HIF-1a (Table S1) (Lee et al., 2017).

(G) ChIP-PCR and qRT-PCR analyses of the indicated genes in shARNT- and shHIF-1a-hADSCs. (E–G) Data are shown as the mean G SEM (n = 3 per

condition). *p < 0.05, **p < 0.01 and ***p < 0.001 via Students’ t-test.
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showed that the representative TFs primarily contributed to the downregulation of the actin cytoskeleton

(TUBA1C, PARVA, CALD1, TLN2, WIPF1, MYH10, and KIF18A) together with its upstream extracellular ma-

trix (ECM) (LUM,DDR2, SULF1, andCOL8A1/12A1) and signaling (PDGFRC, FGF2, IRS1, ITGA11, andMYLK)

molecules. They are also associated with the downregulation of cell adhesion (VCAN, CD99L2, CLDN11,

and SDC2) and proliferation (GLI2/3, FIGNL1, NABP1, and EFEMP1) (Figure 5D, left). Moreover, the network

model also showed that these TFs contributed to the upregulation of the HIF-1a pathway (BNIP3, MT3,

VEGFB, APLN, LEP, PLIN2, and STC1), glucose metabolism (SLC2A3, PFKB4, ALDOC, and ENO2), auto-

phagy (ATG14, RNF185, ATP6V0D1, and SLC17A9), apoptosis (ERO1A, MTFP1, NOL3, CDIP1, and

BAG6), and proteolysis (UBE2O, SIAH2, UBR4/5, UBA6, TRIM39, UBQLN1, and NGLY1) (Figure 5D, right).

Next, we experimentally tested the validity of the following representative pairs of TF-target genes in the

network model using ChIP-PCR experiments (Figure 5E): RELA-NABP1 and SULF1 (G1), JUN-TRIM39 and

PLIN2 (G2), and ARNT-STC1 andMT3 (G3). To examine the effects of these predicted TFs on the expression

and histone trimethylation of the selected target genes, we knocked down the mRNA expression of ARNT

and its dimerization partner HIF-1a by 29.57 and 5.92% in hADSCs, respectively (Figure 5F). The knockdown

of ARNT and HIF-1a significantly diminished the CQ-induced mRNA levels and H3K4me3 levels of the

selected target genes, STC1 and MT3, in G3 (Figure 5G). These data suggest that representative TFs could

be involved in the recruitment of KDMs to differentially methylated regions of the CQ target genes,

contributing to the regulation of histone methylation and expression of target genes in G1–G3. Overall,

these data suggest that different sets of TFs collectively contribute to the CQ-induced changes in key

cellular processes (actin cytoskeleton, HIF-1a pathway, and glucose metabolism) associated with G1-3.

In summary, our results demonstrate that CQ affects histone methylation (H3K4me3, H3K9me3, and

H3K27me3) by inhibiting the activities of JmjC-KDMs, thereby contributing to the transcription of target

genes and the cellular processes associated with them. The CQ-dependent regulation of histone methyl-

ation and target gene expression is characterized bymultiple regulatory modes (i.e., four major modes rep-

resented by G1-4 in Figure 4B) involving different types of histone methylation and different sets of TFs

involved in the recruitment of JmjC-KDMs. This further contributes to the differential regulation of the

cellular processes associated with these individual regulatory modes.

DISCUSSION

In this study, we investigated whether CQ could inhibit the catalytic activities of KDMs based on the binding

of CQ to FIH-1 and the structural similarity of the JmjC domain in FIH-1 and KDMs (Choi et al., 2006). Our

results revealed that CQ indeed inhibited the demethylation activities of KDM5A/B, KDM4A/C, and

KDM6B for the three major histone methylation patterns, H3K4me3, H3K9me3, and H3K27me3, respec-

tively (Figure 1). This CQ-mediated inhibition of KDMs increased the levels of all three histone methylation

markers, as did the inhibition of KDMs by hypoxia. We previously developed an integrative analysis of

methylated histones and mRNA expression data under hypoxia to understand the link between multidi-

mensional histone methylation changes and the transcriptional regulation of target genes. Using this

integrative analysis, we categorized the target genes of CQ into G1-4 based on the alteration patterns

of methylated histones and mRNA expression. We revealed that the genes in G1-4 predominantly involved

changes in a single type of histone trimethylation rather than complex combinatorial changes of multiple

types of histone trimethylation, where the methylated histones corresponding to G1-4 were associated

with different sets of TFs responsible for the transcriptional regulation of their target genes. This single-

type histone methylation-based regulatory mechanism has been consistently observed under hypoxic

conditions. Overall, our results suggest that KDM inhibitors, such as hypoxia and CQ, appear to regulate

the mRNA expression of target genes by altering single types of histone trimethylations, although this

regulatory mechanism should be investigated in other KDM inhibitors.

Our results revealed that most of the target genes and their associated cellular processes were shared

between CQ and hypoxia. However, several cellular processes are affected by either CQ or hypoxia. Repre-

sentative cellular processes associated with hypoxia, such as responses to hypoxia and glycolysis, were

shared. We have previously demonstrated that CQ, similar to hypoxia, stabilizes and activates HIF-1a

(Choi et al., 2006). Therefore, the CQ-mediated inhibition of KDMs and the activation of HIF-1a are ex-

pected to result in a large overlap of cellular processes shared between CQ and hypoxia. However, unlike

hypoxia, CQ uniquely enhanced apoptosis and autophagy and decreased oxidative phosphorylation,

tricarboxylic acid cycle, and fatty acid oxidation. Consistent with our findings from FACS analyses

(Figures 3H, S3E, and S3F) and MTT assays (Figures S3C and S3D), Mizutani et al. (2021) also showed
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that CQ (50 mM, 24 h) induced cell death in astrocyte-derived KT-5 cells in an apoptosis-independent

manner. They found that although CQ increased the expression of LC3-II and p62 autophagy-related

proteins, it inhibited lysosomal function, resulting in an incomplete execution of autophagy. In addition

to impairing autophagy degradation, CQ increased ROS and decreased ATP levels, leading to cell death.

Our results showed that CQ treatment induced alterations in the expression of target genes and cellular

processes associated with diseases, for which CQ could be used for therapeutic purposes (Perez et al.,

2019). Many genes (128 genes) encoding transition metal ion-binding proteins, including KDMs, were

found to be significantly upregulated by CQ, suggesting the possibility that CQ can modulate metal

ion-dependent cellular processes. CQ, as an ion chelator or ionophore, has been previously shown to effec-

tively reduce Cu(II) and Zn(II), which are used for amyloid-beta plaque formation (Cherny et al., 2001).

Accordingly, CQ effectively dissolved b-amyloid deposits in mouse and human brains with Alzheimer’s

disease (Helmuth, 2000) and prevented the deterioration of their cognitive abilities with no adverse effects

(Ritchie et al., 2003). Similarly, CQ and PBT2 (5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline)

— a CQ derivative — also have protective effects against Parkinson’s disease (Billings et al., 2016) and

Huntington’s disease (Huntington Study Group Reach, 2015), respectively, via ion chelating or ionophore

properties. Moreover, ATP-binding cassette transporter subfamily C (ABCC) members have been reported

to be targets of CQ (Perez et al., 2019). Notably, ABCC4 and ABCC5 were significantly downregulated by

CQ, suggesting that CQ may inhibit the efflux of molecules transported by these ABCCs, such as nucleo-

tides and cAMP (Copsel et al., 2011), and reduce the efflux of therapeutic agents, thereby improving the

reversal of multidrug resistance (Robey et al., 2018).

During the early 1900s, CQ was considered a safe drug and was clinically used as an antimicrobial, with thera-

peutic doses varying from250mg to 3.5 g per day (Woodward andRahman, 1969; Richards, 1971; Tsubaki et al.,

1971). In the 1970s, subacutemyelo-optic neuropathy (SMON)was reportedas an adverse effect of CQ in Japan

but not elsewhere (Kono, 1971). Notably, recent studies have revealed that single-nucleotide polymorphisms in

ABCCs (in particular, ABCC4 and ABCC11) might be responsible for SMON in the Japanese population (Perez

et al., 2019). In a pilot phase 2 clinical trial in patients with Alzheimer’s disease, the total daily doses of 250, 500,

and 750mgofCQ ranged from13 to 25 mmol/L (4–8 mg/mL) asmeasured frombasal plasma levels (Ritchie et al.,

2003). In a phase 1 clinical trial in patients with hematologic malignancies, the maximum tolerated dose of CQ

was 2,400mg/day (estimated tobe80mmol/L in plasma). Administration of 3,200mgCQ/daywasdose-limiting,

showing neurotoxicity and abdominal pain (Schimmer et al., 2012). The regulation of the CQ dose in other ap-

plications (such as cancer and neurological diseases) should be carefully monitored to avoid potential adverse

effects. This studyprovides a large amount of data onhistonemethylationandputative TFs for theexpression of

CQ target genes in comparisonwith hypoxic target genes, which can beused topredict thepotential beneficial

andadverse effects ofCQasanew therapy formalignancies (Chenet al., 2007; Schimmeret al., 2012) andneuro-

degenerative diseases (Ritchie et al., 2003).

Limitations of the study

CQ has a relatively broad spectrum of target molecules, including FIH-1, ABCC, and proteasomes. This

study identified novel targets of CQ, the JmjC-KDM family, which has more than 20 different isoforms

with distinct and shared specificities for methylated histones. Owing to the diverse targets of CQ, undesir-

able off-target effects of CQ have been a concern. Nonetheless, CQ has been evaluated for therapeutic use

in treating many diseases, such as Alzheimer’s disease and various cancers, owing to its favorable toxicity

profiles and lipid solubility.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-Histone H3 Abcam Cat# ab1791; RRID: AB_302613

Rabbit polyclonal anti-H3K9me3 Abcam Cat# ab8898; RRID: AB_306848

Rabbit monoclonal anti-H3K4me3 Cell signaling Technology Cat# 9751S; RRID: AB_2616028

Rabbit polyclonal anti-H3K27me3 Millipore Cat# 07-449; RRID: AB_310624

Rabbit monoclonal BCL2L11(Bim) Cell Signaling Technology Cat# 2933; RRID: AB_1030947

Rabbit monoclonal BIRC2 (cIAP1) Cell Signaling Technology Cat# 7065; RRID: AB_10890862

Rabbit monoclonal XIAP Cell Signaling Technology Cat# 2045; RRID: AB_2214866

Mouse monoclonal anti-HIF-1a (Figure 3D) BD biosciences Cat# 610959; RRID: AB_398272

Mouse monoclonal anti-b-actin (Figure 3D) Sigma-Aldrich Cat# A5441; RRID: AB_476744

Mouse monoclonal p53 (clone DO-1) Santa Cruz Biotechnology Cat# sc-126; RRID: AB_628082

mouse monoclonal mono/polyclonal

p62 (clone: D-3)

Santa Cruz Biotechnology sc-28359; RRID: AB_628279

Rabbit polyclonal anti-LC3B Cell Signaling Technology Cat# 2775; RRID: AB_915950

Bacterial and virus strains

E. coli BL21(DE3) Thermo Fisher N/A

Chemicals, peptides, and recombinant proteins

Clioquinol (CQ) Sigma-Aldrich 24880; CAS: 130-26-7

IUPAC Name: 5-chloro-7-iodoquinolin-8-ol

JIB-04 Sigma-Aldrich SML0808; CAS:

199596-05-9, IUPAC Name: 5-chloro-N-[(E)-

[phenyl(pyridin-2-yl)methylidene]amino]

pyridin-2-amine

Broxyquinoline (BQ) Sigma-Aldrich D41600; CAS: 521-74-4, IUPAC Name:

5,7-dibromoquinolin-8-ol

Chloroacetoxyquinoline (CAQ) MicroSource Discovery

Systems

The NINDS custom collection library, CAS:

10173-02-1, IUPAC Name: (5-chloroquinolin-

8-yl) acetate

Hydroxyquinol (HQ) Sigma-Aldrich H6878, CAS: 148-24-3, IUPAC Name:

benzene-1,2,4-triol

Iodoquinol (IQ) Sigma-Aldrich D123609; CAS: 83-73-8, IUPAC Name:

5,7-diiodoquinolin-8-ol

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenylte

trazolium bromide (MTT)

Sigma-Aldrich M2128; CAS: 298-93-1, IUPAC Name:

2-(3,5-diphenyltetrazol-2-ium-2-yl)-4,

5-dimethyl-1,3-thiazole; bromide

Trimethyl-histone H3K9 peptide Upstate #12-568

Critical commercial assays

SYBR Green PCR master mix Applied Biosystems 4367659

FITC Annexin V Apoptosis Detection Kit I BD bioscience 556547

Deposited data

Raw and processed microarray data This paper GEO: GSE69495

Raw and processed ChIP-seq data This paper GEO: GSE69493
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Hyunsung Park at hspark@uos.ac.kr.

Materials availability

This study did not generate new unique reagents.

Data and code availability

Raw and processed microarray data have been deposited at GEO and are publicly available at the date of

publication. Accession numbers are listed in the key resources table [GSE69495]. Raw and processed ChIP-

seq data have been deposited at GEO and are publicly available at the date of publication. Accession

numbers are listed in the key resources table [GSE69493] . All source codes have been deposited at Github

and are publicly available at https://github.com/SehyunChae/Clioquinol as of the date of publication. A

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Cell lines

Human: Human adipose-derived stem cells Invitrogen R7788115

Human: HeLa cells ATCC CCL-2

Human: U87 cells Korean Cell Line Bank Human primary glioblastoma cell

line (U87 MG)

Oligonucleotides

Primers for RT-PCR, see Table S1 This paper N/A

Primers for ChIP-qPCR, see Table S1 This paper N/A

Recombinant DNA

pET-32a-KDM4A(1–350aa) (Whetstine et al., 2006) HGNC:22978

pcDNA-HA tagged-KDM4A (Whetstine et al., 2006) HGNC:22978

pcDNA-Myc tagged-KDM4C Addgene ID: 24214 HGNC:17071

pcDNA-HA tagged-KDM5A (Lee et al., 2013) HGNC:9886

pcDNA-Myc tagged-KDM5B (Xiang et al., 2007b) HGNC:18039

pcDNA-Myc tagged-KDM6B (Xiang et al., 2007a) HGNC:29012

Software and algorithms

ImageJ (Schneider et al., 2012) https://imagej.nih.gov/ij/

BD FACSDivaTM BD bioscience https://www.bdbiosciences.com/ko-kr/

products/software/instrument-software/

bd-facsdiva-software#Overview

Genome Studio Illumina https://support.illumina.com/array/array_

software/genomestudio/downloads.html

Cutadapt (Martin, 2011) https://cutadapt.readthedocs.io/en/stable/

BOWTIE2 (Langmead and Salzberg, 2012) http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

Bedtools (Quinlan and Hall, 2010) https://bedtools.readthedocs.io/en/latest/

MACS2 (Zhang et al., 2008) https://pypi.org/project/MACS2/

DiffBind (Ross-Innes et al., 2012) https://bioconductor.org/packages/release/

bioc/html/DiffBind.html

Other

https://github.com/SehyunChae/Clioquinol In this paper https://doi.org/10.5281/zenodo.6580328
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DOI is listed in the key resources table. Any additional information required to reanalyze the data reported

in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture

Human adipose-derived stem cells (hADSCs) were purchased from Invitrogen (Carlsbad, CA, USA) and iso-

lated from human adipose tissue collected during liposuction procedures and cultured in MesenPRO RSTM

Basal Medium (Invitrogen, Carlsbad, CA, USA) with MesenPRO RSTM Growth supplement and L-glutamine

according to manufacturer’s instruction. Human HeLa cervical epithelium cells (CCL-2) were purchased

from the American Type Culture Collection (Manassas, VA, USA) and cultured in DMEM supplemented

with 10% fetal bovine serum (Life Technologies, Grand Island, NY, USA). Human primary glioblastoma

cell line (U87 MG) were obtained from Korean Cell Line Bank. Cells were cultured in Eagle’s minimum

essential medium (10-009, Corning, Glendale, AZ, USA) supplemented with 10% fetal bovine serum

(FBS), 100 IU/mL penicillin, and 100 mg/mL streptomycin. The cells were exposed to hypoxic conditions

(<0.5% O2) in an anaerobic incubator (Model 1029; Forma Scientific, Waltham, MA, USA) or 1.5% O2 using

an In Vivo 200 Hypoxia Workstation (Ruskin Technology, Leeds, UK). The oxygen level in the anaerobic

incubator was verified to be <0.5% using a Fyrite Analyzer (Bacharach, New Kensington, PA, USA).

METHOD DETAILS

Quantitative real-time revere transcription-polymerase chain reaction (qRT-PCR) and ChIP

analysis

qRT-PCR and ChIP-PCR were performed using a SYBR Green PCR master mix (Applied Biosystems, USA)

and a QuantStudio� 3 Real-Time PCR System (Applied Biosystems). ChIP was performed, with the

following modifications (Park and Park, 2010). After cross-linking, the nuclei were isolated, treated with

MNase (300 gel units, 15 min; NEB, Ipswich, MA, USA), and sonicated to shear the chromatin. After centri-

fugation at 12,000 rpm for 10 min, the DNA concentration in the chromatin supernatant was measured to

ensure that an equal amount of chromatin was used. For each immunoprecipitation, 1–1.5 mg of soluble

chromatin was diluted in ChIP dilution buffer at a ratio of 1:10. Diluted lysates were immunoprecipitated

with 10–20 mg of the indicated antibodies at 4�C overnight. The antibody-chromatin complexes were recov-

ered via incubation with 200 mL of protein G agarose (50% slurry) and then washed. The immunocomplexes

were then eluted with 300 mL of elution buffer, and cross-linking was reversed. Immunoprecipitated DNA

was purified by phenol/chloroform extraction and ethanol precipitation using a QIAquick PCR purification

kit (QIAGEN, Chatsworth, CA, USA). The primer sets used for qRT-PCR and ChIP-PCR are listed in Table S1.

FACS of apoptotic cells

hADSCs were incubated under hypoxia (0.5% O2, 48 h) or treated with clioquinol (50 mM, 48 h), then trypsi-

nized and resuspended in 100 mL annexin V-binding buffer containing 5 mL of annexin V-FITC. After 15 min,

5 mL of propidium iodide (PI) was added to the cells, which were further incubated for 15 min in the dark at

room temperature, according to the manufacturer’s instructions (556547; BD PharmingenTM, Franklin

Lakes, NJ). PI-positive and annexin V-positive cells were counted on a FACSCantoII system and analyzed

using BD FACSDivaTM software (BD Biosciences, Piscataway, NJ).

Molecular dynamics simulations

In the molecular dynamics (MD) simulation study, we used OpenMM (Eastman et al., 2017) with the

CHARMM force field (Vanommeslaeghe et al., 2010). The crystal structure of KDM4A-pyridine-2,4-dicar-

boxylic acid (PDBID: 2VD7) was used, and Ni(II) was replaced with Fe(II). The protonation states of

KDM4A under the corresponding experimental conditions (pH = 7.3) were set using PROPKA 3.1 (Sonder-

gaard et al., 2011); (Olsson et al., 2011). The location of CQ inside the active site of KDM4A was initially set

by fitting the pyridine ring and the N and O positions of pyridine-2,4-dicarboxylic acid and CQ. NaCl salts

(0.15 M; physiological conditions) were then randomly added to the simulation box 9.3 3 9.3 3 9.3 nm3.

Finally, the empty space was filled with TIP3P water molecules. The initial KDM4A-CQ complex was en-

ergy-minimized for 5,000 steps and then annealed from 0 K to 310.15 K at 1 bar for 30 ps. Equilibrium

MD simulations of the resulting complex were run for 200 ns with a time step of 2 fs. The thermostat and

barostat used in theMD simulation were the Langevin dynamics and theMonte Carlomethod, respectively.

The periodic boundary condition was applied in all directions, and both the Lennard-Jones and the real
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part of the electrostatic interaction used a cutoff radius of 1.2 Å. In addition, the particle mesh Ewald (PME)

method was used for the reciprocal part of the electrostatic interaction.

MTT assay

MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was purchased from Sigma-Aldrich (St.

Louis, MO). Briefly, 50 mL of the MTT reagent (5 mg/mL) was added to the culture medium and incubated at

37�C for 3 h. DMSO was added to dissolve the formazan aggregates. The absorbance of the resulting so-

lution was then measured at 550 nm using a microplate reader. The control was set to 100% viability for

each assay, and all other treatments were corrected against this value. Cells were seeded onto each well

of a 24-well plate at a density of 43104 cells/well.

shRNA

The following lentiviral constructs were used in this study. For shRNA studies, shRNA against ARNT and

HIF-1a cloned into the lentiviral vector pLKO.1 TRC cloning vector (Addgene, Watertown, MA). hADSCs

were infected with lentiviral constructs encoding hHIF1 alpha shRNAs (50-CCAGTTATGATTGTGAAG

TTA-30), hARNT shRNAs (50-GCCTACACTCTCCAACACAAT-30), or scramble shRNAs (50- CCTAAGGTT

AA-GTCGCCCTCG-30) by standard procedures.

Gene expression profiling experiments

Gene expression profiles of hADSCs were generated using an Illumina HumanHT-12 v4 Expression

BeadChip (Illumina, San Diego, CA), which includes 47,323 probes corresponding to 30,500 annotated

genes. According to Illumina’s standard protocol, biotinylated cRNA was prepared from total RNA using

the Illumina Total Prep RNA Amplification Kit (Ambion, Austin, TX, USA). Following fragmentation, the

cRNA was hybridized to the Illumina HumanHT-12 Expression BeadChip. The arrays were scanned using

the Illumina bead array reader confocal scanner. After the microarray experiments, the log2-intensities

of all probes and their annotations were acquired using Illumina Genome Studio v2009.2 (Gene Expression

Module v1.5.4). The raw data were deposited in the Gene Expression Omnibus (GEO) database with acces-

sion ID: GSE176557.

Identification of differentially expressed genes (DEGs)

The log2-intensities of the probes from the arrays were normalized using the quantile normalization

method (Bolstad et al., 2003). To identify the DEGs, a previously reported statistical hypothesis test was

performed (Lee et al., 2017) Briefly, for each gene, a T-statistic value was calculated using Student’s

t-test, and the log2-median-ratio was calculated. The empirical distributions of the T-statistics and log2-me-

dian-ratios for the null hypothesis (i.e., the genes were not differentially expressed) were estimated by per-

forming all possible combinations of random permutations of the samples. Using the estimated empirical

distributions, the adjusted p-values for the t-test and log2-median-ratio test for each gene were computed

and then combined with Stouffer’s method (Hwang et al., 2005). Finally, the DEGs were identified as genes

with combined p-values < 0.05 and fold-changes R1.5.

Library construction and ChIP-seq data analyses

ChIP-seq was performed on the sequencing library prepared according to Illumina’s standard protocols

(Lee et al., 2017). Chromatin immunoprecipitated DNA (ChIP DNA) was processed using Klenow polymer-

ase and T4 polynucleotide kinase to create 3-dA. ChIP DNA was then ligated with Illumina adaptors and

amplified using Illumina primers for 18 cycles. Following the isolation of 100–500 bp of ChIP DNA from

the agarose gel, an Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA) was used to confirm the

size, purity, and concentration of DNA, and library quantitation was performed using the HiSeq� 2000

platform to produce 101-bp paired-end samples. From the sequencing data, adapter sequences

(TruSeq universal and indexed adapters) were removed using cutadapt software (version 2.7) (Martin,

2011)(ref), and the remaining reads were aligned to the human genome (GRCh38) using BOWTIE2 software

(version 2.2.6) with default parameters (Langmead and Salzberg, 2012). After alignment, the number of

reads mapped to gene features (GTF file of GRCh38.89) were counted using CoverageBed from Bedtools

(Quinlan and Hall, 2010), and the reads per kilobase of target per million mapped reads (RPKM) were

computed for the gene features. The total read counts obtained for individual samples and the alignment

results are summarized in Table S2. Raw ChIP-seq data were deposited in the GEO database (accession ID:

GSE176379).
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Locational distribution analysis of histone methylations

For each gene, we first divided the promoter region (–5kb� transcription start site, TSS), gene body (TSS�
transcription end site, TES), and downstream region (TES � +5kb) into 10, 25, and 10 bins, respectively. In

each sample, we obtained the read counts in individual bins using CoverageBed from Bedtools (Quinlan

and Hall, 2010) and computed the read densities as RPKMs by dividing the read counts in the bins using

the following equation: (bin size/1,000) 3 (total number of mapped reads in the sample/106). For each his-

tone methylation (H3K4me3, H3K9me3, or H3K27me3), we obtained the average read density profile over

the bins by computing the average read densities of all the genes in the individual bins.

Peak enrichment

The enriched peak regions were determined using the MACS2 algorithm with the following parameters: -f

BAMPE -g hs -p 1e-3 –keep-dup = 1 (Zhang et al., 2008). Consensus peaks detected consistently in nor-

moxia, hypoxia, and CQ were identified using DiffBind (version 2.14.0) (Ross-Innes et al., 2012) with the

following parameters: minOverlap = 1 and score = DBA_SCORE_READS.

Identification of differentially methylated genes (DMGs)

For each gene, RPKMs for the consensus peaks within the promoter + gene body region (-5kb � TES) were

calculated for H3K4me3, H3K9me3, and H3K27me3 in normoxia, hypoxia, and CQ, respectively. For each

consensus peak of the gene, the mean log2-fold-changes of the RPKMs were computed for the three his-

tone methylations. Finally, the DMGs were identified as the genes for which the absolute mean log2-fold-

changes of H3K4me3, H3K9me3, or H3K27me3 for all consensus peaks in the gene was >0.58 (1.5-fold

increase).

Correlation analysis of gene expression and histone methylation data

Correlation analysis between gene expression and histone methylation was performed as previously re-

ported (Lee et al., 2017). Briefly, the annotated genes were sorted in a descending manner according to

their expression levels or log2-fold-changes and then binned such that each bin included 100 genes.

The mean levels or log2-fold-changes of histone methylation (H3K4me3, H3K9me3, or H3K27me3) were

computed in individual bins. A scatter plot of gene expression versus histonemethylation data (mean levels

or log2-fold-changes) in individual bins was generated. The Pearson’s correlation coefficient between gene

expression and histone methylation data in the scatter plot was computed. p-values were computed using

a t-test for the correlation coefficients.

Functional enrichment analysis

Enrichment analysis of gene ontology biological processes (GOBPs) was performed for a list of genes (e.g.,

selected DEGs) using DAVID software (Huang et al., 2009). GOBPs with p-values < 0.1 (default cutoff in

DAVID) were selected as the processes enriched by the list of genes analyzed. A network model was con-

structed for selected DEGs using the interactions between these DEGs in the Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway database (Kanehisa et al., 2012). The constructed network model was visu-

alized using Cytoscape software (Cline et al., 2007), and the nodes were arranged based on the locations

and relationships of the corresponding genes in the KEGG pathway database.

TF binding site analysis

To identify TFs with binding motifs enriched in differentially methylated peak regions in a list of genes, we

collected 161 TF matrices from the JASPAR CORE database (Mathelier et al., 2014). Sequences for differ-

entially methylated peaks (input sequences) were scanned using MotifLocator software (Thijs et al., 2002);

(Lee et al., 2017). The 2nd order custom backgroundmodel was created using the CreateBackgroundModel

software in MotifSuite, using all peak sequences. To assess the statistical significance of the MotifLocator

scores, we randomized the input sequence and applied MotifLocator 1000 times to the randomized

sequence using the parameters –b (custom background model) and –t �1. The resulting scores from the

random experiments were used to estimate the empirical distribution of the MotifLocator scores for

each TF. Based on the empirical distribution, we computed the false discovery rates (FDRs) for the

observed scores using Storey’s method (Storey and Tibshirani, 2003). The binding sites of each TF were

selected as those with an FDR<0.001, and target genes of the TF were identified as those with >1 binding

site. Next, we identified TFs with a significant number of target genes in a list of genes. We first randomly

shuffled the input sequence 10,000 times, counted the number of targets for each TF in individual random
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experiments, and estimated an empirical distribution for the number of targets using a Gaussian kernel

density estimation. Using empirical distribution, we computed the FDR for the observed number of targets

of each TF in a list of genes using Storey’s method (Storey and Tibshirani, 2003). Finally, we selected TF

candidates with an FDR <0.01.

Evaluation of in vitro histone demethylase activity and mass spectrometric analyses

Recombinant His-tagged truncated KDM4A (1–350 amino acids) proteins were produced in E. coli

BL21(DE3) transformed with pET-32a-KDM4A(1–350aa) and isolated Cusing Ni-NTA agarose (QIAGEN)

and then purified. The purified KDM4A proteins were incubated with 2 mM of trimethyl-histone H3K9 pep-

tide (ARTKQTAR(me3K)STGGKAPRKQLA-GCK-biotin, upstate #12-568, 2,765.3 Da) in demethylase reac-

tion buffer (20 mM Tris-HCl [pH 7.3], 150 mM NaCl, 100 mM 2OG, and 2 mM ascorbic acid) for 4 hours at

37�C. After the demethylase reaction, excess salts were removed with ZipTipC18 (Millipore). The peptide

was eluted from the tip with cyano-4-hydroxycinnamic acid in acetonitrile/water containing 0.1% trifluoro-

acetic acid (50:50, v/v) followed by extensive washing with 0.1% trifluoroacetic acid in water. The eluted

peptide solution was transferred to aMALDI sample plate andMALDI-TOFmeasurements were performed

with a Voyager analyzer (Applied Biosystems).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed usingGraphpad Prism software. For comparisons between two groups,

we used a two-tailed Student’s t-test. We used one-way ANOVA with Tukey’s correction as a post-hoc test

for comparisons amongmultiple groups. The sample sizes, statistical tests, and parameters are listed in the

corresponding figure legends. Data are shown as the meanG SEM. The criterion of significance was set at

p < 0.05 in all cases.
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