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What is the influence of periodic environmental fluctuations on life-history evolution?We present a general theoretical framework

to understand and predict the long-term evolution of life-history traits under a broad range of ecological scenarios. Specifically, we

investigate how periodic fluctuations affect selection when the population is also structured in distinct classes. This analysis yields

time-varying selection gradients that clarify the influence of the fluctuations of the environment on the competitive ability of a

specific life-history mutation. We use this framework to analyse the evolution of key life-history traits of pathogens. We examine

three different epidemiological scenarios and we show how periodic fluctuations of the environment can affect the evolution of

virulence and transmission as well as the preference for different hosts. These examples yield new and testable predictions on

pathogen evolution, and illustrate how our approach can provide a better understanding of the evolutionary consequences of

time-varying environmental fluctuations in a broad range of scenarios.
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Many organisms experience periodic fluctuations of their envi-

ronment. These fluctuations may be driven by abiotic variations

of the environment at different time scales (e.g., diurnal and sea-

sonal variability), or by the dynamics of biotic interactions be-

tween organisms (e.g., predator–prey or host–parasite limit cy-

cles). In such periodically changing environments, selection on

life-history traits is likely to fluctuate over time, but we currently

lack a good understanding of the feedback between periodic en-

vironmental dynamics and long-term phenotypic evolution (Bar-

raquand et al., 2017).

A good measure of selection in periodic environments

should tell us whether, on average over one period of the fluc-

tuation, a mutation increases or decreases in frequency. But how

should we compute this average fitness when selection may vary

both in time but also among different classes of individuals?

Floquet theory provides an answer to this question through the

computation of the invasion fitness of a rare mutant in the peri-

odic environment produced by the wild type (Klausmeier, 2008;

Metz et al., 1992; Meszéna et al., 2005; Metz, 2008). However,

the analysis based on Floquet theory is numerical and yields lit-

tle biological insight. It only provides a good understanding of

evolutionary dynamics when a single class of individuals is

needed to describe the mutant dynamics. In this case the invasion

fitness is simply the average, over one period, of the per-capita

growth rate of a rare mutant (Cornet et al., 2014; Donnelly et al.,

2013; Ferris & Best, 2018; Gandon, 2016; Kremer & Klausmeier,

2013; Metz, 2008; Pigeault et al., 2018). In class-structured pop-

ulations, however, the lack of an analytical expression for the

invasion fitness hampers the biological interpretation of the re-

sults obtained with Floquet analysis. In this paper, we fill this gap

and provide a new method to analyse selection in class-structured

populations subject to periodic environmental fluctuations.

In constant environments, it has been shown that the di-

rection of selection should depend on the relative abundance of

each class as well as the productivity of the focal organism in

each class, so that we need to keep track of both the quantity

and the quality of different classes (Gandon, 2004; Lehmann &

Rousset, 2014; Lion, 2018a; Rousset, 2004; Taylor, 1990; Tay-

lor & Frank, 1996). Our approach extends this idea to periodic

environments and allows us to derive, using only the standard

weak-selection assumption, an expression of the selection gradi-

ent in terms of the quantity and quality of classes, which are now
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Figure 1. Graphical summary of our approach. Environmental

fluctuations are used to evaluate the quality and quantity of in-

dividuals in the different classes at a given time. This information

can then be used to calculate the selection gradient.

time-dependent variables (see Fig. 1 for a graphical summary).

With this approach, the selection gradients in periodic and

constant environments are directly comparable and conceptu-

ally similar.

We first provide a general description of eco-evolutionary

dynamics in class-structured, polymorphic populations, then turn

to the dynamics of a mutant invading a resident population. We

show that, under weak selection (that is, for mutations of small

phenotypic effects), a separation of time scales argument can

be used to derive the selection gradient in periodically varying

environments. To illustrate the potential use of this approach,

we focus on the evolution of pathogen life-history traits (such

as transmission and virulence) in three different epidemiological

scenarios when there is periodic variation in the availability of

susceptible hosts. The focus on pathogens is not restrictive, and

the method can be applied to a variety of life cycles. Evolution-

ary epidemiology, however, provides a very natural framework in

which to think about potentially complex eco-evolutionary feed-

backs.

Eco-Evolutionary Dynamics
We consider a focal population composed of K different “classes”

of individuals. For instance, these different classes may corre-

spond to distinct developmental stages of the organism (e.g.,

young and old, male or female), different immune states, or dif-

ferent locations in a spatially structured environment. Because we

are interested in evolution we also assume that the population is

composed of M different “genotypes.”

The life cycle is defined by a matrix of average tran-

sition rates, r̄k j (E, t ), which refer to the net production of

class-k individuals by class-j individuals, averaged over all geno-

types (Lion, 2018b, 2018a). These transitions can be due to repro-

duction, mortality, maturation, or dispersal depending on the bi-

ological context. Crucially, these rates can vary with a change in

the environment which is referred to as E(t ) (Lion, 2018b; Metz

et al., 1992; Metz, 2008). These environmental variations may be

driven by density-dependent effects caused by changes in popu-

lation densities n(t ), by frequency-dependent effects caused by

changes in the frequencies p(t ) of the different types, but also by

changes in extrinsic variables (such as the density of a resource)

which we refer to as e(t ), so that E(t ) = (n(t ) p(t ) e(t ))�.

Table 1 gives a summary of the main notations.

The average transition rates depend on the transition rates

of the various genotypes, rk j
i (E, t ), and on the frequencies f j

i of

genotype i in class j. Thus, we have

r̄k j (E, t ) =
∑

i

rk j
i (E, t ) f j

i (t ). (1)

Note that the vital rates may themselves be time-dependent,

hence we make time an explicit argument of the transition rates

rk j
i . Following Lion (2018b, 2018a), this yields the following eco-

evolutionary dynamics:

dn(t )

dt
= R̄(E, t )n(t ) (2a)

d f k
i (t )

dt
=
∑

j

(
rk j

i (E, t ) f j
i (t ) − r̄k j (E, t ) f k

i (t )
) f j (t )

f k (t )
(2b)

where f j (t ) = n j (t )/
∑

k nk (t ) is the fraction of individuals in

class j at time t , and R̄(E, t ) is the matrix of average per-capita

transition rates between different classes of individuals. Note that

if the environment depends on extrinsic variables (e.g., the den-

sity of a resource or a predator), one needs to specify the dy-

namics of e(t ) to complete the characterisation of the dynamical

system (2). Thus, the eco-evolutionary dynamics are described by

the M(K + 1) equations of system (2), plus the equations needed

to describe the dynamics of extrinsic variables.

DYNAMICS OF MUTANT FREQUENCIES

Now suppose that, for simplicity, we only have two types in the

population: a resident wild type (w) and a mutant (m). The change

in the global frequency of the mutant, fm = ∑
k f k

m f k , can then be

decomposed as follows (Day & Gandon, 2006; Lion & Gandon,

2016; Lion, 2018a; Osnas et al., 2015).

d fm

dt
=
∑

j

f j
m(t )(1 − f j

m(t ))
∑

k

(rk j
m (E, t ) − rk j

w (E, t )) f j (t )

︸ ︷︷ ︸
within−class

+
∑

j

( f j
m(t ) − fm(t ))

∑
k

r̄k j (E, t ) f j (t )

︸ ︷︷ ︸
between−class

.

(3)
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Table 1. Definition of the main mathematical symbols.

Mathematical symbol Description

nk (t ) Density of individuals in class k (1 ≤ k ≤ K)
n(t ) = ∑

k nk (t ) Total density of individuals
f k (t ) = nk (t )/n(t ) Frequency of individuals in class k (with respect to the total population)
vk (t ) Individual reproductive value for class k
n(t ) Vector of class densities nk(t)
f (t ) Vector of class frequencies f k(t)
v(t ) Vector of individual reproductive values vk (t )
e(t ) Vector of external ecological variables
f k
i (t ) Frequency of genotype i within class k (1 ≤ i ≤ M)

p(t ) Vector of genotype frequencies f k
i (dimension K × M)

fi(t ) = ∑
k f k

i (t ) f k (t ) Global frequency of genotype i
f̃i(t ) = ∑

k vk (t ) f k
i (t ) f k (t ) Reproductive-value-weighted frequency of genotype i

rk j
i Per-capita transition rate of genotype-i individuals from class j to class k

r̄k j = ∑
i rk j

i f j
i Average per-capita transition rate at from class j to class k

R̄ Matrix of average per-capita transition rates r̄k j .
Rw Matrix of per-capita transition rates for the resident type rk j

w .

The first line represents the average effect of within-class se-

lection, given by the genetic variance f j
m(1 − f j

m ) within class

j, times the difference in transition rates from class j to all

other classes. The average is taken over the class distribution

f j . In contrast, the second line represents the effect of gene

flow between classes, which depends on the relative contribu-

tion of the different classes when there is variation in geno-

type frequencies (differentiation) among classes. Importantly,

this second term conflates both the effect of selection (which

can shape the differentiation f j
m − fm) and of purely demographic

processes (what Grafen (2015) termed “passive changes” in al-

lele frequencies), so that any estimation of selection based on

equation (3) may be biased by the existence of intrinsic differ-

ences in qualities between classes (Gardner, 2015; Grafen, 2015;

Lion, 2018a).

Thus, although there can be value in explicitly tracking the

dynamics of the genetic differentiation between classes (see e.g.,

Berngruber et al. 2013, 2015; Lion & Gandon 2016), it is for

our purpose more convenient to use an alternative measure of the

mutant frequency,

f̃m(t ) =
∑

k

vk (t ) f k
m(t ) f k (t ), (4)

which weights the mutant frequency in class k by the quantity

( f k (t )) and quality (vk (t )) of individuals in class k at time t .

Specifically, we use the reproductive value of an individual in

class k at time t as the measure of quality vk (t ). As previously

shown (Lion, 2018a), the dynamics of this weighted average fre-

quency can then be written as

d f̃m

dt
=
∑

j

f j
m(t )(1 − f j

m(t ))︸ ︷︷ ︸
genet ic variance

∑
k

vk (t )(rkj
m (E, t ) − rkj

w (E, t )) f j (t ) (5)

In contrast to equation (3), equation (5) describes the net ef-

fect of selection on the change in mutant frequency, without

the confounding variations due to “passive changes” (Gard-

ner, 2015; Grafen, 2015; Lion, 2018a). It thus provides a more

convenient measure of selection where the overall change in

mutant frequency is driven by the sum of the effects of the

mutation on the rates rk j weighted by the frequency of class

j and the individual reproductive value of class k. Crucially,

both the quantity and the quality of the different classes can

change in a fluctuating environment, so, unlike classical equi-

librium theory we need to characterise these fluctuations to un-

derstand and predict life-history evolution. In order to charac-

terise these fluctutations, we will use a weak selection assump-

tion to decouple the ecological fluctuations from the evolutionary

dynamics.

Weak Selection Approximation
In this section, we use a weak-selection approximation of equa-

tion (5) to derive an expression of the selection gradient us-

ing dynamical reproductive values. Our approach is based on a

separation of time scales, which readily occurs when the mu-

tant phenotype, zm, is close to the resident phenotype zw, so

that zm = zw + ε, where ε is small. Under this separation of

time scales, the population will settle on a population dynamical

attractor, such as a fixed point or a limit cycle, and we can
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compute the quality and quantity of each class at any given time

on the attractor. The fixed point case corresponds to the clas-

sical theory developed for constant environments (Otto & Day,

2007; Rousset, 2004; Taylor, 1990), and the limit cycle case cor-

responds to an extension of this theory to periodic population dy-

namics, which we now present.

SELECTION GRADIENT

In Appendix A, we show that the class densities n(t ), class fre-

quencies f (t ), and individual reproductive values v�(t ) are “fast”

variables. This means that, under weak selection, the environment

E(t ) settles on a periodic attractor which is well approximated by

the attractor of a monomorphic resident population, Ê(t ). On this

monomorphic attractor, we only need the densities n̂(t ) and the

external variables ê(t ) to fully characterise the environment ex-

perienced by the mutant type.

In contrast, the weighted mutant frequency f̃m is a slow vari-

able. To first-order in ε, we can write the dynamics of f̃m as

d f̃m

dt
= ε f̃m(t )(1 − f̃m(t ))S (t ) + O(ε2) (6)

where the instantaneous selection gradient is given by

S (t ) =
∑

j

∑
k

v̂k (t )
∂rk j

m (Ê, t )

∂zm

∣∣∣
zm=zw

f̂ j (t ). (7)

Note that, in Equation (6), we have replaced the class vari-

ances f j
m(1 − f j

m ) in Equation (5) by the population variance

f̃m(1 − f̃m ). This is because the differences f j
m − f̃m will typi-

cally be O(ε) and therefore this substitution will only contribute

an extra O(ε2) term to equation (6).

As a result of periodic fluctuations on the fast time scale, the

value and sign of the selection gradient may fluctuate. However,

under weak selection, these fast fluctuations can be averaged out.

This is known as the averaging principle (see, e.g., Cai & Geritz

2020), which allows us to approximate the dynamics of the mu-

tant frequency on the slow time scale by the solution of the so-

called averaged system

d f̃m

dt
= ε f̃m(1 − f̃m )S (8)

where

S =
〈∑

j

∑
k

v̂k (t )
∂rk j

m (Ê, t )

∂zm

∣∣∣
zm=zw

f̂ j (t )

〉
(9)

is the selection gradient averaged over one period of the resident

attractor (i.e. 〈X 〉 = 1
T

∫ τ+T
τ

X (t ) dt for any given τ on the peri-

odic attractor).

The selection gradient (9) takes the form of a sum of

marginal selective effects (giving the influence of the evolving

trait on between-class transitions) weighted by the time-varying

quantity and quality of different classes and is therefore reminis-

cent of the expressions obtained in equilibrium class-structured

populations. In fact, for constant environments, the class fre-

quencies, reproductive values and environment are constant, and

therefore equation (9) exactly reduces to the classical expression

of the selection gradient for class-structured equilibrium popula-

tions (Otto & Day, 2007; Rousset, 2004; Taylor, 1990). For pe-

riodic environments, equation (9) provides an analytical approx-

imation, for weak selection, of the invasion fitness of a mutant

typically calculated as a Floquet exponent (Appendix B). Note

that this first-order approximation gives information on the di-

rection of selection and its potential evolutionary endpoints, but

not on the evolutionarily stability of these singularities, for which

a numerical computation of the Floquet exponent is still needed

(Appendix B).

In equation (9), the class frequencies and reproductive values

are calculated on the attractor of the monomorphic resident pop-

ulation. In the next two sections, we show how these quantities

can be calculated using dynamical equations of the resident pop-

ulation.

DYNAMICS OF CLASS FREQUENCIES

Following Lion (2018a), the class frequencies follow the dynam-

ics:

df
dt

= Rw(E, t )f (t ) − rw(E, t )f (t ), (10)

where rw(E, t ) = ∑
k

∑
j rk j

w (E, t ) f j (t ) is the per-capita growth

rate of the monomorphic resident population and Rw(E, t ) is the

matrix of resident transition rates rk j
w (E, t ). If we focus on the

frequency of class j we have:

d f j

dt
=
∑

k

r jk
w (E, t ) f k (t ) − rw(E, t ) f j (t ). (11)

Hence, the change in frequency of class j depends on the cur-

rent class frequencies and on the relative contributions of all the

classes to class j. Note that we need to account for the over-

all growth rate rw(E, t ) of the whole population. This is be-

cause we are monitoring the change in class frequencies, not

class densities. The sum of class densities can increase (i.e. when

rw(E, t ) > 0) but the sum of class frequencies must remain equal

to 1 at all times (i.e.
∑

j f j (t ) = 1).

Mathematically, we can calculate the class frequencies at

time t by integrating equation (10) forward in time from an ap-

propriate initial condition (i.e. an initial condition that leads to a

biologically relevant periodic attractor after some time). For in-

stance, we can use an initial condition where all the f j are equal

to indicate that there is no a priori information on the relative

quantities of the different classes. In other words, the quantity of
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Figure 2. Calculating the class frequencies and reproductive values on the resident periodic attractor. Top panels: The class frequencies

are calculated forward in time using equation (11) (left). Integrating from t = t0 to tf , this gives dynamics that settle on a periodic attractor

(right). In this figure, we assume that both classes are initially equifrequent (i.e. fA(t0) = fB(t0) = 1/2) which amounts to saying that we

have no a priori information about their relative abundance. – Bottom panels: Next, we insert the values f j (t ) into equation (13) to

calculate the individual reproductive values. This is a backward process, because we need the values at t to compute the values at t − dt

(left). We therefore integrate equation (12) using the final condition vA(tf ) = vB(tf ) = 1, which means that there is initially (i.e. at time

tf ) no a priori information on the relative quality of the two classes. We can then choose a period of the attractor (e.g. the gray zone)

and calculate the values f̂ j (t ) and v̂ j (t ) for any t in the period.

class j at time t depends on the past trajectory of the population

(Figure 2, top panels).

DYNAMICS OF INDIVIDUAL REPRODUCTIVE VALUES

Similarly, the individual reproductive values, collected in the row

vector v�(t ), follow the dynamics (Lion, 2018a):

dv�

dt
= −v�(t )Rw(E, t ) + rw(E, t )v�(t ). (12)

If we focus on the individual reproductive value in class j, we

have:

dv j

dt
= −

∑
k

vk (t )rk j
w (E, t ) + rw(E, t )v j (t ). (13)

Mathematically, equation (12) is the adjoint of equation (10),

which generalises the fact that, in constant environments, class

frequencies and individual reproductive values are respectively

right and left eigenvectors of the transition matrix of the resident

population. Biologically, vk (t ) gives the relative quality of class

k at time t . As in equation (10), we take into account the change

in total population size (through rw(E, t )) so that f and v� are

co-normalised at all times (i.e. v�(t )f (t ) = 1). In other words,

the reproductive value of an average individual,
∑

k vk (t ) f k (t ) is

equal to 1 at all times, and vk (t ) measures the contribution to the

future of the population of an individual sampled in class k at

time t , relative to a randomly sampled individual.

Hence, measuring the “quality” of a class at time t depends

on the descendants and thus on the “future” of the population.

In contrast with class frequencies, we compute the individual

reproductive values by integrating equation (12) backward in

time, from a terminal condition at a time t f in the distant future

(Figure 2, bottom panels). Typically, we set vk (t f ) = 1 for all

classes at time t f (Barton & Etheridge, 2011; Lion, 2018a). This

terminal condition indicates that there is no a priori information

on the relative qualities of the different classes of individuals at

that point in time and we use between-class transitions on the pe-

riodic attractor to acquire information on these relative qualities,

by integrating the system (12) backward in time.

A GENERAL RECIPE TO STUDY EVOLUTION IN

PERIODIC ENVIRONMENTS

Equation (9) is the central result of our article and leads to a gen-

eral recipe to study the evolution of life-history traits in class-

structured populations experiencing periodic environmental fluc-

tuations. The main steps of this method are summarised in Box 1.

We start by computing the dynamics of the class densities in the

resident monomorphic population, which allows us to calculate

the class frequencies at a given time on the periodic attractor (i.e.

in the gray zone in Fig. 2). We then use this information to cal-

culate the dynamics of the individual reproductive values, which

depend on the class frequencies through the computation of the

transition rates rk j
w (E, t ). Although in general these solutions can

only be computed numerically, we show in the next section that

algebraic manipulations of equations (9), (11) and (13) can be

used to shed light on the interplay between fluctuating environ-

mental dynamics and selection. We do so by applying our general

method to the evolution of pathogen life-history traits when the

density of hosts fluctuates.
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Box 1: How to study life-history evolution in periodi-
cally fluctuating environments?

We detail below the different steps allowing us to derive

the selection gradient driving life-history evolution in a class-

structured population in a periodic environment.

Step 1 - Formalise the description of the life cycle of the

focal organism in a monomorphic resident population. This is

captured in the dynamical system:

dn
dt

= Rw(E, t )n (A),

where Rw(E, t ) is the matrix of between-class transition rates

in the resident population, together with the dynamical equa-

tions for the extrinsic variables in e(t ).

Step 2 - Determine which life-history traits are under se-

lection (and the trade-off between these traits). Indeed, mul-

tiple life-history traits may be involved in the life-cycle and

it is crucial to be very explicit about the constraints acting on

the evolving traits.

Step 3 - Derive the selection gradient using equation (9).

This step may often yield insight through the decomposition

of selection into biologically meaningful quantities (see sec-

tion 4 for examples). But in general, moving to steps 4 and 5

is needed to predict the influence of periodic fluctuations on

life-history evolution.

Step 4 - Use equation (A) and (11) to determine the pe-

riodic attractor of the resident population. This will yield the

forward dynamics of class frequencies.

Step 5 - Use equation (12) and the numerical solution

derived in step 4 to solve the backward dynamics of individual

reproductive values (using a final condition where individual

reproductive values are all equal to 1).

Step 6 - The results of steps 4 and 5 can then be plugged

into the selection gradient (step 3) to obtain a mathematical

expression (or a numerical computation) of the selection gra-

dient on the trait. This can be used to identify evolutionary sin-

gularities, the evolutionarily stability of which can be checked

using Floquet analysis (Appendix B).

Pathogen Evolution in Periodic
Environments
Many pathogens have to cope with environmental fluctuations

(Altizer et al., 2006; Martinez, 2018). In this section, we use the

approach in Box 1 to study pathogen evolution under three dis-

tinct epidemiological scenarios corresponding to three different

pathogen life cycles. In all scenarios the pathogen can be present

in two distinct classes of hosts (A and B) and the environmental

fluctuations are captured by a periodic function ν(t ) that gives the

Figure 3. Environmental fluctuation. We model fluctuations in

the environment with a smoothed step function with minimum 0,

maximum νmax andmean νmax/2. This is captured by the following

function: ν(t ) = (νmax/2)(1 + (2ζ/π) arctan (sin (2πt/T )/δ). We typ-

ically use ζ = 1 and δ = 0.01. Note that ζ = 0 corresponds to a con-

stant environment with value ν = νmax/2.

probability of production of susceptible hosts at time t . Hence,

using our general terminology, the forcing function ν(t ) causes

periodic fluctuations in the vector e(t ) (collecting the densities of

susceptible hosts), which in turn drives fluctuations in the vector

n(t ) (collecting the densities of infected hosts in classes A and B).

The general approach outlined in Box 1 can be applied to any pe-

riodic function, but for simplicity we consider a smooth version

of a step function with minimum 0, maximum νmax , and mean

νmax/2 (Figure 3).

SCENARIO 1: THE CURSE OF THE PHARAOH

HYPOTHESIS

The claim that long-lived pathogen propagules could select for

higher pathogen virulence has often been presented as the “Curse

of the Pharaoh hypothesis” (Bonhoeffer et al., 1996; Gandon,

1998). Previous theoretical analyses focused mainly on tempo-

rally constant environments. Here we want to analyse the influ-

ence of fluctuations on the availability of susceptible hosts on the

evolution of virulence for pathogens with free-living stages.

Let us assume that there is a single class of susceptible hosts

S but two different classes of the pathogens, which are (i) the

infected host (IA) and (ii) the propagule stage (which lives outside

the infected host but that we still denote IB for consistency with

the general framework). Thus, the vector of population densities

is n(t ) = (IA(t ) IB(t )) and S(t ) is the extrinsic environmental

variable e(t ). The epidemiological dynamics are given by

dS

dt
= θ(t ) − dS(t ) − βBS(t )IB(t ) (14a)

dIA

dt
= βBS(t )IB(t ) − (dA + αA)IA(t ) (14b)

dIB

dt
= βAIA(t ) − dBIB(t ) (14c)

where θ(t ) = bν(t ) refers to the periodic influx of susceptible

hosts in the population. A susceptible host becomes infected upon
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contact with the propagules, which occurs at rate βBIB(t ). In-

fected hosts die at rate dA + αA, where dA is the background

mortality rate and αA represents virulence, and produce propag-

ules at rate βA. These propagules die at a rate dB. Next, we fol-

low the steps presented in Box 1 to explore how higher propag-

ule survival (e.g. lower values of dB) can affect the evolution of

pathogen virulence αA in the infected host.

Step 1: We can use equations (14) to derive the matrix Rw(E, t )

which captures the transition rates between classes A and B in a

monomorphic resident population:

Rw(E, t ) =
(

−(dA + αA) βBS(t )

βA −dB

)
. (15)

Step 2: At this stage it is important to specify the constraints

acting on the underlying trait z that controls the evolution of

pathogen virulence αA. As in previous studies, we assume that an

increase in virulence is associated with an increase in pathogen

transmission rate and in particular on the production of propag-

ules βA (so that the derivatives of βA and αA with respect to z are

both positive; Bonhoeffer et al. 1996; Day & Gandon 2006).

Step 3: We use equation (7) to obtain the instantaneous selec-

tion gradient on the trait z:

S (t ) = f A(t )

(
vB(t )

dβA

dz
− vA(t )

dαA

dz

)
. (16)

The first term between brackets represents the gain in fitness if

a pathogen in class A invests in the production of propagules

(weighted by the individual reproductive value vB(t ) of propag-

ules). The second term between brackets accounts for the loss in

fitness if a pathogen in class A dies (weighted by the individual

reproductive value vA(t )). The selection gradient on z is obtained

by integrating equation (16) over one period of the fluctuation

which yields:

S = 〈
vB f A

〉dβA

dz
− 〈

vA f A
〉dαA

dz
. (17)

An analysis of the dynamics of class frequencies f (t ) and indi-

vidual reproductive values v(t ) is required to better understand

selection on virulence and transmission.

Steps 4 and 5: For our life cycle, equation (12), which gives the

dynamics of reproductive values, can be written as:

dvA

dt
= −βAvB(t ) + (dA + αA)vA(t ) + rwvA(t ), (18a)

dvB

dt
= −βBS(t )vA(t ) + dBvB(t ) + rwvB(t ). (18b)

Fluctuations in the availability of susceptible hosts cause fluctu-

ations of the reproductive values which can be obtained numeri-

cally from (18), using the solution of system (14) to evaluate S(t )

and rw(t ). But equation (18) also yields a useful expression for

the average of the ratio of individual reproductive values (Ap-

pendix S1): 〈
vB

vA

〉
= dA + αA

βA
. (19)

The right-hand side of equation (19) is the ratio of individual re-

productive values in the absence of fluctuations, so that we see

that the ratio vB(t )/vA(t ) fluctuates around its equilibrium value

in a constant environment.

Step 6: Equation (19) can be used to rewrite the selection

gradient (17) which yields:

S = 〈
cA
〉Scst + dβA

dz
Cov

(
cA(t ),

vB(t )

vA(t )

)
(20)

where cA(t ) = vA(t ) f A(t ) is the class reproductive value at time

t and

Scst = d + αA

βA

dβA

dz
− dαA

dz

refers to the gradient of selection in the absence of fluctua-

tions. This expression shows that, as pointed out by earlier stud-

ies (Bonhoeffer et al., 1996; Day & Gandon, 2006), the mortal-

ity rate of the propagule has no effect on the evolutionary sta-

ble virulence in a constant environment. However, with periodic

fluctuations, we will see that the mortality rate of the propag-

ule does affect the evolutionary outcome. Equation (20) is par-

ticularly insightful because it shows how periodic fluctuations

of the environment can affect the evolution of the pathogen:

because 〈cA〉 > 0, periodic fluctuations will affect the direction

of selection only if the temporal covariance between cA(t ) and
vB (t )
vA(t ) is non-zero. In words, this means that, if infected hosts

tend to be more abundant at times when propagules are rela-

tively more valuable (e.g. the covariance is positive), the ES vir-

ulence will be higher than in a constant environment because the

pathogen then reaps fitness benefits from increased propagule

production.

Numerical simulations show that this covariance is expected

to be positive when dB is low and negative when dB is large (Fig-

ures 4a, 4b, 4d; see the SOM for an attempt to understand the sign

of this covariance). In contrast with the analysis of Bonhoeffer

et al. (1996), we thus expect fluctuations to alter the predictions

regarding the influence of dB on the evolution of virulence and

transmission rates. As shown in Figure 4c, higher rates of survival

(i.e., lower values of dB) tend to select for higher virulence and

transmission (as in the Curse of the Pharaoh hypothesis). How-

ever, this effect is non-monotonic: when dB gets very low (i.e.

when propagule live very long), the covariance vanishes because

f A → 0 and thus cA → 0, and therefore the ES virulence is the

same as predicted in a constant environment. Note that Figure 4c
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Figure 4. Scenario 1: The Curse of Pharaoh. (a) Parametric plot of

vB(t )/vA(t ) versus cA(t ) for dB = 1 and zw = zeq. The grey diamond

gives the equilibrium for a constant environment. The slope of the

regression line (dashed) is proportional to the temporal covariance

between cA(t ) and vB(t )/vA(t ). (b) Same as (a) but with dB = 3. (c)

Predicted ESS as a function of the mortality rate of propagules, dB

using the reproductive-value-based approach (dots) and the Flo-

quet exponent (dashed line). The dotted line gives the prediction

of the corresponding equilibrium model, zeq = 1. (d) Temporal co-

variance between the class reproductive value cA(t ) and the ra-

tio of individual reproductive values vB(t )/vA(t ) as a function of

dB for zw = zeq, where zeq is the ESS in the absence of fluctu-

ations. Parameters: ν(t ) = 0.5(1 + (2/π) arctan (sin (2πt/T )/0.01)),

b = 8, d = dA = 1, βA(z) = β0z/(1 + z), βB = β0 = 10, αA(z) = z,

T = 10.

also shows that, as expected, the ESS predicted from the selection

gradient using time-dependent reproductive values is consistent

with the value predicted from a more standard Floquet analysis

(dashed line).

Conclusion of Scenario 1: In a constant environment the

longevity of pathogen propagules does not affect the long-term

evolution of pathogen virulence. In contrast, we show that pe-

riodic fluctuations of the environment (i.e., fluctuations in the

availability of susceptible hosts) can select for higher (when the

mortality rate of propagules is low) or lower (when the mortality

rate of propagules is high) pathogen virulence. The selection gra-

dient given in equation (20) allows us to capture the effect of fluc-

tuations through a single temporal covariance which measures the

deviation from the selection gradient in a constant environment.

SCENARIO 2: HOST PREFERENCE

Many pathogens can infect several host species. Intuitively,

which host the pathogen should prefer will depend on the relative

qualities of the hosts. But what would be the best strategy when

the qualities or abundances of the different host species fluctu-

ate? In our second scenario, we investigate the effect of periodic

fluctuations in the abundance of different host species on the evo-

lution of the pathogen’s preference strategy.

We consider an epidemiological model with contact trans-

mission (no free-living propagules) and assume that the pathogen

can exploit two different hosts (A or B). When a pathogen enters a

susceptible host SA (resp. SB), we assume that the infection is suc-

cessful with probability pA (resp. pB). With these assumptions,

the dynamical system becomes:

dSA

dt
= θA(t ) − dAS(t ) − h(t )pASA(t ) (21a)

dSB

dt
= θB(t ) − dBS(t ) − h(t )pBSB(t ) (21b)

dIA

dt
= h(t )pASA(t ) − (dA + αA)IA(t ) (21c)

dIB

dt
= h(t )pBSB(t ) − (dB + αB)IB(t ) (21d)

where h(t ) = βAIA(t ) + βBIB(t ) is the force of infection. The two

infection routes differ by their epidemiological parameters, so

that one infection route may be more contagious or virulent than

the other. Furthermore, we assume that the production of sus-

ceptible hosts is periodic, and such that θA(t ) = b(1 − ν(t )) and

θB = bν(t ), where ν(t ) is the probability of production of B hosts

(Figure 3).

Step 1: From equations (21), we derive the transition matrix

Rw(E, t ) =
⎛
⎝βA pASA(t ) − (dA + αA) βB pASA(t )

βA pBSB(t ) βB pBSB(t ) − (dB + αB )

⎞
⎠ .(22)

Step 2: We assume that there is a trade-off between pA and pB

such that pA = z = 1 − pB. Hence, if z = 1, infection is only pos-

sible on A hosts, while if z = 1/2, both host classes are equally

susceptible to infection. The trait z can thus be interpreted as mea-

suring preference towards A hosts. For simplicity, we assume that

the pathogen’s virulence is higher in host A, but its transmissibil-

ity is independent of the host (i.e. αA > αB, but βA = βB = β).

Step 3: Based on these assumptions on the life cycle, a naive

prediction could be that the pathogen should always prefer the

“good” host B, in which it enjoys a longer lifespan because the

pathogen is less virulent on this host. However, the optimal strat-

egy depends on the relative availability of the two classes of hosts,

EVOLUTION AUGUST 2022 1681



S. LION AND S. GANDON

which can fluctuate over time. To better understand the selective

pressures on the preference trait, we use our approach to derive

the selection gradient at time t and obtain:

S (t ) = β[vA(t )SA(t ) − vB(t )SB(t )]. (23)

The terms vk (t )Sk (t ) have a simple interpretation as the expected

reproductive output of a pathogen propagule at time t through

class k. Thus, the direction of selection is determined by whether

this reproductive output is larger through class A than through

class B. Furthermore, potential evolutionary endpoints satisfy the

balance condition

〈
vASA

〉 = 〈
vBSB

〉
, (24)

which simply states that selection halts when average reproduc-

tive outputs are the same in both classes.

Steps 4 and 5: To better understand the impact of periodic

fluctuations in host availability on the evolution of the prefer-

ence trait, we now need to numerically calculate the dynam-

ics of the reproductive values and densities of susceptible hosts.

A detailed discussion of these dynamics is given in the SOM,

but we show in Figure 5a,b that the period of ν(t ) has a strong

impact on the dynamics of the difference in reproductive out-

put D(t ) = vA(t )SA(t ) − vB(t )SB(t ). When the period is small

(Figure 5a), D fluctuates rapidly around a mean that is close to

its value in a constant environment (which is zero). In contrast,

for large periods (Figure 5b), D(t ) better tracks the environmental

fluctuations ν(t ) (it is minimal when there are only B hosts and

maximal when there are only A hosts) and its mean 〈D〉 is greater

than zero.

Step 6: Using the dynamics of the ecological variables, it is pos-

sible to calculate the ES strategy for different values of T (Ap-

pendix S2) and Figure 5c shows that the ESS increases with the

period of fluctuations. For small periods, the ecological variables

fluctuate rapidly and the ESS is close to the prediction of the

constant model: host preference is biased towards the B hosts be-

cause pathogens infecting these hosts have a higher reproductive

value. In contrast, when the period of fluctuations is large, host

preference is biased towards the A hosts even though their re-

productive value is always lower (Figure S2). To understand this

counter intuitive result it is important to note that, with the pe-

riodic fluctuation we consider, the mean gradient of selection is

simply the average over a half-period dominated by host A and

a half-period dominated by host B. When the period is large, the

epidemiological dynamics reach an endemic equilibrium within

each half-period, and this yields:

S = β

2
[SA

e − SB
e ]. (25)

Figure 5. Scenario 2: host preference. (a) Dynamics of D =
vA(t )SA(t ) − vB(t )SB(t ) for T = 1 and zw = zeq. The dashed line in-

dicates the mean value of D, the dotted line corresponds to the

equilibrium value of D in the constant environment, which is zero,

and the grey line gives the dynamics of ν(t ). (b) Same as (a) but

with T = 80. (c) Predicted ESS as a function of the period of ν(t )

using the reproductive-value-based approach (dots) and the Flo-

quet exponent (dashed line). The dotted line gives the predic-

tion of the corresponding equilibrium model, zeq = 0.368652. (d)

Mean value of the difference in reproductive output vA(t )SA(t ) −
vB(t )SB(t ) as a function of the period for zw = zeq. Parameters:

ν(t ) = 0.5(1 + (2/π) arctan (sin (2πt/T )/0.01)), b = 2, dA = dB = 1,

βA = βB = β = 10, αA = 2, αB = 1.

where SA
e and SB

e are the densities of the susceptible hosts at

the endemic equilibrium of the corresponding single-class mod-

els. It is possible to show that SA
e = (d + αA)/(zβ) and SB

e =
(d + αB)/((1 − z)β). Solving S = 0 then yields the evolution-

ary stable strategy z∗ = (d + αA)/(2d + αA + αB) which predicts

that, indeed, this preference strategy is biased towards host A

which suffers more from the infection (i.e., αA > αB).

Conclusion of Scenario 2: In a constant environment the

pathogen evolves a preference for the host which suffers less from

the infection because it prolongs the duration of infection. In con-

trast, we show that slow fluctuations in the abundance of the two

hosts can select for the opposite strategy where pathogens evolve

a preference for the host that suffers more from the infection. The

selection gradient given in equation (23) allows us to shed some

light on the effect of temporal fluctuations on pathogen evolution.
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SCENARIO 3: IMPERFECT VACCINES

The use of imperfect vaccines may affect the evolution of

pathogen virulence and transmission. These evolutionary conse-

quences have been studied by Gandon et al. (2001, 2003) when

the coverage of vaccination does not fluctuate in time. In our third

epidemiological scenario, we ask how periodic fluctuations in

vaccination coverage may affect the evolution of virulence, build-

ing on a recent study by Walter & Lion (2021).

We consider the same epidemiological dynamics as in Sce-

nario 2 (equation (21)), but assume that hosts are inoculated at

birth with an imperfect vaccine at a rate ν(t ) that fluctuates pe-

riodically (Figure 3). This yields a fluctuating influx of A hosts

that are unvaccinated (θA(t ) = b(1 − ν(t ))) and B hosts that are

vaccinated (θB(t ) = bν(t )).

Steps 1 and 2: As in scenario 2, the transition matrix Rw is

given by equation (22). We now assume that pA = pB = 1, and

consider that the vaccine can either act by reducing the transmis-

sibility of hosts B (βB = (1 − rb)βA) or by decreasing virulence

(αB = (1 − ra)αA). This corresponds to the anti-transmission and

anti-virulence vaccines introduced by Gandon et al. (2001) (noted

r3 and r4 respectively in that paper). Finally, we assume that, as

in Scenario 1, the trait under selection is the pathogen strategy

of host exploitation, z, and that transmission and virulence both

depend on z.

Step 3: With these assumptions, the selection gradient at time t

takes the form

S (t ) = cA(t )

[
dβA

dz
ωA(t ) − dαA

dz

]
+ cB(t )

[
dβB

dz
ωB(t ) − dαB

dz

]
(26)

where cA(t ) and cB(t ) = 1 − cA(t ) are the class reproductive val-

ues in class A and B respectively, and

ωk (t ) = vA(t )SA(t ) + vB(t )SB(t )

vk (t )
. (27)

Note that ωk (t ) has a useful intepretation: the denominator gives

the quality of an “adult” pathogen in class k, while the numera-

tor is the expected quality of a pathogen propagule and therefore

quantifies the reproductive value of an “offspring” pathogen. So

ωk (t ) gives a measure of how valuable reproduction is compared

to survival in class k at any given time.

Steps 4, 5 and 6: In general, the densities and reproduc-

tive values have complex periodic dynamics (Figures S3 and S4).

However, using the dynamics of reproductive values, it is possible

to analytically show (Appendix S3) that, in the resident popula-

tion on its periodic attractor:

〈
ωk
〉 = d + αk

βk
. (28)

The term on the right-hand-side is one over the basic reproduc-

tion ratio Rk of a pathogen when only class k is present, and cor-

responds to the equilibrium value in a model with constant vac-

cination coverage.

This useful result allows us to rewrite the average selection

gradient as

S ≈ 〈
cA
〉 [dβA

dz

d + αA

βA
− dαA

dz

]
︸ ︷︷ ︸

SA

+ (
1 − 〈

cA
〉) [dβB

dz

d + αB

βB
− dαB

dz

]
︸ ︷︷ ︸

SB

(29)

where we have neglected the covariances Cov(ck,ωk ) that arise

when taking the mean. Extensive numerical simulations show

that this approximation fits very well the prediction of a Floquet

analysis (Walter & Lion, 2021).

A full analysis is beyond the scope of this paper, and we

refer the reader to the more complete study by Walter & Lion

(2021). Nonetheless, is is interesting to see that the selection gra-

dient takes the form of a weighted sum of the selection gradients

in class A and B respectively, exactly as in constant environments.

For a constant vaccination coverage, the ES strategy of host ex-

ploitation is a weighted mean of the optima in class A and in

class B, respectively given by the zeros of SA and SB. For our

anti-transmission vaccine (rb > 0) SA = SB, and therefore vac-

cination has no effect on the optimum. Equation (29) shows that

the same holds true for periodic environment, and this is con-

firmed by numerical calculations of the Floquet exponents (Wal-

ter & Lion, 2021). For a vaccine that reduces virulence (ra > 0),

however, SA 	= SB, and the position of the ESS is determined by

a single variable, which is the mean value, over one period, of the

class reproductive value cA(t ) in the resident population.

Figure 6b shows that the class reproductive value cA(t )

closely tracks the environmental fluctuation ν(t ) when T is large

(it is close to 1 when ν(t ) = 0, so that only A hosts are produced,

and close to zero otherwise), whereas for short periods it quickly

fluctuates around its value in a constant environment (Figure 6a).

An interesting consequence is that, when the period of fluctu-

ations increases, 〈cA〉 increases (Figure 6d), which selects for

lower virulence compared to a scenario with constant vaccina-

tion coverage (Figure 6c). For large periods, 〈cA〉 converges to-

wards 1/2 (the mean of ν(t )), which allows the ES virulence to

be analytically calculated (Walter & Lion (2021), appendix S3).

Note that, in the latter figure, the slight quantitative discrepancy

between the prediction of equation (29) and the Floquet anal-

ysis is due to the fact that we have neglected the covariances

Cov(ck,ωk ).
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Figure 6. Scenario 3: imperfect vaccines and virulence. (a) Dy-

namics of the class reproductive value cA(t ) for T = 1 and zw = zeq.

The dashed line indicates the mean value, the dotted line the

value in a constant environment, and the grey line gives the dy-

namics of ν(t ). (b) Same as (a) but with T = 80. (c) Predicted ESS

as a function of the period of ν(t ) using the reproductive-value-

based approach (dots) and the Floquet exponent (dashed line).

The dotted line gives the prediction of the corresponding equilib-

rium model, zeq ≈ 1.667. (d) Mean value of the class reproductive

value cA(t ) as a function of the period for zw = zeq. Parameters:

ν(t ) = 0.5(1 + (2/π) arctan (sin (2πt/T )/0.01)), b = 2, dA = dB = 1,

βA(z) = βB(z) = β = 10z/(1 + z), αA = z, αB = (1 − ra )z, ra = 0.8.

Conclusion of Scenario 3: In a constant environment, vaccina-

tion with an imperfect vaccine that affects the within-host growth

of the pathogen can select for higher virulence. Here we show

that temporal fluctuations in the proportion of vaccinated hosts

can mitigate this effect. Importantly, the deviation from the pre-

diction in the absence of fluctuations can be captured by a single

quantity, which is the average, over one period, of the class re-

productive value cA(t ) (see the equation of the selection gradient

(29)).

Discussion
We present a theoretical framework to analyse evolution in peri-

odically fluctuating environments in class-structured populations,

and use it to study the evolution of pathogen traits in three epi-

demiological scenarios. In Scenario 1, we revisit the “Curse of

Pharaoh” hypothesis and show that, while propagule longevity

is not predicted to affect the evolution of virulence when the

environment is constant (Bonhoeffer et al., 1996; Day & Gan-

don, 2006), fluctuations in the density of susceptible hosts can

strongly alter the predictions on the effect of propagule longevity

on the evolution of virulence. In Scenario 2, we show that pe-

riodic fluctuations in the availability of two types of hosts can

bias pathogen preference towards the host where the pathogen

has higher virulence, in contrast to the prediction in a temporally

constant environment. Finally, in Scenario 3, we show that the

evolution of virulence in response to the use of imperfect vac-

cines is affected by periodic fluctuations in vaccination coverage,

which can select for lower virulence compared to constant envi-

ronments. These three scenarios illustrate how the derivation of

the selection gradient (using the general recipe detailed in Box 1)

can yield important insights on the influence of temporal fluctu-

ations on life-history evolution.

From a methodological standpoint, our analysis extends pre-

vious adaptive dynamics studies, which use the Lyapunov (or

Floquet, for periodic environments) exponent of a rare mutant

as a measure of invasion fitness (Cornet et al., 2014; Donnelly

et al., 2013; Ferris & Best, 2018; Geritz et al., 1998; Gandon,

2016; Klausmeier, 2008; Metz et al., 1992; Metz, 2008; Pigeault

et al., 2018). Here, we circumvent this problem and derive an ex-

pression of the selection gradient on life-history traits, which rep-

resents the first-order approximation of invasion fitness for weak

selection. We show how it can be used to better understand the

impact of environmental fluctuations on the direction of selection

and the potential evolutionary endpoints of life-history evolution.

In contrast with previous optimisation approaches (e.g. McNa-

mara (1997)), our method does not rely on the assumption that

there is no frequency- or density-dependence in the population,

and allows us to take into account a variety of ecological feed-

backs.

Our approach is based on the analysis of the dynamics of

a reproductive-value-weighted frequency of a mutant. This is a

recurring idea in evolutionary biology (Fisher, 1930; Gardner,

2015; Grafen, 2015; Lion, 2018a; Lehmann & Rousset, 2014;

Taylor & Frank, 1996), but, in contrast to previous approaches

(see e.g. Gardner (2014)), the novelty here is that we use a dy-

namical definition of reproductive value to quantify the fluc-

tuating quality of a class in a periodic environment (see Lion

(2018a) for a general discussion on this topic, and Brommer et al.

(2000); Bacaër & Abdurahman (2008); Caswell (2001) for other

approaches). The resulting expression of the selection gradient

can then be obtained by weighting the effect, at time t , of a mu-

tation on the transition rates from class j to k by the frequency of

class j at time t and by the individual reproductive value of class

k at time t . This has two main implications. First, this allows us

to quantify selection at time t in terms of the quantity and qual-

ity of each class. As in constant environments, the quantity of a
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class is given by the frequency of individuals in that class, and the

quality of a class is measured by their reproductive value, which

gives the relative share of future descendants left by individuals

in that class. The only difference is that the quantity and quality

of each class are allowed to fluctuate periodically over time. Sec-

ond, the direction of selection can be obtained by computing the

average, over one period of the resident attractor, of the instan-

taneous selection gradient, and we recover a periodic extension

of the “invasion implies fixation” principle (Cai & Geritz, 2020;

Geritz, 2005; Priklopil & Lehmann, 2020).

It could be argued that, with our approach, the problem of

numerically computing a Floquet exponent is replaced by the

problem of numerically computing the time-dependent reproduc-

tive values and class frequencies. This is of course true if we are

simply interested in the quantitative result, but the expression of

the selection gradient allows for a qualitative discussion of the

selective pressures. The different examples we examine above il-

lustrate that this approach allows us to better understand the often

counter-intuitive effects of the periodic fluctuations of the envi-

ronment on life-history evolution. However, as our approach is

currently limited to first-order effects (e.g. convergence stabil-

ity), the numerical calculation of invasion fitness using Floquet

exponents is required to evaluate evolutionary stability and deter-

mine whether the predicted evolutionary singularities are ESSs or

branching points (Appendix B).

Although periodic environmental fluctuations are important

in nature, many organisms also experience stochastic environ-

mental fluctuations. An interesting avenue for future work would

be to extend our approach to stochastic stationary ecological dy-

namics. Since the “invasion implies fixation” principle has also

been proven for stochastic fluctuations in the environment (Cai

& Geritz, 2020), we think this extension is feasible and would

help link our method with classical theory on the influence of

environmental stochasticity on life-history evolution (Frank &

Slatkin, 1990; Lande et al., 2017; Sasaki & Ellner, 1995). How-

ever, this would require a careful definition of the concept of

time-dependent reproductive value in stochastic environments.

Our general recipe to study adaptation in periodically fluc-

tuating environments relies on the classical Adaptive Dynamics

assumption that the mutation rate is small. This analysis may

predict the evolution of generalist strategies that balance the ex-

ploitation of the habitats that fluctuate periodically. Yet, as the pe-

riod of the fluctuation between different environments increases,

one may also expect that new mutations will introduce enough

genetic variation to allow the population to adapt to this time-

varying environment through the recurrent selection of genotypes

specialised to each habitat. This would be an interesting avenue

for future work.

Although we assumed in our scenarios that all life-history

traits are constant, so that temporal fluctuations only come from

periodic variations in birth rates which cause fluctuations in

densities, it is straightforward to consider time-dependent traits

(such as a seasonal transmissibility β(t )). This would give rise

to additional terms capturing the temporal covariance between

the trait and some life-cycle-specific ecological variable (Cornet

et al., 2014; Kamo & Sasaki, 2005; Koelle et al., 2005; Pigeault

et al., 2018).

More generally, fluctuating environments often select for

plasticity in life-history traits, which allows an organism to

switch between phenotypes specialised to each habitat. It would

be interesting to take this into account in our scenarios, especially

since there are numerous examples of plastic life-history strate-

gies in pathogens. For instance, malaria parasites have evolved

plastic transmission strategies to cope with the fluctuations of

their within-host environment as well as the fluctuations of the

availability of their mosquito vectors (Birget et al., 2017; Cornet

et al., 2014; Mideo & Reece, 2012). In addition, many viruses

have the ability to change their host exploitation strategy when

they perceive a change in the within-cell environment or other

cues from the environment (Gandon, 2016). Our approach can be

a valuable tool to understand the evolution of fascinating strate-

gies that enable viruses to coordinate the exploitation of their host

population in fluctuating environments (see Bruce et al. (2021)

for a recent application of our method).
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Appendix A: Weak-Selection
Approximation of Transition Rates

To derive the weak selection approximation of the transition

rates, we write rk j
i (E, t ) as explicit functions of the phenotypes:

rk j
i (E, t ) = rk j (zi, E, t ), (A1)

where zi is the trait of type i. Writing zm = zw + ε, for small ε,

we use a Taylor expansion to obtain (see e.g. Iwasa et al. (1991);

Abrams et al. (1993); Sasaki & Dieckmann (2011); Lion (2018b))

rk j (zm, E, t ) = rk j (zw, E, t ) + ε
∂rk j

∂zm
(zw, E, t ) + O(ε2). (A2)

As a result, we have

r̄k j (E, t ) = rk j (zw, E, t ) + O(ε)

rk j
m (E, t ) − rk j

w (E, t ) = ε
∂rk j

∂zm
(zw, E, t ) + O(ε2)

which implies that the dynamics of the class frequencies and in-

dividual reproductive values (as well as extrinsic environmental

variables) are O(1) and functions of rk j
w (E, t ) only, while the dy-

namics of f̃m are O(ε). This leads to a separation of time scales,

with the class frequencies and individual reproductive values be-

ing fast variables and the weighted mutant frequency f̃m being a

slow variable. Importantly, the unweighted average, fm, is not a

slow variable because its dynamics (3) depends on O(1) terms

(see also Priklopil & Lehmann (2020)).

Appendix B: The Floquet Approach
for a Rare Mutant

The classical Adaptive Dynamics approach is based on the

assumption that the mutant is rare and on the derivation of inva-

sion fitness as the Lyapunov exponent of the mutant on the resi-

dent attractor (Geritz et al., 1998; Metz et al., 1992; Metz, 2008).

For periodic attractors, this amounts to calculating the so-called

Floquet exponent of the mutant invasion dynamics (Klausmeier,

2008). Unfortunately, Floquet exponents typically have to be nu-

merically calculated, and only in specific cases can an analyti-

cal expression be derived. For instance, when the population has

only one class (K = 1), it is generally straightforward to derive

an analytical expression for the invasion fitness of the mutant by

integrating its per-capita growth rate over one period (see e.g.

Donnelly et al. (2013); Ferris & Best (2018)).

The general procedure to calculate the invasion fitness of a

rare mutant is to evaluate the mutant dynamics on the resident

attractor. This leads to a matrix Rm(Ew, t ), where Ew denotes the

environment on the resident attractor. One then numerically inte-

grates the matrix differential equation

dX
dt

= Rm(Ew, t )X (B1)

over one period (from t = t0 to t = t0 + T ) from the initial condi-

tion X(t0) = I, the identity matrix. The eigenvalues of X(t0 + T )

are called the Floquet multipliers, and the invasion fitness can

then be expressed as the dominant Floquet exponent

λ(zm, zw ) = 1

T
ln μ (B2)

where μ is the dominant Floquet multiplier. This numerical pro-

cedure can be repeated for any combination of the mutant and

resident traits, which makes it possible to develop the full tool-

box of Adaptive Dynamics to investigate the convergence and

evolutionarily stability of the singularities. Although well es-

tablished in theory, this method is very rarely encountered in

practice in the literature, because very few studies have actu-

ally analysed long-term life-history evolution in periodic envi-

ronments for class-structured populations (but see e.g. Ferris &

Best (2018)).
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Supporting Information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S.1: Scenario 1: The Curse of Pharaoh.
Figure S.2: Scenario 2: host preference.
Figure S.3: Scenario 3: imperfect vaccine and virulence.
Figure S.4: Scenario 3: imperfect vaccine and virulence.
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